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Model reduction: problem setting

Model reduction: problem Setting

Consider
ẋ(t) = f(x(t),u(t))
y(t) = h(x(t),u(t))

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp. The reduced system is:

ẋr (t) = fr (xr (t),u(t))
yr (t) = hr (xr (t),u(t))

where xr ∈ Rr . The number of inputs and outputs, m, p, remain the same,
while the internal state-space satisfy: r � n.
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Model reduction: problem setting

Model reduction: problem Setting

consider
Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m; x(t) ∈ Rn, u(t) ∈ Rm

and y(t) ∈ Rp. The reduced system is described by:

Er ẋr (t) = Ar xr (t) + Br u(t)
yr (t) = Cr xr (t) + Dr u(t)

where Ar ,Er ∈ Rr×r , Br ∈ Rr×m, Cr ∈ Rp×r and Dr ∈ Rp×m. The number of
inputs and outputs, m, p, remain the same, while the internal state-space
satisfy: r � n.
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Model reduction: problem setting

Goals for Reduced Order Models

1 The reduced input-output map should be uniformly ”close” to the
original: for the same u(t), y− yr , should be ”small”.

2 Critical system features and structure should be preserved: stability,
passivity, Hamiltonian structure, subsystem interconnectivity, or
second-order structure.

3 Strategies for computing the reduced system should lead to robust,
numerically stable algorithms and require minimal application-specific
tuning.
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Model reduction: problem setting

Problem 1

Interpolatory reduction given state space data

Given a full-order system E, A, B, C, D, and given

left interpolation points: right interpolation points:
{µi}q

i=1 ⊂ C, and {λi}r
i=1 ⊂ C

with left tangent directions: with right tangent directions:
{`i}q

i=1 ⊂ Cp, {ri}r
i=1 ⊂ Cm.

Find a reduced-order system Er , Ar , Br , Cr , Dr , such that the transfer
function, Hr (s) is a tangential interpolant to H(s):

`∗i Hr (µi ) = `∗i H(µi ) and Hr (λj )rj = H(λj )rj ,
for i = 1, · · · ,q, for j = 1, · · · , r ,

Interpolation points and tangent directions are selected to realize the model
reduction goals.
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Model reduction: problem setting

Problem 2

Interpolatory reduction given input/output data

Given a set of input-output response measurements specified by

left driving frequencies: right driving frequencies:
{µi}q

i=1 ⊂ C, {λi}r
i=1 ⊂ C

using left input directions: and using right input directions:
{`i}q

i=1 ⊂ Cp, {ri}r
i=1 ⊂ Cm

producing left responses: producing right responses:
{vi}q

i=1 ⊂ Cm, {wi}r
i=1 ⊂ Cp

Find (low order) system matrices Er , Ar , Br , Cr , Dr , such that the transfer
function, Hr (s), is a tangential interpolant to the data:

`∗i Hr (µi ) = v∗i and Hr (λj )rj = wj ,
for i = 1, · · · ,q, for j = 1, · · · , r ,

Interpolation points and tangent directions are determined by the data.

Thanos Antoulas (Rice U. & Jacobs U.) Reduction of DAE systems from data 8 / 46



Model reduction: problem setting

Problem 2

Interpolatory reduction given input/output data

Given a set of input-output response measurements specified by

left driving frequencies: right driving frequencies:
{µi}q

i=1 ⊂ C, {λi}r
i=1 ⊂ C

using left input directions: and using right input directions:
{`i}q

i=1 ⊂ Cp, {ri}r
i=1 ⊂ Cm

producing left responses: producing right responses:
{vi}q

i=1 ⊂ Cm, {wi}r
i=1 ⊂ Cp

Find (low order) system matrices Er , Ar , Br , Cr , Dr , such that the transfer
function, Hr (s), is a tangential interpolant to the data:

`∗i Hr (µi ) ∼= v∗i and Hr (λj )rj
∼= wj ,

for i = 1, · · · ,q, for j = 1, · · · , r ,

Interpolation points and tangent directions are determined by the data.
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Reduction from measurements

Motivation: S-parameters

• Streamlining of the simulation of entire complex electronic systems (chips,
packages, boards) is required.

