Numerical Solution of Descriptor Riccati Equations for Linearized Navier-Stokes Control Problems

Eberhard Bänsch1 \hspace{1cm} Peter Benner2,3 \hspace{1cm} Jens Saak3

1Institut für Angewandte Mathematik, Lehrstuhl 3
Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

2Fakultät für Mathematik, Professur Mathematik in Industrie und Technik
Technische Universität Chemnitz, Germany

3Computational Methods in Systems and Control Theory
Max Planck Institute for Dynamics of Complex Technical Systems
Magdeburg, Germany

supported by
Linear Feedback Stabilization of Flow Problems

Eberhard Bänsch\(^1\) Peter Benner\(^2,3\) Jens Saak\(^3\)

\(^1\)Institut für Angewandte Mathematik, Lehrstuhl 3
Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

\(^2\)Fakultät für Mathematik, Professur Mathematik in Industrie und Technik
Technische Universität Chemnitz, Germany

\(^3\)Computational Methods in Systems and Control Theory
Max Planck Institute for Dynamics of Complex Technical Systems
Magdeburg, Germany

supported by
Overview

1. Introduction
2. Solving Large-Scale AREs
3. Solving AREs for Linearized Navier-Stokes Eqns.
4. Further Applications
5. Conclusions and Future Work
6. References
Introduction

Optimal control-based stabilization for Navier-Stokes equations

- Stabilization to **steady-state solution** w of flows (with velocity field v and pressure χ), described by **incompressible** Navier-Stokes equations

\[
\begin{align*}
\partial_t v + v \cdot \nabla v - \frac{1}{Re} \Delta v + \nabla \chi &= f \\
\text{div } v &= 0
\end{align*}
\]

on $Q_\infty := \Omega \times (0, \infty)$, $\Omega \subseteq \mathbb{R}^d$, $d = 2, 3$, with smooth boundary $\Gamma := \partial \Omega$, and boundary and initial conditions

\[
\begin{align*}
v &= g \quad \text{on } \Sigma_\infty := \Gamma \times (0, \infty), \\
v(0) &= w + z(0) \quad (w \text{ given velocity field}).
\end{align*}
\]

- Existence of stabilizing linear state feedback control proved in 2D [Fernández-Cara et al 2004] and 3D [Fursikov 2004].

- Construction of stabilizing feedback control based on associated linear-quadratic optimal control problem:
 - for distributed control, see [Barbu 2003, Barbu/Sritharan 1998, Barbu/Triggiani 2004];
 - for boundary control, see [Barbu/Lasiecka/Triggiani 2006/07] (tangential) and [Raymond 2005–07, Bahdra 2009] (normal).
Introduction

Optimal control-based stabilization for Navier-Stokes equations

- Stabilization to steady-state solution w of flows (with velocity field v and pressure χ), described by incompressible Navier-Stokes equations

$$\begin{align*}
\partial_t v + v \cdot \nabla v - \frac{1}{Re} \Delta v + \nabla \chi &= f \\
\text{div } v &= 0
\end{align*}$$

(1a)

(1b)

on $Q_\infty := \Omega \times (0, \infty)$, $\Omega \subseteq \mathbb{R}^d$, $d = 2, 3$, with smooth boundary $\Gamma := \partial \Omega$, and boundary and initial conditions

- $v = g$ on $\Sigma_\infty := \Gamma \times (0, \infty)$,

- $v(0) = w + z(0)$ (w given velocity field).

- Existence of stabilizing linear state feedback control proved in 2D [Fernández-Cara et al 2004] and 3D [Fursikov 2004].

- Construction of stabilizing feedback control based on associated linear-quadratic optimal control problem:

 - for distributed control, see [Barbu 2003, Barbu/Sritharan 1998, Barbu/Triggiani 2004];

 - for boundary control, see [Barbu/Lasiecka/Triggiani 2006/07] (tangential) and [Raymond 2005–07, Bahdra 2009] (normal).
Assume w solves the stationary Navier-Stokes equations

$$w \cdot \nabla w - \frac{1}{Re} \Delta w + \nabla \chi_s = f, \quad \text{div } w = 0,$$

(2)

with Dirichlet boundary condition $w = g$ on Γ, w possibly unstable. If we can determine a Dirichlet boundary control u so that the corresponding controlled system for $z := v - w$,

$$\partial_t z + (z \cdot \nabla)w + (w \cdot \nabla)z + (z \cdot \nabla)z - \frac{1}{Re} \Delta z + \nabla p = 0 \quad \text{in } Q_\infty,$$

$$\text{div } z = 0 \quad \text{in } Q_\infty,$$

$$z = bu \quad \text{in } \Sigma_\infty,$$

$$z(0) = z_0 \quad \text{in } \Omega,$$

is stable for “small” initial values $z_0 \in X(\Omega) \subset V^0_n(\Omega)$, where

$$V^0_n(\Omega) := L_2(\Omega) \cap \{\text{div } z = 0\} \cap \{z \cdot n = 0 \text{ on } \Gamma\},$$

then \exists constants $c, \omega > 0$ so that $\|z(t)\|_{X(\Omega)} \leq ce^{-\omega t}$.

$$\Rightarrow \quad \{ \text{Solution to instationary Navier-Stokes equations with } v = w + z, \chi = \chi_s + p, \text{ and } v(0) = w + z_0 \text{ in } \Omega \text{ is controlled to } w. \}$$
Optimal control-based stabilization for NSEs

Analytical solution [Raymond ‘05–’07]

Assume \(w \) solves the stationary Navier-Stokes equations

\[
\begin{align*}
 w \cdot \nabla w - \frac{1}{Re} \Delta w + \nabla \chi_s &= f, \\
 \text{div } w &= 0,
\end{align*}
\]

with Dirichlet boundary condition \(w = g \) on \(\Gamma \), \(w \) possibly unstable.

