Model reduction of linear DAE systems from
measurements

Thanos Antoulas

Rice University and Jacobs University

email: aca@rice.edu
URL: www.ece.rice.edu/"aca

Control and optimization with differential algebraic constraints
BIRS, Banff, 25 October 2010

BRICE

Thanos Antoulas (Rice U. & Jacobs U.) Reduction of DAE systems from data 1/46



Ouitline

e Model reduction: problem setting

e Reduction from measurements

e Hankel and Loewner matrices

e Tangential interpolation and the Loewner matrix pencil
e Recursive framework

e Summary and conclusions

Thanos Antoulas (Rice U. & Jacobs U.) Reduction of DAE systems from data

ZRICE

2/46



Model reduction: problem setting

Outline

° Model reduction: problem setting

ZRICE

Thanos Antoulas (Rice U. & Jacobs U.) Reduction of DAE systems from data 3/46



Model reduction: problem setting

Model reduction: problem Setting

Consider
x(t) f(x(t), u(t))
y(t) = h(x(t),u(1))

where x(t) € R", u(t) € R™ and y(t) € RP. The reduced system is:

x(t) = f(x(t),u(t)
yi(t) = he(x(t),u(t))

where x, € R". The number of inputs and outputs, m, p, remain the same,
while the internal state-space satisfy: r < n.
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Model reduction: problem setting

Model reduction: problem Setting

consider
Ex(t) = Ax(t)+ Bu(f)
y(t) Cx(t) + Du(?)

where A,E € R™", B € R™"™, C € RP*"and D € RP*™; x(t) € R", u(t) € R™
and y(t) € RP. The reduced system is described by:

Ex (f) = Ax(t)+Bu(t)
vi() = Cx(t)+Du(t)

where A, E, ¢ R™*" B, € R"™*™ C, € RP*" and D, € RP*™  The number of

inputs and outputs, m, p, remain the same, while the internal state-space
satisfy: r < n.
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Model reduction: problem setting

Goals for Reduced Order Models

@ The reduced input-output map should be uniformly “close” to the
original: for the same u(t), y — y,, should be "small”.

@ Critical system features and structure should be preserved: stability,
passivity, Hamiltonian structure, subsystem interconnectivity, or
second-order structure.

@ Strategies for computing the reduced system should lead to robust,
numerically stable algorithms and require minimal application-specific
tuning.

ZRICE
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Model reduction: problem setting

Problem 1

Interpolatory reduction given state space data
Given a full-order system E, A, B, C, D, and given

left interpolation points: right interpolation points:
{ui}l, cC, and A}, ccC
with left tangent directions: with right tangent directions:
{e}l, cc, {ri}iy cC™

Find a reduced-order system E,, A, B,, C;, D,, such that the transfer
function, H,(s) is a tangential interpolant to H(s):

E;-kHr(/L,‘) = KTH(M,) and H,()\/-)rj S H()\/-)rj,
fori=1,---,q, forj=1,---,r,

Interpolation points and tangent directions are selected to realize the model
reduction goals.
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Model reduction: problem setting

Problem 2

Interpolatory reduction given input/output data

Given a set of input-output response measurements specified by

left driving frequencies: right driving frequencies:
{ui}ly CC, {ritio cC
using left input directions: and using right input directions:
{e}i, ccr, {r}_, ccm
producing left responses: producing right responses:
vi}i, ccm, {w}_, ccr

Find (low order) system matrices E,, A, B,, C,, D, such that the transfer
function, H,(s), is a tangential interpolant to the data:

GiH (i) = v; and H (A = w;,
fori=1,---.,q, forj=1,---.r,

Interpolation points and tangent directions are determined by the data.
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Model reduction: problem setting

Problem 2

Interpolatory reduction given input/output data

Given a set of input-output response measurements specified by

left driving frequencies: right driving frequencies:
{wi}i_, CC, {Ait, cC
using left input directions: and using right input directions:
{3l ccr, {ri}i_, cC"
producing left responses: producing right responses:
{vi}L, ccm, {witi_, cCP