• In circuit simulation, interconnect models must be valid over a wide
bandwidth.

An important tool: S-parameters

Given a system in I/O representation: y(s) = H(s)u(s), the associated
S-paremeter representation is

ȳ(s) = S(s)ū(s) = [H(s) + I][H(s)− I]−1
︸ ︷︷ ︸

S(s)

ū(s),

where: ȳ = 1
2 (y + u) are the transmitted waves and,

ū = 1
2 (y− u) are the reflected waves.
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Reduction from measurements

Measurement of S-parameters

Figure: VNA (Vector Network Analyzer) and VNA screen showing the
magnitude of the S-parameters for a 2 port device.
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Hankel and Loewner matrices

Classical realization

Given ht ∈ Rp×m, t = 1,2, · · · , find A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, such that

ht = CAt−1B, t > 0

Main tool: Hankel matrix

H =




h1 h2 h3 · · ·
h2 h3 h4 · · ·
h3 h4 h5 · · ·
...

...
...

. . .


 =




C
CA
CA2

...




︸ ︷︷ ︸
O

[
B AB A2B · · ·

]
︸ ︷︷ ︸

R
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Hankel and Loewner matrices

Classical realization

Solvability⇔ rankH = n <∞
Solution: Let ∆ ∈ Rn×n, be a submatrix of H such that det ∆ 6= 0; let also
σ∆ ∈ Rn×n be the matrix with the same rows but columns shifted by m
columns; finally, let Γ ∈ Rn×n have the same rows as ∆ but the first m
columns only, while Λ ∈ Rm×n be the submatrix of H composed of the same
columns as ∆, but its first p rows. Then

A = ∆−1σ∆, B = ∆−1Γ, C = Λ.

Consequences. If the sequence ht , t > 0, is realizable, it is also summable:

H(s) = C(sI− A)−1B =
∑

t>0

hts−t

Notice that in terms of the data:

H(s) = Λ(s∆− σ∆)−1Γ

Remark. ht are the Markov parameters of the underlying linear system
ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t).
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Hankel and Loewner matrices

Model Reduction from Measurements

Consider a set of scalar points: (si , φi ), i = 1,2, · · · ,N, si 6= sj , i 6= j .
We seek a rational function H(s) = n(s)

d(s) , such that H(si ) = φi , i = 1,2, · · · ,N,
and n,d are coprime polynomials. The data is now divided in disjoint sets:
(σi ,wi ), i = 1,2, · · · , r , (µj , vj ), j = 1,2, · · · ,q, k + q = N. Consider:

∑r
i=1 γi

φ(s)−wi
s−σi

= 0.

Then as long as γi 6= 0, there holds φ(σi ) = wi , for i = 1, · · · ,q. Making use
of the freedom in satisfying the remaining interpolation conditions, we get:

The Loewner matrix

Lc = 0 where L =




v1−w1
µ1−σ1

· · · v1−wr
µ1−σr

...
. . .

...
vq−w1
µq−σ1

· · · vq−wk
µq−σr




︸ ︷︷ ︸
Loewner matrix

∈ Cq×r , c =



γ1
...
γr


 ∈ Cr .
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Hankel and Loewner matrices

Model construction from data

Main result
The rank of L encodes the information about the minimal degree interpolants:

n = rank L.

Remark. If H(s) = C(sI− A)−1B + D, then

L = −




C(λ1I− A)−1

C(λ2I− A)−1

...
C(λk I− A)−1




︸ ︷︷ ︸
O

[
(µ1I− A)−1B · · · (µq I− A)−1B

]
︸ ︷︷ ︸

R
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Hankel and Loewner matrices

Scalar interpolation – multiple points

Special case. single point with multiplicity: (s0;φ0, φ1, · · · , φN−1), i.e. the
value of the function and that of a number of derivatives is provided. The
Loewner matrix becomes:

L =




φ1
1!