If we can determine a Dirichlet boundary control \(u \) so that the corresponding controlled system for \(z := v - w \),

\[
\begin{align*}
 \partial_t z + (z \cdot \nabla) w + (w \cdot \nabla) z + (z \cdot \nabla) z - \frac{1}{Re} \Delta z + \nabla p &= 0 \quad \text{in } Q_{\infty}, \\
 \text{div } z &= 0 \quad \text{in } Q_{\infty}, \\
 z &= bu \quad \text{in } \Sigma_{\infty}, \\
 z(0) &= z_0 \quad \text{in } \Omega,
\end{align*}
\]

is stable for “small” initial values \(z_0 \in X(\Omega) \subset V_0^0(\Omega) \), where

\[
V_0^0(\Omega) := L_2(\Omega) \cap \{ \text{div } z = 0 \} \cap \{ z \cdot n = 0 \text{ on } \Gamma \}.
\]

then \(\exists \) constants \(c, \omega > 0 \) so that \(\|z(t)\|_{X(\Omega)} \leq ce^{-\omega t} \).

\[\implies \left\{ \begin{array}{l}
 \text{Solution to instationary Navier-Stokes equations with } v = w + z, \\
 \chi = \chi_s + p, \text{ and } v(0) = w + z_0 \text{ in } \Omega \text{ is controlled to } w.
\end{array} \right.\]
Optimal control-based stabilization for NSEs

Analytical solution [RAYMOND'05–'07]

Assume w solves the stationary Navier-Stokes equations

$$w \cdot \nabla w - \frac{1}{Re} \Delta w + \nabla \chi_s = f, \quad \text{div } w = 0, \quad (2)$$

with Dirichlet boundary condition $w = g$ on Γ, w possibly unstable.

If we can determine a Dirichlet boundary control u so that the corresponding controlled system for $z := v - w$,

$$\partial_t z + (z \cdot \nabla)w + (w \cdot \nabla)z + (z \cdot \nabla)z - \frac{1}{Re} \Delta z + \nabla p = 0 \quad \text{in } Q_\infty,$$

$$\text{div } z = 0 \quad \text{in } Q_\infty,$$

$$z = bu \quad \text{in } \Sigma_\infty,$$

$$z(0) = z_0 \quad \text{in } \Omega,$$

is stable for “small” initial values $z_0 \in X(\Omega) \subset V_0^0(\Omega)$, where

$$V_0^0(\Omega) := L_2(\Omega) \cap \{\text{div } z = 0\} \cap \{z \cdot n = 0 \text{ on } \Gamma\},$$

then \exists constants $c, \omega > 0$ so that $\|z(t)\|_{X(\Omega)} \leq ce^{-\omega t}$.

$\implies \{ \text{Solution to instationary Navier-Stokes equations with } v = w + z, \chi = \chi_s + p, \text{ and } v(0) = w + z_0 \text{ in } \Omega \text{ is controlled to } w. \}$
Optimal control-based stabilization for NSEs

Analytical solution [RAYMOND '05–'07]

Linearized Navier-Stokes control system:

\[
\begin{align*}
\partial_t z + (z \cdot \nabla) w + (w \cdot \nabla) z - \frac{1}{Re} \Delta z - \omega z + \nabla p &= 0 \quad \text{in } Q_\infty, \\
\text{div } z &= 0 \quad \text{in } Q_\infty \\
z &= bu \quad \text{in } \Sigma_\infty \\
z(0) &= z_0 \quad \text{in } \Omega,
\end{align*}
\]

\(\omega z\) with \(\omega > 0\) de-stabilizes the system further, needed to guarantee exponential stabilization, \(\omega\) controls decay rate!

Cost functional (with \(P = \text{Helmholtz projector}\))

\[
J(z, u) = \frac{1}{2} \int_0^\infty \langle Pz, Pz \rangle_{L^2(\Omega)} + \rho u(t)^2 \, dt,
\]

the linear-quadratic optimal control problem associated to (3) becomes

\[
\inf \{ J(z, u) \mid (z, u) \text{ satisfies (3), } u \in L^2(0, \infty) \}.
\]
Optimal control-based stabilization for NSEs

Analytical solution [Raymond'05–'07]

Linearized Navier-Stokes control system:

\[
\begin{align*}
\partial_t z + (z \cdot \nabla)w + (w \cdot \nabla)z - \frac{1}{Re} \Delta z - \omega z + \nabla p &= 0 \quad \text{in } Q_\infty \quad (3a) \\
\text{div } z &= 0 \quad \text{in } Q_\infty \quad (3b) \\
z &= bu \quad \text{in } \Sigma_\infty \quad (3c) \\
z(0) &= z_0 \quad \text{in } \Omega, \quad (3d)
\end{align*}
\]

\(\omega z\) with \(\omega > 0\) de-stabilizes the system further, needed to guarantee exponential stabilization, \(\omega\) controls decay rate!