Find (low order) system matrices E,, A, B,, C,, D, such that the transfer
function, H,(s), is a tangential interpolant to the data:

CH (i) = v and H:(\)r = w,
fori=1,---.,q, forj=1,---.r,

Interpolation points and tangent directions are determined by the data.
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Reduction from measurements

Motivation: S-parameters

e Streamlining of the simulation of entire complex electronic systems (chips,
packages, boards) is required.

e In circuit simulation, interconnect models must be valid over a wide
bandwidth.

An important tool: S-parameters

Given a system in 1/O representation: y(s) = H(s)u(s), the associated
S-paremeter representation is

¥(s) = S(s)u(s) = [H(s) + NN[H(s) - 1" T(s),
S(s)

where: y = 1(y+u) are the transmitted waves and,
U=} (y—u) are the reflected waves.

ZRICE
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Reduction from measurements

Measurement of S-parameters

Figure: VNA (Vector Network Analyzer) and VNA screen showing the
magnitude of the S-parameters for a 2 port device.
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Hankel and Loewner matrices

Classical realization

Givenh; e RP*™M t =12 --. find A € R™" B e R™™ C e RP*", such that

h;=CA"'B, t >0

Main tool: Hankel matrix

hiy h, hy - C
h, hs hy --- CA
H=|hs h, hs -.-|=|caz |[B AB A°B ... ]
S : b
—_———
o
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Hankel and Loewner matrices
Classical realization

Solvability < rank’H = n < oo

Solution: Let A € R™", be a submatrix of H such that det A # 0; let also
oA € R™" be the matrix with the same rows but columns shifted by m
columns; finally, let ' € R™™ have the same rows as A but the first m
columns only, while A € R™*" be the submatrix of # composed of the same
columns as A, but its first p rows. Then

A=A""¢A, B=A"T, C=A.
Consequences. If the sequence h;, t > 0, is realizable, it is also summable:
H(s)=C(sl—A)"'B=> h;s!
>0
Notice that in terms of the data:
H(s) = A(SA — o A)'T

Remark. h; are the Markov parameters of the underlying linear system
x(t) = Ax(t) + Bu(t), y(t) = Cx(t). Orice
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Hankel and Loewner matrices
Model Reduction from Measurements

Consider a set of scalar points: (s;,¢;), i=1,2,--- N, si#s;, i #].

We seek a rational function H(s) = gs such that H(s,) éi,i=1,2,--- N,

and n,d are coprime polynomials. The data is now divided in disjoint sets:
(oi,wp), i=1,2,---,r, (1, V), j=1,2,---,q9, k+ g = N. Consider:

v

25:1 Vi d)(ssi;m =0.

Then as long as v; # 0, there holds ¢(o;) = w;, fori=1,--- ,g. Making use
of the freedom in satisfying the remaining interpolation conditions, we get:

The Loewner matrix

Vi—Wjy L Vi—Ww,
1 —0q w1—or !
Lec =0 where L = : : eC™ ec=| : |[eC.
Vq W1 . Vg —Wg
Hqg—01 ’ Hq—Or r

Loewner matrix
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Hankel and Loewner matrices

Model construction from data

Main result
The rank of I encodes the information about the minimal degree interpolants:
n = rank IL.

Remark. If H(s) = C(sl — A)~'B + D, then

C()\1| — A)71
C()\gl — A)71
L=- : [(ml=A)""B -+ (ugl—A)"'B]
COW — A)~ R
@]

ZRICE
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Hankel and Loewner matrices

Scalar interpolation — multiple points

Special case. single point with multiplicity: (So; ¢o, ¢1,- -, dn—1), i-€. the
value of the function and that of a number of derivatives is provided. The
Loewner matrix becomes:

ro1t ¢2 ¢3 b4 7
11 2! 3! 41
2 ¢z da
21 3! 41
$3 b4
L= 3 4 = HANKEL MATRIX
%

Thus the Loewner matrix generalizes Hankel matrix when general
interpolation replaces realization.
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Tangential interpolation and the Loewner matrix pencil
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Tangential interpolation and the Loewner matrix pencil

General framework — tangential interpolation
Given: e right data: (\;rj,w;),i=1,--- Kk

o left data: (u;; 47, v;),j=1,--,q.
We assume for simplicity that all points are distinct.