φ2
2!

φ3
3!

φ4
4! · · ·

φ2
2!

φ3
3!

φ4
4! · · ·

φ3
3!

φ4
4!

φ4
4!

...
. . .

...




⇒ HANKEL MATRIX

Thus the Loewner matrix generalizes Hankel matrix when general
interpolation replaces realization.
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Tangential interpolation and the Loewner matrix pencil
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Tangential interpolation and the Loewner matrix pencil

General framework – tangential interpolation

Given: • right data: (λi ; ri ,wi ), i = 1, · · · , k

• left data: (µj ; `
∗
j ,v∗j ), j = 1, · · · ,q.

We assume for simplicity that all points are distinct.

Problem: Find rational p ×m matrices H(s), such that

H(λi )ri = wi `∗j H(µj ) = v∗j

Right data:

Λ =



λ1

. . .
λk


 ∈ Ck×k ,

R = [r1 r2, · · · rk ] ∈ Cm×k ,

W = [w1 w2 · · · wk ] ∈ Cp×k

Left data:

M =



µ1

. . .
µq


∈Cq×q,L =




`∗1
...

`∗q


∈Cq×p,V =




v∗1
...

v∗q


 ∈ Cq×m
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Tangential interpolation and the Loewner matrix pencil

General framework – tangential interpolation

Input-output data. The Loewner matrix is:

L =




v∗1 r1−`∗1 w1
µ1−λ1

· · · v∗1 rk−`∗1 wk
µ1−λk

...
. . .

...
v∗q r1−`∗q w1

µq−λ1
· · · v∗q rk−`∗q wk

µq−λk


 ∈ Cq×k

Recall:

H(λi )ri = wi , `∗j H(µj ) = v∗j

Therefore L satisfies the Sylvester equation

LΛ−ML = VR− LW
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Tangential interpolation and the Loewner matrix pencil

General framework – tangential interpolation

State space data. Suppose that H(s) = C(sE− A)−1B.

Let X,Y satisfy the following Sylvester equations

EXΛ− AX = BR and MYE− YA = LC

⇓

xi = (λiE− A)−1Bri ⇒ X: generalized reachability matrix

y∗j = `∗j C(µjE− A)−1 ⇒ Y: generalized observability matrix.

⇒ L = −YEX
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Tangential interpolation and the Loewner matrix pencil

The shifted Loewner matrix

The shifted Loewner matrix, Lσ, is the Loewner matrix of sH(s):

Lσ =




µ1v∗1 r1−`∗1 w1λ1
µ1−λ1

· · · µ1v∗1 rk−`∗1 wkλk
µ1−λk

...
. . .

...
µqv∗q r1−`∗q w1λ1

µq−λ1
· · · µqv∗q rk−`∗q wkλk

µq−λk


 ∈ Cq×k

Lσ satisfies the Sylvester equation

LσΛ−MLσ = MVR− LWΛ

Lσ can be factored as
⇒ Lσ = −YAX

Lσ −ML + LW = 0 and Lσ − LΛ + VR = 0.
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Tangential interpolation and the Loewner matrix pencil

Construction of Interpolants (Models)

Theorem: right amount of data

Assume that k = `, and let

det (xL− Lσ) 6= 0, x ∈ {λi} ∪ {µj}
Then

E = −L, A = −Lσ, B = V, C = W

is a minimal realization of an interpolant of the data, i.e., the function

H(s) = W(Lσ − sL)−1V

interpolates the data.
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Tangential interpolation and the Loewner matrix pencil

Proof

Multiplying the first equation by s and subtracting it from the second we get

(Lσ − sL)Λ−M(Lσ − sL) = LW(Λ− sI)− (M − sI)VR.