Cost functional (with \(P = \text{Helmholtz projector}\))

\[
J(z, u) = \frac{1}{2} \int_0^\infty \langle Pz, Pz \rangle_{L^2(\Omega)} + \rho u(t)^2 \, dt,
\]

the linear-quadratic optimal control problem associated to (3) becomes

\[
\inf \{J(z, u) \mid (z, u) \text{ satisfies (3), } u \in L^2(0, \infty)\}.
\]
Optimal control-based stabilization for NSEs

Analytical solution [Raymond’05–’07]

Proposition [Raymond ‘05, Bahdra ‘09]

The solution to the instationary Navier-Stokes equations with perturbed initial data is exponentially controlled to the steady-state solution \(w \) by the feedback law

\[
 u = -\rho^{-1} B^* \Pi z_H,
\]

where

- \(z_H := Pz \), with \(P : L_2(\Omega) \mapsto V_n^0(\Omega) \) being the Helmholtz projector \((\mapsto \text{div } z_H = 0) \);
- \(\Pi = \Pi^* \in \mathcal{L}(V_n^0(\Omega)) \) is the unique nonnegative semidefinite weak solution of the operator Riccati equation

\[
 0 = I + (A + \omega I)^* \Pi + \Pi (A + \omega I) - \Pi (B_\tau B_\tau^* + \rho^{-1} B_n B_n^*) \Pi,
\]

A is the linearized Navier-Stokes operator restricted to \(V_n^0 \);

\(B_\tau \) and \(B_n \) correspond to the projection of the control action in the tangential and normal directions.
Optimal control-based stabilization for NSEs

Analytical solution \[\text{[RAYMOND}’05–’07\]}

Proposition \[\text{[RAYMOND} ‘05, BAHDRA ‘09\]

The solution to the instationary Navier-Stokes equations with perturbed initial data is exponentially controlled to the steady-state solution \(w\) by the feedback law

\[u = -\rho^{-1}B^*\Pi z_H,\]

where

- \(z_H := Pz\), with \(P : L_2(\Omega) \mapsto V_0^0(\Omega)\) being the Helmholtz projector \((\mapsto \text{div} z_H \equiv 0)\);
- \(\Pi = \Pi^* \in \mathcal{L}(V_0^0(\Omega))\) is the unique nonnegative semidefinite weak solution of the operator Riccati equation

\[0 = I + (A + \omega I)^*\Pi + \Pi(A + \omega I) - \Pi(B_T B_T^* + \rho^{-1}B_n B_n^*)\Pi,\]

\(A\) is the linearized Navier-Stokes operator restricted to \(V_0^0\);
\(B_T\) and \(B_n\) correspond to the projection of the control action in the tangential and normal directions.
Optimal control-based stabilization for NSEs

Analytical solution \([\text{Raymond} '05–'07]\)

Proposition \([\text{Raymond} '05, \text{Bahdra} '09]\)

The solution to the instationary Navier-Stokes equations with perturbed initial data is exponentially controlled to the steady-state solution \(w\) by the feedback law

\[
u = -\rho^{-1} B^* \Pi z_H,
\]

where

- \(z_H := Pz\), with \(P : L_2(\Omega) \to V^0_n(\Omega)\) being the Helmholtz projector \((\sim \text{div } z_H \equiv 0)\);
- \(\Pi = \Pi^* \in \mathcal{L}(V^0_n(\Omega))\) is the unique nonnegative semidefinite weak solution of the operator Riccati equation

\[
0 = I + (A + \omega I)^* \Pi + \Pi (A + \omega I) - \Pi (B^*_\tau B^*_\tau + \rho^{-1} B_n B^*_n) \Pi,
\]

\(A\) is the linearized Navier-Stokes operator restricted to \(V^0_n\);

\(B_\tau\) and \(B_n\) correspond to the projection of the control action in the tangential and normal directions.
Optimal control-based stabilization for NSEs

Analytical solution [RAYMOND ‘05–’07]

Proposition [RAYMOND ‘05, BAHDRA ‘09]

The solution to the instationary Navier-Stokes equations with perturbed initial data is exponentially controlled to the steady-state solution w by the feedback law

$$u = -\rho^{-1} B^* \Pi z_H,$$

where

- $z_H := Pz$, with $P : L_2(\Omega) \mapsto V^0_n(\Omega)$ being the Helmholtz projector ($\mapsto \text{div } z_H \equiv 0$);
- $\Pi = \Pi^* \in \mathcal{L}(V^0_n(\Omega))$ is the unique nonnegative semidefinite weak solution of the operator Riccati equation

$$0 = I + (A + \omega I)^* \Pi + \Pi (A + \omega I) - \Pi (B^*_\tau B^*_n + \rho^{-1} B_n B^*_n) \Pi,$$

A is the linearized Navier-Stokes operator restricted to V^0_n; B^*_τ and B^*_n correspond to the projection of the control action in the tangential and normal directions.
Long-Term Plan

Apply optimal control-based feedback stabilization to (multi-)field problems with increasing complexity:

- **Proof of concept:** Navier-Stokes with normal boundary control for model problem (von Kármán vortex shedding).
- Navier-Stokes coupled with (passive) transport of (reactive) species.
- Phase transition liquid/solid with convection.
- Stabilization of a flow with a free capillary surface.
- Control for electrically conducting fluids in presence of outer magnetic fields (MHD).