Problem: Find rational p x m matrices H(s), such that

H(\)ri = w; € H(y) = vi

Right data:
A R=1[r rp, --- 1] € C™k
A= .. c (Cka,
by W:[W1 W .- Wk]E(CpXk
Left data:
14 £ Vi
M= g cCIL=| : |€CI*V = : c caxm
Hq KZ V:; BIRICE
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Tangential interpolation and the Loewner matrix pencil

General framework — tangential interpolation

Input-output data. The Loewner matrix is:

Vir—€iwy  Vir— LWy
11— H1— Ak
L= : - : c Coxk
V; ry —Z;W1 V; Fg —e;wk
Hg—A1 Hq— Ak

Recall:

H(/\,-)r,- =W, E]*H(M/) = V}-k

Therefore 1L satisfies the Sylvester equation

LA — ML =VR - LW
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Tangential interpolation and the Loewner matrix pencil

General framework — tangential interpolation

State space data. Suppose that H(s) = C(sE — A)~'B.

Let X, Y satisfy the following Sylvester equations

EXA — AX=BR| and |[MYE-YA=LC

4

x; = (ME — A)7'Br; = X: generalized reachability matrix

y; = £ C(1E — A)~" = Y: generalized observability matrix.

J
S [Lvex

ZRICE
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Tangential interpolation and the Loewner matrix pencil

The shifted Loewner matrix

@ The shifted Loewner matrix, L., is the Loewner matrix of sH(s):

[l1V;k 5] 7£TW1 A1 L. ,u1VT rkflfwk/\k
1= A4 1 — Ak
L, = : : € Coxk
uqv;n 7£;w1 Aq uqv; rkfec*,wk/\k
fig— A1 fig— Ak

@ [, satisfies the Sylvester equation

]LJ/\ — ML, = MVR — LWA \

@ L, can be factored as

- [L= VX

L,-ML+LW=0 and L,-LA+VR=0.

ZRICE
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Tangential interpolation and the Loewner matrix pencil

Construction of Interpolants (Models)
Theorem: right amount of data
Assume that kK = /¢, and let

det(xL —L,) #0, x¢€ {\}U{y}
Then

E- L, A=-L,, B=V, C=W

is a minimal realization of an interpolant of the data, i.e., the function

H(s) = W(L, — sL)~'V

interpolates the data.

v
ZRICE
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Tangential interpolation and the Loewner matrix pencil
Proof
Multiplying the first equation by s and subtracting it from the second we get
(L, — sL)A — M(L, — sL) = LW(A — sl) — (M — sl)VR.
Multiplying this equation by e; on the right and setting s = )\;, we obtain
(Al = M)(LL, — A\L)e; = (Al — M)Vr; =
(ML —L,)e;=Vr, = We, =W(\L-L,)"'V

Therefore w; = H()\)r;. This proves right tangential interpolation.

To prove the left tangential interpolation property, we multiply the above
equation by e/ on the left and set s = 4

e/ (Lo — pL)(A — pil) = efLW (1l = A) =
e (Lo — L) =W = e'V=gW(L, — L)'V
Therefore v; = £;H(1;). BRICE
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Tangential interpolation and the Loewner matrix pencil
The case of more data than necessary

Consider the following short SVDs:

L

[L L,]=YZX* and [ L

] =YX, X*, where ¥, %, e RK¥K ¥, X e CcV*k,
Proposition
From the above construction we have:

YY*L =L, YY'L,=L,, YY*V=V,
LXX* =L, L, XX*=L,, WXX*=W.