Multiplying this equation by ei on the right and setting s = λi , we obtain

(λi I−M)(Lσ − λiL)ei = (λi I−M)Vri ⇒

(λiL− Lσ)ei = Vri ⇒ Wei = W(λiL− Lσ)−1V

Therefore wi = H(λi )ri . This proves right tangential interpolation.

To prove the left tangential interpolation property, we multiply the above
equation by e∗j on the left and set s = µj :

e∗j (Lσ − µjL)(Λ− µj I) = e∗j LW(µj I− Λ) ⇒

e∗j (Lσ − µjL) = `jW ⇒ e∗j V = `jW(Lσ − µjL)−1V

Therefore vj = `jH(µj ).
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Tangential interpolation and the Loewner matrix pencil

The case of more data than necessary

Consider the following short SVDs:

[L Lσ] = YΣ`X̃∗ and
[

L
Lσ

]
= ỸΣr X∗, where Σ`,Σr ∈ Rk×k , Y, X ∈ CN×k .

Proposition

From the above construction we have:

YY∗L = L, YY∗Lσ = Lσ, YY∗V = V,
LXX∗ = L, LσXX∗ = Lσ, WXX∗ = W.

Theorem

A realization [E,A,B,C], of an (approximate) interpolant is given as follows:

E = −Y∗LX B = Y∗V
A = −Y∗LσX C = WX
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Tangential interpolation and the Loewner matrix pencil

Consequences

If we have more data than necessary, we can consider

(Lσ, L, V, W),

as a singular model of the data.

Corollary 1: Interpolation property

Let zi satisfy
(λiL− Lσ)zi = Vri .

It follows that
Wzi = wi

This follows because zi = ei + z0, where Wz0 = 0.
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Tangential interpolation and the Loewner matrix pencil

Consequences

Corollary 2

The original pencil (Lσ,L) and the projected pencil (A,E), have the same
non-trivial eigenvalues.

Proof

Let (z, λ) be a right eigenpair of (Lσ,L).
Then: Lσz = λLz⇒ LσXX∗z = λLXX∗z⇒ Y∗LσX︸ ︷︷ ︸

A

X∗z = λY∗LX︸ ︷︷ ︸
E

X∗z.

Thus (X∗z, λ) is an eigenpair of (A,E).

Conversely, if (z, λ) is an eigenpair of (A,E) then (Xz, λ) is an eigenpair of the
original pencil (Lσ,L).

Similarly for left eigenpairs.
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Tangential interpolation and the Loewner matrix pencil

Consequences

Corollary 3

Let Φ and Ψ be such that X∗Φ and Ψ∗Y are square and non-singular. Then

(Y∗LX, Y∗LσX, Y∗V, WX) and (Φ∗LΨ, Φ∗LσΨ, Φ∗V, WΨ),

are minimal realizations for the same system.

This means that the projection may in essence be chosen arbitrarily.
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Tangential interpolation and the Loewner matrix pencil

Coupled mechanical system

106 Volker Mehrmann and Tatjana Stykel

see [Sty04a]. System (3.33) has only one non-zero improper Hankel singular
value θ1 = 0.0049743.

We approximate the semidiscretized Stokes equation (3.33) by two mo-
dels of order ` = 11 (`f = 10, `∞ = 1) computed by the approximate
GSR and GSRBF methods. The absolute values of the frequency responses
of the full order and the reduced-order systems are not presented, since they
were impossible to distinguish. In Figure 3.3 we display the absolute errors
‖G(iω)−G̃(iω)‖2 and ‖G(iω)−Ĝ(iω)‖2 for a frequency range ω ∈ [ 10−2, 106 ]
as well as the approximate error bound computed as twice the sum of the trun-
cated approximate Hankel singular values ς̃11, . . . ς̃39. One can see that over
the displayed frequency range the absolute errors are smaller than 2 × 10−10

which is much smaller than the discretization error which is of order 10−4.