All scenarios require

- formulation as abstract parabolic Cauchy problem,
- definition of quadratic cost functional,
- formulation of corresponding ARE,
- spatial discretization (FEM),
- numerical solution of large-scale ARE.
Long-Term Plan

Apply optimal control-based feedback stabilization to (multi-)field problems with increasing complexity:

- **Proof of concept:** Navier-Stokes with normal boundary control for model problem (von Kármán vortex shedding).
- Navier-Stokes coupled with (passive) transport of (reactive) species.
- Phase transition liquid/solid with convection.
- Stabilization of a flow with a free capillary surface.
- Control for electrically conducting fluids in presence of outer magnetic fields (MHD).

All scenarios require

- formulation as abstract parabolic Cauchy problem,
- definition of quadratic cost functional,
- formulation of corresponding ARE,
- spatial discretization (FEM),
- numerical solution of large-scale ARE.
Introduction

Proof of concept: von Kármán vortex street

von Kármán vortex street \((Re = 300)\)

Vortex suppression by blowing in at upper end of cylinder, without . . .

and with stabilizing feedback

Computations by Heiko Weichelt
Consider

\[0 = \mathcal{R}(X) := C^T C + A^T X + X A - X B B^T X \]

Re-write Newton’s method for AREs \((A_j := A - B B^T X_j)\)

\[D \mathcal{R}(X_j) (N_j) = -\mathcal{R}(X_j) \]

\[\iff \]

\[A_j^T (X_j + N_j) + (X_j + N_j) A_j = -C^T C - X_j B B^T X_j =: -W_j W_j^T \]

Set \(X_j = Z_j Z_j^T \) for rank \((Z_j) \ll n \Rightarrow \)

\[A_j^T (Z_{j+1} Z_{j+1}^T) + (Z_{j+1} Z_{j+1}^T) A_j = -W_j W_j^T \]

Factored Newton Iteration \([B./L/Penzl '99/’08]\)

Solve Lyapunov equations for \(Z_{j+1}\) directly by factored ADI iteration and exploit ‘sparse + low-rank’ structure of \(A_j\).
Consider

\[0 = \mathcal{R}(X) := C^T C + A^T X + X A - X B B^T X \]

Re-write Newton’s method for AREs (\(A_j := A - B B^T X_j \))

\[
A_j^T N_j + N_j A_j = -\mathcal{R}(X_j)
\]

\[
\iff
A_j^T (X_j + N_j) + (X_j + N_j) A_j = -C^T C - X_j B B^T X_j =: -W_j W_j^T
\]

Set \(X_j = Z_j Z_j^T \) for rank (\(Z_j \)) \(\ll n \)

\[
A_j^T (Z_{j+1} Z_{j+1}^T) + (Z_{j+1} Z_{j+1}^T) A_j = -W_j W_j^T
\]

Factored Newton Iteration \([\text{B./Li/Penzl '99/’08}]\)

Solve Lyapunov equations for \(Z_{j+1} \) directly by factored ADI iteration and exploit ‘sparse + low-rank’ structure of \(A_j \).
Consider

\[0 = \mathcal{R}(X) := C^T C + A^T X + X A - X B B^T X \]

Re-write Newton’s method for AREs \((A_j := A - B B^T X_j)\)

\[
A_j^T N_j + N_j A_j = -\mathcal{R}(X_j)
\]

\[
\iff
A_j^T (X_j + N_j) + (X_j + N_j) A_j = -C^T C - X_j B B^T X_j
\]

Set \(X_j = Z_j Z_j^T\) for \(\text{rank}(Z_j) \ll n\)

\[
A_j^T (Z_{j+1} Z_{j+1}^T) + (Z_{j+1} Z_{j+1}^T) A_j = -W_j W_j^T
\]

Factored Newton Iteration \([B./L/Penzl '99/’08]\)

Solve Lyapunov equations for \(Z_{j+1}\) directly by factored ADI iteration and exploit ‘sparse + low-rank’ structure of \(A_j\).
Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:
- Linear 1D heat equation with point control,
- $\Omega = [0, 1]$,
- FEM discretization using linear B-splines,
- $h = 1/100 \implies n = 101$.

Idea: $X = X^T \geq 0 \implies$

$$X = ZZ^T = \sum_{k=1}^{n} \lambda_k z_k z_k^T \approx Z^{(r)} (Z^{(r)})^T = \sum_{k=1}^{r} \lambda_k z_k z_k^T.$$

\implies Goal: compute $Z^{(r)} \in \mathbb{R}^{n \times r}$ directly w/o ever forming X!
Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:
- Linear 1D heat equation with point control,
- \(\Omega = [0, 1] \),
- FEM discretization using linear B-splines,
- \(h = 1/100 \implies n = 101 \).