Theorem
A realization [E, A,B,C], of an (approximate) interpolant is given as follows:

E=- YLX |B=YV
A= _YL,X | C=WX
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Tangential interpolation and the Loewner matrix pencil

Consequences

If we have more data than necessary, we can consider
(LO'a La Va W)7

as a singular model of the data.

Corollary 1: Interpolation property
Let z; satisfy
()\,‘L = ILU)Z,' = Vr,.
It follows that
WZ,' =W;

This follows because z; = e; + zy, where Wz, = 0.

ZRICE
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Tangential interpolation and the Loewner matrix pencil

Consequences

Corollary 2

The original pencil (L., L) and the projected pencil (A, E), have the same
non-trivial eigenvalues.

Proof
Let (z, \) be a right eigenpair of (L,,L).
Then: L,z = MLz = L, XX*z = A\LXX*z = Y'L, XX*z = A\Y*'LX X*z.

SN—— ~—~—

A E

Thus (X*z, \) is an eigenpair of (A, E).
Conversely, if (z, A) is an eigenpair of (A, E) then (Xz, \) is an eigenpair of the
original pencil (L,,L).

Similarly for left eigenpairs.

% RICE
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Tangential interpolation and the Loewner matrix pencil

Consequences

Corollary 3
Let ® and W be such that X*® and W*Y are square and non-singular. Then

(Y'LX, Y'L,X, YV, WX) and (®*LW¥, &*L, W, &*V, Ww),

are minimal realizations for the same system.

This means that the projection may in essence be chosen arbitrarily.

ZRICE
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Tangential interpolation and the Loewner matrix pencil

Coupled mechanical system

Figure: Constrained mechanical system

The vibration is described by: Ex(t)=Ax(t)+Bu(t), y(t)=Cx(t),
M: mass, K: stiffness, D: damping, G =[1, 0,---, 0, —1], constraint:

I 0 0
E=|{0 MO
0 0O

01 o0
A=| K D -G |,B=C=1.
GO 0

= H(s)=(sE—A)"".

ZRICE
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Tangential interpolation and the Loewner matrix pencil

Example: mechanical system g = 2

For g = 2 masses, we have

0 0 1 0 O 1 0 0 0O
0 0 0 1 01 00O
A=| -3 1 —10 5 —1 ,E=]1 0 0 5 0 O =
1 -2 5 -6 1 0 00 1O
1 -1 0 0 0 0 00 0O
H(s) = sz 5s3N(S), where N(s) =
5s+5 s+ 1 1 1 —? —s—1
55+5 s+1 1 1 552 + 55+ 2
—s?—s5-3 s(s+1) s s —s<52+s+1)
5s5(s+ 1) —5s2 — 55— 3 s s 5(552+5s+2
55% + 405 4 405 + 20 | —5s° — 405 —37s — 17 | s 4+ s+ 1 | —5s° — 55 — 2 | 5s* 4 40s° + 4852 + 285+ 5

The pair (A, E) has 2 finite eigenvalues —% + é and 3 eigenvalues at infinity.

ZRICE
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Tangential interpolation and the Loewner matrix pencil
Example: continued

We take 4 measurements at s = 0:

5 1 1 1 1 5 1 _2 _2 1
3 3 3 3 3 3 3 3 3 3
50 1 1 1 2 5 1 _2 _2 1
3 3 3 3 3 3 3 3 3 3
1 1 1 1
©y=| -1 00 0 O0],0= S
_ 5 1 1 1 2
0 10 0 0 3 3 3 3 3
20 _17 1 _2 5 1 1 _1
3 3 3 3 3 0 1 3 3 6
2 2 1 10 2
0 0 35 35 -3 3 3 00 0
2 2 1 10 2
0 0 35 35 -3 3 3 00 0
5 1 2 2 1 2 2 1
©=-3 -3 5 -5 3 [-@=| 003 35 -5 |
5 1 2 2 1 2 2 1
“3 3 "3 ~3 3 0035 35 —3
1 1 2 5 1
0 0 3 3 3 3 3 00 0