Constrained damped mass-spring system

Consider the holonomically constrained damped mass-spring system illus-
trated in Figure 3.4.

k1 ki ki+1 kg−1

d1 di di+1 dg−1

m1 mi mg

κ1 κi κg

δ1 δi δg

u

Fig. 3.4. A damped mass-spring system with a holonomic constraint.

The ith mass of weight mi is connected to the (i + 1)st mass by a spring
and a damper with constants ki and di, respectively, and also to the ground by
a spring and a damper with constants κi and δi, respectively. Additionally, the
first mass is connected to the last one by a rigid
bar and it is influenced by the control u(t). The vibration of this system
is described by a descriptor system

ṗ(t) = v(t),
M v̇(t) = K p(t) + Dv(t) − GT λ(t) + B2u(t),

0 = G p(t),
y(t) = C1p(t),

(3.34)

where p(t) ∈ R
g is the position vector, v(t) ∈ R

g is the velocity vec-
tor, λ(t) ∈ R is the Lagrange multiplier, M = diag(m1, . . . , mg) is the

Figure: Constrained mechanical system

The vibration is described by: Eẋ(t)=Ax(t)+Bu(t), y(t)=Cx(t),
M: mass, K: stiffness, D: damping, G = [1, 0, · · · , 0, −1], constraint:

E =




I 0 0
0 M 0
0 0 0


 , A =




0 I 0
K D −G∗
G 0 0


 , B = C = I.

⇒ H(s) = (sE− A)−1
.
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Tangential interpolation and the Loewner matrix pencil

Example: mechanical system g = 2

For g = 2 masses, we have

A =




0 0 1 0 0
0 0 0 1 0
−3 1 −10 5 −1

1 −2 5 −6 1
1 −1 0 0 0



, E =




1 0 0 0 0
0 1 0 0 0
0 0 5 0 0
0 0 0 1 0
0 0 0 0 0



⇒

H(s) = 1
6s2+6s+3 N(s), where N(s) =




5s + 5 s + 1 1 1 −s2 − s − 1
5s + 5 s + 1 1 1 5s2 + 5s + 2

−s2 − s − 3 s (s + 1) s s −s
(

s2 + s + 1
)

5s (s + 1) −5s2 − 5s − 3 s s s
(

5s2 + 5s + 2
)

5s3 + 40s2 + 40s + 20 −5s3 − 40s2 − 37s − 17 s2 + s + 1 −5s2 − 5s − 2 5s4 + 40s3 + 48s2 + 28s + 5




The pair (A,E) has 2 finite eigenvalues − 1
2 ± i

2 , and 3 eigenvalues at infinity.
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Tangential interpolation and the Loewner matrix pencil

Example: continued

We take 4 measurements at s = 0:

Θ0 =




5
3

1
3

1
3

1
3 − 1

3
5
3

1
3

1
3

1
3

2
3

−1 0 0 0 0
0 −1 0 0 0

20
3 − 17

3
1
3 − 2

3
5
3



, Θ1 =




− 5
3 − 1

3 − 2
3 − 2

3
1
3

− 5
3 − 1

3 − 2
3 − 2

3
1
3

5
3

1
3

1
3

1
3 − 1

3
5
3

1
3

1
3

1
3

2
3

0 −1 − 1
3 − 1

3 6



,

Θ2 =




0 0 2
3

2
3 − 1

3

0 0 2
3

2
3 − 1

3

− 5
3 − 1

3 − 2
3 − 2

3
1
3

− 5
3 − 1

3 − 2
3 − 2

3
1
3

0 0 1
3

1
3

2
3



, Θ3 =




10
3

2
3 0 0 0

10
3

2
3 0 0 0

0 0 2
3

2
3 − 1

3

0 0 2
3

2
3 − 1

3
5
3

1
3 0 0 0



.