Idea: \(X = X^T \geq 0 \implies \)

\[
X = ZZ^T = \sum_{k=1}^{n} \lambda_k z_k z_k^T \approx Z^{(r)} (Z^{(r)})^T = \sum_{k=1}^{r} \lambda_k z_k z_k^T.
\]

\(\implies \) Goal: compute \(Z^{(r)} \in \mathbb{R}^{n \times r} \) directly w/o ever forming \(X \)!
Review: LRCF-ADI for Lyapunov Equations

Consider

\[FX + XF^T = -GG^T \]

ADI iteration for the Lyapunov equation (LE) \[\text{[WACHSPRESS '95]}\]

For \(j = 1, \ldots, J \)

\[
\begin{align*}
X_0 &= 0 \\
(F + p_j I)X_{j-1}^{1/2} &= -GG^T - X_{j-1}(F^T - p_j I) \\
(F + p_j I)X_j^{1/2} &= -GG^T - X_{j-1}^{1/2}(F^T - p_j I)
\end{align*}
\]

Rewrite as one step iteration and factorize \(X_i = Z_iZ_i^T, i = 0, \ldots, J \)

\[
\begin{align*}
Z_0Z_0^T &= 0 \\
Z_jZ_j^T &= -2p_j(F + p_j I)^{-1}GG^T(F + p_j I)^{-T} \\
&+ (F + p_j I)^{-1}(F - p_j I)Z_{j-1}Z_{j-1}^{T}(F - p_j I)^T(F + p_j I)^{-T}
\end{align*}
\]

\(\ldots \Rightarrow \) low-rank Cholesky factor ADI

\[\text{[PENZL '97/'00, LI/WHITE '99/'02, B./LI/PENZL '99/'08, GUGERCIN/SORENSEN/ANTOULAS '03]}\]
Review: LRCF-ADI for Lyapunov Equations

Consider

\[FX + XF^T = -GG^T \]

ADI iteration for the Lyapunov equation (LE)

For \(j = 1, \ldots, J \)

\[
\begin{align*}
X_0 &= 0 \\
(F + p_j I)X_{j-1/2} &= -GG^T - X_{j-1}(F^T - p_j I) \\
(F + p_j I)X_j^T &= -GG^T - X_{j-1}^T(F^T - p_j I)
\end{align*}
\]

Rewrite as one step iteration and factorize \(X_i = Z_i Z_i^T, i = 0, \ldots, J \)

\[
\begin{align*}
Z_0 Z_0^T &= 0 \\
Z_j Z_j^T &= -2p_j(F + p_j I)^{-1}GG^T(F + p_j I)^{-T} \\
&+ (F + p_j I)^{-1}(F - p_j I)Z_{j-1}Z_{j-1}^T(F - p_j I)^T(F + p_j I)^{-T}
\end{align*}
\]

\[\cdots \rightarrow \text{low-rank Cholesky factor ADI} \]

\[\text{[Penzl '97/'00, Li/White '99/'02, B./Li/Penzl '99/'08, Gugercin/Sorensen/Antoulas '03]} \]
Review: LRCF-ADI for Lyapunov Equations

Consider

\[FX + XF^T = -GG^T \]

ADI iteration for the Lyapunov equation (LE) \[\text{[WACHSPRESS '95]} \]

For \(j = 1, \ldots, J \)

\[
\begin{align*}
X_0 &= 0 \\
(F + p_j I)X_{j-\frac{1}{2}} &= -GG^T - X_{j-1}(F^T - p_j I) \\
(F + p_j I)X_{j}^T &= -GG^T - X_{j-\frac{1}{2}}^T(F^T - p_j I)
\end{align*}
\]

Rewrite as one step iteration and factorize \(X_i = Z_i Z_i^T, i = 0, \ldots, J \)

\[
\begin{align*}
Z_0 Z_0^T &= 0 \\
Z_j Z_j^T &= -2p_j (F + p_j I)^{-1} GG^T(F + p_j I)^{-T} \\
&+ (F + p_j I)^{-1}(F - p_j I)Z_{j-1}Z_{j-1}^T(F - p_j I)^T(F + p_j I)^{-T}
\end{align*}
\]

\(\ldots \leadsto \) low-rank Cholesky factor ADI

\[\text{[PENZL '97/'00, LI/WHITE '99/'02, B./LI/PENZL '99/'08, GUGERCIN/SORENSEN/ANTOULAS '03]} \]
Review: LRCF-ADI for Lyapunov Equations

The Work Horse

Algorithm 1 Low-rank Cholesky factor ADI iteration (LRCF-ADI)

\[\text{[Penzl '97/'00, Li/White '99/'02, B./Li/Penzl '99/'08]} \]

Input: F, G defining $FX + XF^T = -GG^T$ and shifts $\{p_1, \ldots, p_{i_{\text{max}}}\}$

Output: $Z = Z_{i_{\text{max}}} \in \mathbb{C}^{n \times t_{i_{\text{max}}}}$, such that $ZZ^H \approx X$

1: Solve $(F + p_1 I)V_1 = \sqrt{-2\Re(p_1)G}$ for V_1.
2: $Z_1 = V_1$
3: for $i = 2, 3, \ldots, i_{\text{max}}$ do
4: Solve $(F + p_i I)\tilde{V} = V_{i-1}$ for \tilde{V}.
5: $V_i = \sqrt{\Re(p_i)/\Re(p_{i-1})} \left(V_{i-1} - (p_i + \overline{p_{i-1}})\tilde{V} \right)$
6: $Z_i = [Z_{i-1} \ V_i]$
7: end for
Krylov Subspace Based Solvers for Lyapunov Equations

Consider Schur/singular value decomposition $X = U \Sigma U^T$, $U \in \mathbb{R}^{n \times n}$, $U^T U = I$, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$ and $|\sigma_1| \geq |\sigma_2| \geq \cdots \geq |\sigma_n|$. The best rank-$m$ Frobenius-norm approximation to X is thus given by

$$X_m := U \begin{bmatrix} \Sigma_m & 0 \\ 0 & 0 \end{bmatrix} U^T = U_m \Sigma_m U_m^T.$$