We will consider two resulting systems. First, just the right amount of data:

N

E=0,,A=0),B=6=0) = H(s)=(sE—A)' =C(sE—A)"'B

* BRICE
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Tangential interpolation and the Loewner matrix pencil
Example: continued
The second model uses all the available data:
[ ©1 O _( ©9 O ON)
(e o). 1=(g &) t-(e &) (&)

and it is singular. We want to compute the eigenvalues of the pencil (L,,L).
The QZ algorithm yields

2.6317e — 001 + 1.3878e — 017i | 1.8719e — 013 — infinite eig
8.5009e — 013 — 3.8885e — 018/ | 6.8324e — 017
—2.2417e — 002 + 2.2417e — 002i | 4.4834e — 002 — finite eig
—6.2394e — 001 — 6.2394e — 001i | 1.2479e + 000 — finite eig
—2.6999%¢ — 004 0 < infinite eig
5.2379e — 001 0 — infinite eig
1.3623e — 014 1.4393e — 015
9.3845e — 017 1.8285e — 016
—1.5898e — 016 5.1864e — 016
—1.1214e — 017 2.2332¢e — 016
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Tangential interpolation and the Loewner matrix pencil

Example: Four-pole band-pass filter

1000 measurements between 40 and 120 GHz; S-parameters 2 x 2,
MIMO (approximate) interpolation = L, L, € R2000x2000

‘Singular values of 2 x 2 system vs 1 x 1 systems Magnitude of S(11),5(1.2) and 21st order approximants.

The singular values of L, L, The S(1, 1) and S(1, 2) parameter data
17-th order model

ZRICE
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Tangential interpolation and the Loewner matrix pencil

Multi-port example from Qimonda AG

System
Cx(t) + Gx(t) = Bu(t), y(t) =Lx(t)+ Du(t),

where m = p = 70 and n = 141:

Poles of the original

;;;;;;; radisec) x10°

(a) Frequency response (b) Finite poles

= 84 finite poles and 57 infinite poles.
Take 400 measurements between 103 and 1072,

ZRICE
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Tangential interpolation and the Loewner matrix pencil
Multi-port example from Qimonda AG

Normaiized Singular Values

logarithmic

0 5 100 15 200 250 00 30 400 450 £ E] BT El ED o
index

(a) Drop of the singular values of the Loewngs) Poles of the original and reduced systern
matrix pencil for tangential and matrix interpo-
latio™

(10110 nres (EumE70 s

e

(a) Top left 10x 10 entries of the transfer fun¢s) Bottom right 10x 10 entries of the transfe
tion function
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Recursive framework

Recursive Loewner-matrix framework

Interpolation data:
Re C™K WeCP* ANeCF¥ and L e CP.VeCHm MeC™,

and Loewner matrices which satisfy:

LA —ML =LW - VR, L,A—-ML, =LWA - MVR

We now define the (p + m) x (p 4+ m) rational matrix

=[5 8 o[ W] e vi-($9 89

and its inverse

o[ 2] Hemrte - (813 83)

ZRICE

Thanos Antoulas (Rice U. & Jacobs U.) Reduction of DAE systems from data 38/ 46



Recursive framework

Recursive interpolation

Lemma
—Wk

All interpolants can be obtained as matrix fractions involving © and ©.

Theorem
V is an interpolant iff 3 I'(s):

V(s) = [@11(S)I(S) + O12(5)][@21(S)I(S) + O22(8)] -
Similarly, W can also be written as

V(s) = [©11(s) — [(5)O21(5)] '[O12(s) — I(5)O22(S)]-

Thanos Antoulas (Rice U. & Jacobs U.) Reduction of DAE systems from data
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Recursive framework

Cascade representation of recursive interpolation

Feedback interpretation of the parametrization of all solutions of the rational
interpolation problem

<>

Y

U—p

A

y'<—

Cascade representation of the recursive interpolation problem.