We will consider two resulting systems. First, just the right amount of data:

Ê = Θ1, Â = Θ0, B̂ = Ĉ = Θ0 ⇒ H(s) = (sE− A)−1 = Ĉ(sÊ− Â)−1B̂.
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Tangential interpolation and the Loewner matrix pencil

Example: continued

The second model uses all the available data:
(

Θ0 Θ1
)
, L =

(
Θ1 Θ2
Θ2 Θ3

)
, Lσ =

(
Θ0 Θ1
Θ1 Θ2

)
,

(
Θ0
Θ1

)
,

and it is singular. We want to compute the eigenvalues of the pencil (Lσ,L).
The QZ algorithm yields

2.6317e− 001 + 1.3878e− 017i 1.8719e− 013 ↔ infinite eig
8.5009e − 013− 3.8885e − 018i 6.8324e − 017
−2.2417e− 002 + 2.2417e− 002i 4.4834e− 002 ↔ finite eig
−6.2394e− 001− 6.2394e− 001i 1.2479e + 000 ↔ finite eig
−2.6999e− 004 0 ↔ infinite eig

5.2379e− 001 0 ↔ infinite eig
1.3623e − 014 1.4393e − 015
9.3845e − 017 1.8285e − 016
−1.5898e − 016 5.1864e − 016
−1.1214e − 017 2.2332e − 016
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Tangential interpolation and the Loewner matrix pencil

Example: Four-pole band-pass filter

•1000 measurements between 40 and 120 GHz; S-parameters 2× 2,
MIMO (approximate) interpolation ⇒ L, Lσ ∈ R2000×2000.
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Tangential interpolation and the Loewner matrix pencil

Multi-port example from Qimonda AG

System
Cẋ(t) + Gx(t) = Bu(t), y(t) = Lx(t) + Du(t),

where m = p = 70 and n = 141:
16 Sanda Lefteriu and Athanasios C. Antoulas
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Fig. 7 Singular values of the Loewner matrix pencil and poles of theoriginal and reduced systems

ment. The resulting Loewner and shifted Loewner matrices will be of dimension
400 and a plot of their normalized singular values is shown inblack in Fig. 7(a). For
matrix interpolation, we takeP = 6 measurements of the transfer function logarith-
mically distributed between 109 and 1020 and, for each measurement, we selectp
sampling directions asp unit vectors (all columns and rows of the identity matrix of
dimensionp× p are used as right directions and left directions, respectively). Thus,
for each frequency measurement, we use the entirep× p matrix measurement. The
resulting Loewner and shifted Loewner matrices will be of dimension 6×70= 420
and a plot of their normalized singular values is shown in redin Fig. 7(a). We notice
that both methods yield Loewner and shifted Loewner matrices of the same rank,
which suggest that the underlying system can be reduced to ordern = 127.

Figure 7(b) shows the finite poles of the original system, together with the poles
of the reduced systems obtained with the tangential and the matrix interpolation
approaches. We notice that all poles were recovered. In particular, we notice that the
reduced systems of ordern = 127 withD = 0 contain 57 finite poles (the same as

⇒ 84 finite poles and 57 infinite poles.
Take 400 measurements between 1013 and 1015.
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Tangential interpolation and the Loewner matrix pencil

Multi-port example from Qimonda AG

16 Sanda Lefteriu and Athanasios C. Antoulas
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ment. The resulting Loewner and shifted Loewner matrices will be of dimension
400 and a plot of their normalized singular values is shown inblack in Fig. 7(a). For
matrix interpolation, we takeP = 6 measurements of the transfer function logarith-
mically distributed between 109 and 1020 and, for each measurement, we selectp
sampling directions asp unit vectors (all columns and rows of the identity matrix of
dimensionp× p are used as right directions and left directions, respectively). Thus,
for each frequency measurement, we use the entirep× p matrix measurement. The
resulting Loewner and shifted Loewner matrices will be of dimension 6×70= 420
and a plot of their normalized singular values is shown in redin Fig. 7(a). We notice
that both methods yield Loewner and shifted Loewner matrices of the same rank,
which suggest that the underlying system can be reduced to ordern = 127.