Krylov projection idea

[Saad ’90, Jaimoukha/Kasenally ’94]

Solve

$$(U_m^T F U_m) Y_m + Y_m (U_m^T F^T U_m) = -U_m^T G G^T U_m,$$

on $\text{colspan}(U_m)$ and get X_m as

$$X_m = U_m Y_m U_m^T.$$
Krylov Subspace Based Solvers for Lyapunov Equations

Consider Schur/singular value decomposition $X = U\Sigma U^T$, $U \in \mathbb{R}^{n \times n}$, $U^T U = I$, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$ and $|\sigma_1| \geq |\sigma_2| \geq \cdots \geq |\sigma_n|$. The best rank-$m$ Frobenius-norm approximation to X is thus given by

\[X_m := U \begin{bmatrix} \Sigma_m & 0 \\ 0 & 0 \end{bmatrix} U^T = U_m \Sigma_m U_m^T.\]

Krylov projection idea

[Saad ’90, Jaimoukha/Kasenally ’94]

Solve

\[(U_m^T F U_m) Y_m + Y_m (U_m^T F^T U_m) = -U_m^T G G^T U_m, \quad (6) \]

on $\text{colspan}(U_m)$ and get X_m as

\[X_m = U_m Y_m U_m^T. \]
Krylov Subspace Based Solvers for Lyapunov Equations

Consider Schur/singular value decomposition $X = U \Sigma U^T$, $U \in \mathbb{R}^{n \times n}$, $U^T U = I$, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$ and $|\sigma_1| \geq |\sigma_2| \geq \cdots \geq |\sigma_n|$. The best rank-$m$ Frobenius-norm approximation to X is thus given by

$$X_m := U \begin{bmatrix} \Sigma_m & 0 \\ 0 & 0 \end{bmatrix} U^T = U_m \Sigma_m U_m^T.$$

Note that a factorization

$$Z_m Z_m^T = X_m$$

can easily be computed from a Cholesky factorization of

$$Y_m = \tilde{Z}_m \tilde{Z}_m^T$$

as

$$Z_m = U_m \tilde{Z}_m.$$
Krylov Subspace Based Solvers for Lyapunov Equations
Basic Algorithm

Algorithm 2 Basic Krylov Subspace Method for the Lyapunov Equation

Input: \(F, G \) defining \(FX + XF^T = -GG^T \), an initial Krylov subspace \(\mathcal{V} \), e.g., \(\mathcal{V} = \mathcal{K}_p(F, G) \) or \(\mathcal{V} = \mathcal{K}_p(F, G) \cup \mathcal{K}_p(F^{-1}, G) \) with orthogonal basis \(V \in \mathbb{C}^{n \times p} \).

Output: \(Z \in \mathbb{C}^{n \times t} \), such that \(ZZ^H \approx X \)

```markdown
repeat
  if not first step then
    increase dimension of \( \mathcal{V} \) and update \( V \).
  end if
  Solve the “small” LE for \( \tilde{Z} \) with a classical solver:

  \[
  (V^T F V) \tilde{Z} \tilde{Z}^T + \tilde{Z} \tilde{Z}^T (V^T F^T V) = -V^T G G^T V,
  \]

  Lift \( \tilde{Z} \) to the full space: \( Z = V \tilde{Z} \)

until \( \text{res}(Z) < \text{TOL} \)
```

\(^1\)\((K-PIK, [Simoncini '07]) \)
LRCF-ADI with Galerkin Projection
ADI and Rational Krylov

\[[\text{Li '00; Theorem 2}] \text{interprets the column span of the ADI solution as a certain rational Krylov subspace} \]

\[\mathcal{L}(F, G, p) := \text{span} \left\{ \ldots, \prod_{i=-j}^{-1} (F + p_i I)^{-1} G, \ldots, (F + p_{-2} I)^{-1} (F + p_{-1} I)^{-1} G, (F + p_{-1} I)^{-1} G, (F + p_1 I) G, (F + p_2 I)(F + p_1 I) G, \ldots, \prod_{i=1}^{j} (F + p_i I) G \ldots \right\} \]

Idea

Solve on current subspace of $\mathcal{L}(F, G, p)$ in the ADI step to increase the quality of the iterate.
LRCF-ADI with Galerkin Projection
ADI and Rational Krylov

[Li '00; Theorem 2] interprets the column span of the ADI solution as a certain rational Krylov subspace

\[\mathcal{L}(F, G, p) := \text{span} \left\{ \ldots, \prod_{i=-j}^{-1} (F + p_i I)^{-1} G, \ldots, (F + p_{-2} I)^{-1} (F + p_{-1} I)^{-1} G, (F + p_{-1} I)^{-1} G, G, (F + p_1 I)G, \ldots, \prod_{i=1}^{j} (F + p_i I)G \ldots \right\} \]

Idea

Solve on current subspace of \(\mathcal{L}(F, G, p) \) in the ADI step to increase the quality of the iterate.
LRCF-ADI with Galerkin Projection

Projected ADI Step → LRCF-ADI-GP

1. Compute the LRCF-ADI iterate Z_i
2. Compute orthogonal basis via RRQR factorizationa: $Q_iR_i\Pi_i = Z_i$
3. Solve (for \tilde{Z}) the projected Lyapunov equation
 \[
 (Q_i^T F Q_i)\tilde{Z}\tilde{Z}^T + \tilde{Z}\tilde{Z}^T (Q_i^T F^T Q_i) = -Q_i^T GG^T Q_i
 \]
4. Update Z_i according to $Z_i := Q_i\tilde{Z}$

a economy size QR with column pivoting; crucial to compute correct subspace if Z_i rank deficient.