U—

i
l

O O: O Ik

T
T

y'<—
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Recursive framework

Recursive Loewner and shifted Loewner matrices

For the recursive procedure, the error quantities at each step are the key,

and are computed as follows:

k.e

The resulting generating system is

_Re

Im

Oc(s) = [ Ig 0 } + { We ] (SLe —Loe +VeRe) ™' [ Le Ve |

Thus the recursive quantities for 3 stages are:

Lote  L1eWze LigWse

Lie
We = [Wey Wep We3), Le = { Loe } Loe = [ VoeRie  Looe  LoeWae
Lge 3eRte  VaeRoe  Loge

_w ) —w
Lo Vieel = L Vid@ucr(ad) and (3ree ) = &s() (v

The above procedure recursively constructs

an L-D-U factorization of the Loewner matrix.

Thanos Antoulas (Rice U. & Jacobs U.) Reduction of DAE systems from data
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Recursive framework
Summary: recursive interpolation procedure
Given interpolation data: L,V,R, W, A, M.
@ Partition the data: L;, V;, R;, W;, Aj, M;, i=1,--- n.
@ Set Oy(s) = Oy(S) = lpsm.
© Atthe k" step, k =1,---, n, the quantities Ly, Vi, Rk, Wk, Ax, Mg,

Ok-1(8), O1x-1(S) = Oo(5)O1(S) - - - Ok_1(8),
Ok_1(s), é1,k—1(3) = Bx_1(8) - ©1(5)O0(s),

are available. Compute the k™ error quantities:

_ ~Wie \ _ g4 —Wy
[Lke Viel =Lk Vi]O1 k—1(kk), ( Re.o ) = O k—1(\k) ( R, .
© Compute Ly, L,«, associated with the error data
Lk.,e7 Vk,e: Rk.,e> Wk,e7 /\k7 Mk-
= construct 4,1 (s), Ox.1(S). _—
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Recursive framework

Delay system
Ex(t) = Agx(t) + Ayx(t — 7) + Bu(t), y(t) = Cx(t),
where E, Ag, Ay are 500 x 500 and B, C* are 500-vectors.

Procedure: compute 1000 frequency response samples. Then apply recursive/adaptive Loewner-framework procedure.
(Blue: original, red: approximants.)

Adaptive/Recursive approximant N = 35; Hinf-error = .008 Non-adaptive/recursive approximant N = 50; Hinf-error = .180
107 T T T T 107 T T T T

107 . . . . 10 . . . .

0 1 2 3 0 1 2 3
35-th order recursively constructed model; 50-th order non-recursively constructed model;
Hoo norm of error: 0.008. Hoo norm of error: 0.180. RICE
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Summary and conclusions

Reduction from data (e.g. S-parameters)

@ Given input/output data, we can construct with no computation, a
singular high order model in generalized state space form.

@ Key tool: Loewner matrix pencil and tangential interpolation.

@ Since (L., L) is a singular pencil:
= reduction of L, L, required,
= Recursive procedure.

@ Natural way to construct full and reduced models:

does not force inversion of E,

does not require persistence of excitation,

can deal with many input/output ports,

SVD of [L, L,] or [L*, L,*]*, provides trade-off between
accuracy and complexity.

iUl
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Key references: Model reduction from data

@ A.J. Mayo and A.C. Antoulas, A framework for the solution of the

generalized realization problem, Linear Algebra and Its Applications, vol.
425, pages 634-662 (2007).

@ Lefteriu, Antoulas: A New Approach to Modeling Multiport Systems from
Frequency-Domain Data, IEEE Trans. CAD, vol. 29, pages 14-27 (2010).

@ General reference: Antoulas SIAM 2005

Approximation
of Large-Scale
Dynamical Systems
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