Figure 7(b) shows the finite poles of the original system, together with the poles
of the reduced systems obtained with the tangential and the matrix interpolation
approaches. We notice that all poles were recovered. In particular, we notice that the
reduced systems of ordern = 127 withD = 0 contain 57 finite poles (the same as

Topics in Model Order Reduction with applications to Circuit Simulation 17

the original one), and 70 infinite poles which hide an underlying non-zeroD-term,
as in Eq. (16). Hence, all redundant poles have been eliminated.

Similar to the scalar case (the delay system), we use the following error measures
to asses the accuracy of the reduced models with respect to the measurements:

H∞ error =
maxi=1...P σ1

(
H( jωi)−Y(i)

)

maxi=1...Pσ1
(
Y(i)

) , (35)

H2 error =
∑k

i=1

∥∥∥H( jωi)−Y(i)
∥∥∥

2

F

∑k
i=1

∥∥Y(i)
∥∥2

F

(36)

whereσ1(·) stands for the largest singular value of the matrix(·) and‖·‖2
F stands

for the Frobenius-norm, which computes the sum in the magnitude squared of all
entries. For devices with many ports, computing the error ineach entry is unfeasible,
as forp = 70 ports, the errors in all 702 = 4900 entries would have to be assessed.
Instead, these error measures give a good indication of the model’s quality.

Table 2 shows that both approaches yield small errors, with the tangential inter-
polation approach yielding slightly smaller errors than matrix interpolation.

Approach H∞ error H2 error
Tangential Interpolation3.3422e-0101.1282e-019

Matrix Interpolation 6.9040e-0094.7687e-017

Table 2 Results for the tangential and matrix interpolation approaches

Figure 8 shows the frequency response (sigma plot) of the topleft and bottom
right 10×10 entries of the original system, together with the reducedsystems ob-
tained via the two approaches: tangential and matrix interpolation.
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Fig. 8 Entries of the transfer function of the original systems plotted against those of the reduced
systems
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Recursive framework
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Recursive framework

Recursive Loewner-matrix framework

Interpolation data:

R ∈ Cm×k ,W ∈ Cp×k ,Λ ∈ Ck×k and L ∈ C`×p,V ∈ C`×m,M ∈ C`×`,

and Loewner matrices which satisfy:

LΛ−ML = LW− VR, LσΛ−MLσ = LWΛ−MVR

We now define the (p + m)× (p + m) rational matrix

Θ(s) =

[
Ip 0
0 Im

]
+

[
W
−R

]
(sL− LΛ)−1 [ L V

]
=

(
Θ11(s) Θ12(s)
Θ21(s) Θ22(s)

)
,

and its inverse

Θ̄(s) =

[
Ip 0
0 Im

]
+

[
−W

R

]
(sL−ML)−1 [ L V

]
=

(
Θ̄11(s) Θ̄12(s)
Θ̄21(s) Θ̄22(s)

)
.
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Recursive framework

Recursive interpolation

Lemma

[Lj Vj ]Θ(µj ) = 0`×(p+m), ∀ j , and Θ̄(λk )

(
−Wk
Rk

)
= 0(p+m)×k , ∀ k .

All interpolants can be obtained as matrix fractions involving Θ and Θ̄.

Theorem
Ψ is an interpolant iff ∃ Γ(s):

Ψ(s) = [Θ11(s)Γ(s) + Θ12(s)][Θ21(s)Γ(s) + Θ22(s)]−1.

Similarly, Ψ can also be written as

Ψ(s) = [Θ̄11(s)− Γ(s)Θ̄21(s)]−1[Θ̄12(s)− Γ(s)Θ̄22(s)].
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Recursive framework

Cascade representation of recursive interpolation

Feedback interpretation of the parametrization of all solutions of the rational
interpolation problem

u

y

ŷ

û
Θ

-

�

-

�
Γ

Cascade representation of the recursive interpolation problem.

u

y
Θ1 Θ2Θ2 Θk

-

�

-

�

-

� . . .