- Need to ensure that projected systems remain stable, e.g., $F + F^T < 0$;
- may perform projected ADI step only every k-th step (e.g. $k = 5$) \leadsto restarted ADI with shifts $\Lambda(Q_i^T F Q_i)$.

Solving Large-Scale AREs

- Solving AREs for lin. NSE
- Further Applications
- Conclusions
- References
LRCF-ADI with Galerkin Projection

Projected ADI Step → LRCF-ADI-GP

1. Compute the LRCF-ADI iterate Z_i
2. Compute orthogonal basis via RRQR factorization
3. Solve (for \tilde{Z}) the projected Lyapunov equation
 \[
 (Q_i^T F Q_i) \tilde{Z} \tilde{Z}^T + \tilde{Z} \tilde{Z}^T (Q_i^T F^T Q_i) = -Q_i^T G G^T Q_i
 \]
4. Update Z_i according to $Z_i := Q_i \tilde{Z}$

- Need to ensure that projected systems remain stable, e.g., $F + F^T < 0$;
- may perform projected ADI step only every k-th step (e.g. $k = 5$) \Rightarrow restarted ADI with shifts $\Lambda(Q_i^T F Q_i)$.
LRCF-ADI with Galerkin Projection

Test Example: Optimal Cooling of Steel Profiles

- Mathematical model: boundary control for linearized 2D heat equation.

\[
c \cdot \rho \frac{\partial x}{\partial t} = \lambda \Delta x, \quad \xi \in \Omega
\]

\[
\lambda \frac{\partial x}{\partial n} = \kappa (u_k - x), \quad \xi \in \Gamma_k, \ 1 \leq k \leq 7,
\]

\[
\frac{\partial x}{\partial n} = 0, \quad \xi \in \Gamma_0.
\]

\[\Rightarrow q = 7, \ p = 6.\]

- FEM Discretization, different models for initial mesh \(n = 371\),
1, 2, 3, 4 steps of mesh refinement \(\Rightarrow n = 1357, 5177, 20209, 79841\).

Source: Physical model: courtesy of Mannesmann/Demag.
Math. model: Tröltzsch/Unger '99/'01, Penzl '99, S. '03.
LRCF-ADI with Galerkin Projection

Numerical Results

Steel profile $n=20$ 209 good shifts
LRCF-ADI with Galerkin Projection

Numerical Results

Steel profile $n=20$ 209 good shifts

![Computation times graph](chart.png)
LRCF-ADI with Galerkin Projection

Numerical Results

Steel profile n=20 209 bad shifts
LRCF-ADI with Galerkin Projection

Numerical Results

Steel profile $n=20$ 209 bad shifts

![Bar graph showing computation times for different Galerkin projection frequencies.](image-url)
Solving Large-Scale AREs

LRCF-NM for the ARE

Consider \(\mathcal{R}(X) := C^T C + A^T X + XA - XBB^T X = 0 \)

Newton’s Iteration for the ARE

\[\mathcal{R}'|_X(N_\ell) = -\mathcal{R}(X_\ell), \quad X_{\ell+1} = X_\ell + N_\ell, \quad \ell = 0, 1, \ldots \]

where the Frechét derivative of \(\mathcal{R} \) at \(X \) is the Lyapunov operator

\[\mathcal{R}'|_X : Q \mapsto (A - BB^T X)^T Q + Q(A - BB^T X), \]

i.e., in every Newton step solve a

Lyapunov Equation \[[\text{Kleinman '68}]\]

\[F_\ell^T X_{\ell+1} + X_{\ell+1} F_\ell = -G_\ell G_\ell^T, \]

where \(F_\ell := A - BB^T X_\ell, \ G := [-C^T, -X_\ell B] \).
Factored Newton-Kleinman Iteration

\[F_\ell = A - BB^T X_\ell =: A - BK_\ell \]
\[G_\ell = [C^T, K_\ell^T] \]

- Apply LRCF-ADI in every Newton step;
- exploit structure of \(F_\ell \) using Sherman-Morrison-Woodbury formula:

\[
(A - BK_\ell + p_k^{(\ell)} I_n)^{-1} = \\
(l_n + (A + p_k^{(\ell)} I_n)^{-1} B (l_m - K_\ell (A + p_k^{(\ell)} I_n)^{-1} B)^{-1} K_\ell) (A + p_k^{(\ell)} I_n)^{-1}
\]
Solving Large-Scale AREs

LRCF-NM for the ARE

Factored Newton-Kleinman Iteration

\[F_\ell = A - BB^TX_\ell =: A - BK_\ell \]
\[G_\ell = [C^T, K_\ell^T] \]

is “sparse + low rank”,
is low rank factor.