. . . -

�

-

�
Γk
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Recursive framework

Recursive Loewner and shifted Loewner matrices

For the recursive procedure, the error quantities at each step are the key,
and are computed as follows:

[Lk,e Vk,e] = [Lk Vk ]Θk−1(µk ) and
(
−Wk,e
Rk,e

)
= Θ̂k−1(λk )

(
−Wk
Rk

)
.

The resulting generating system is

Θe(s) =

[
Ip 0
0 Im

]
+

[
We
−Re

]
(sLe − Lσe + VeRe)−1 [ Le Ve

]

Thus the recursive quantities for 3 stages are:

We = [We1 We2 We3], Le =




L1e
L2e

L3e


 , Lσe =




Lσ1e L1eW2e L1eW3e
V2eR1e Lσ2e L2eW3e
V3eR1e V3eR2e Lσ3e


 , Ve =




V1e
V2e
V3e


 .

The above procedure recursively constructs
an L-D-U factorization of the Loewner matrix.
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Recursive framework

Summary: recursive interpolation procedure

Given interpolation data: L,V,R,W,Λ,M.

1 Partition the data: Li , Vi , Ri , Wi , Λi , Mi , i = 1, · · · ,n.
2 Set Θ0(s) = Θ̄0(s) = Ip+m.

3 At the k th step, k = 1, · · · ,n, the quantities Lk , Vk , Rk , Wk , Λk , Mk ,

Θk−1(s), Θ1,k−1(s) = Θ0(s)Θ1(s) · · ·Θk−1(s),

Θ̄k−1(s), Θ̄1,k−1(s) = Θ̄k−1(s) · · · Θ̄1(s)Θ̄0(s),

are available. Compute the k th error quantities:

[Lk,e Vk,e] = [Lk Vk ]Θ1,k−1(µk ),

(
−Wk,e
Rk,e

)
= Θ̂1,k−1(λk )

(
−Wk
Rk

)
.

4 Compute Lk , Lσk , associated with the error data

Lk,e, Vk,e, Rk,e, Wk,e, Λk , Mk .

⇒ construct Θk+1(s), Θ̄k+1(s).
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Recursive framework

Delay system

Eẋ(t) = A0x(t) + A1x(t − τ) + Bu(t), y(t) = Cx(t),

where E,A0,A1 are 500 × 500 and B,C∗ are 500-vectors.

Procedure: compute 1000 frequency response samples. Then apply recursive/adaptive Loewner-framework procedure.
(Blue: original, red: approximants.)

0 1 2 3
10!4

10!3

10!2

10!1
 Adaptive/Recursive approximant N = 35; Hinf!error = .008

0 1 2 3
10!4

10!3

10!2

10!1
 Non!adaptive/recursive approximant N = 50; Hinf!error = .180

35-th order recursively constructed model; 50-th order non-recursively constructed model;
H∞ norm of error: 0.008. H∞ norm of error: 0.180.
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Summary and conclusions
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Summary and conclusions

Summary and conclusions

Reduction from data (e.g. S-parameters)

Given input/output data, we can construct with no computation, a
singular high order model in generalized state space form.

Key tool: Loewner matrix pencil and tangential interpolation.

Since (Lσ,L) is a singular pencil:
⇒ reduction of L , Lσ, required,
⇒ Recursive procedure.

Natural way to construct full and reduced models:
⇒ does not force inversion of E,
⇒ does not require persistence of excitation,
⇒ can deal with many input/output ports,
⇒ SVD of [L, Lσ] or [L∗, Lσ∗]∗, provides trade-off between

accuracy and complexity.
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Summary and conclusions

Key references: Model reduction from data
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Lefteriu, Antoulas: A New Approach to Modeling Multiport Systems from
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