- Apply LRCF-ADI in every Newton step;
- exploit structure of \(F_\ell \) using Sherman-Morrison-Woodbury formula:

\[
(A - BK_\ell + p_k^{(\ell)}I_n)^{-1} = \\
(I_n + (A + p_k^{(\ell)}I_n)^{-1}B(I_m - K_\ell(A + p_k^{(\ell)}I_n)^{-1}B)^{-1}K_\ell)(A + p_k^{(\ell)}I_n)^{-1}
\]
Solving Large-Scale AREs

LRCF-NM for the ARE

Factored Newton-Kleinman Iteration

\[F_\ell = A - BB^T X_\ell =: A - BK_\ell \]

\[G_\ell = [C^T, K_\ell^T] \]

is “sparse + low rank”,

is low rank factor.

Apply LRCF-ADI in every Newton step;

exploit structure of \(F_\ell \) using Sherman-Morrison-Woodbury formula:

\[
(A - BK_\ell + p_k^{(\ell)} I_n)^{-1} = \\
(I_n + (A + p_k^{(\ell)} I_n)^{-1} B (I_m - K_\ell (A + p_k^{(\ell)} I_n)^{-1} B)^{-1} K_\ell) (A + p_k^{(\ell)} I_n)^{-1}
\]
Algorithm 3 Low-Rank Cholesky Factor Newton Method (LRCF-NM)

Input: A, B, C, $K^{(0)}$ for which $A - BK^{(0)T}$ is stable
Output: $Z = Z^{(k_{\text{max}})}$, such that ZZ^H approximates the solution X of

$$C^T C + A^T X + XA - XBB^T X = 0.$$

1: for $k = 1, 2, \ldots, k_{\text{max}}$ do
2: Determine (sub)optimal ADI shift parameters $p^{(k)}_1, p^{(k)}_2, \ldots$ with respect to the matrix $F^{(k)} = A^T - K^{(k-1)}B^T$.
3: $G^{(k)} = \begin{bmatrix} C^T & K^{(k-1)} \end{bmatrix}$
4: Compute $Z^{(k)}$ using Algorithm 1 (LRCF-ADI) or (LRCF-ADI-GP) such that $F^{(k)} Z^{(k)} Z^{(k)H} + Z^{(k)} Z^{(k)H} F^{(k)T} \approx -G^{(k)} G^{(k)T}$.
5: $K^{(k)} = Z^{(k)} (Z^{(k)H} B)$
6: end for
Algorithm 4 Simplified Low-Rank Cholesky Factor Newton Method (LRCF-NM-S)

Input: A, B, C, $K(0)$ for which $A - BK(0)^T$ is stable

Output: $Z = Z(k_{max})$, such that ZZ^H approximates the solution X of

$$C^TC + A^TX +XA - XBB^TX = 0.$$

1. Determine (sub)optimal ADI shift parameters p_1, p_2, \ldots
 with respect to $F(0) = A^T - K(0)B^T$ or $F(\infty) = \lim_{k \to \infty} F(k)$.
2. for $k = 1, 2, \ldots, k_{max}$ do
3. \hspace{1em} $G(k) = \begin{bmatrix} C^T & K(k-1) \end{bmatrix}$
4. \hspace{1em} Compute $Z(k)$ using Algorithm 1 (LRCF-ADI) or (LRCF-ADI-GP)
 such that $F(k)Z(k)Z(k)^H + Z(k)Z(k)^HF(k)^T \approx -G(k)G(k)^T$.
5. \hspace{1em} $K(k) = Z(k)(Z(k)^H)B$
6. end for
LRCF-NM for the ARE

Algorithms

Algorithm 5 Low-Rank Cholesky Factor Galerkin-Newton Method (LRCF-NM-GP)

Input: $A, B, C, K^{(0)}$ for which $A - BK^{(0)}^T$ is stable

Output: $Z = Z^{(k_{\text{max}})}$, such that ZZ^H approximates the solution X of

$$C^T C + A^TX + XA - XBB^TX = 0.$$

1: \textbf{for} $k = 1, 2, \ldots, k_{\text{max}}$ \textbf{do}

2: \hspace{1em} Determine (sub)optimal ADI shift parameters $p_1^{(k)}, p_2^{(k)}, \ldots$ with respect to the matrix $F^{(k)} = A^T - K^{(k-1)}B^T$.

3: \hspace{1em} $G^{(k)} = \begin{bmatrix} C^T & K^{(k-1)} \end{bmatrix}$

4: \hspace{1em} Compute $Z^{(k)}$ using Algorithm 1 (LRCF-ADI) or (LRCF-ADI-GP) such that $F^{(k)}Z^{(k)}Z^{(k)H} + Z^{(k)}Z^{(k)H}F^{(k)}^T \approx -G^{(k)}G^{(k)T}$.

5: \hspace{1em} Project ARE, solve and prolongate solution.

6: \hspace{1em} $K^{(k)} = Z^{(k)}(Z^{(k)H}B)$

7: \textbf{end for}
Optimal feedback

\[K_\star = B^T X_\star = B^T Z_\star Z_\star^T \]

can be computed by direct feedback iteration:

- \(j \)th Newton iteration:

 \[K_j = B^T Z_j Z_j^T = \sum_{k=1}^{k_{\text{max}}} (B^T V_{j,k}) V_{j,k}^T \xrightarrow{j \to \infty} K_\star = B^T Z_\star Z_\star^T \]

- \(K_j \) can be updated in ADI iteration, \(A_j = BK_j \)

 \(\Rightarrow \) no need to form \(Z_j \), need only fixed workspace for \(K_j \in \mathbb{R}^{m \times n}! \)

Related to earlier work by [Banks/Ito '91].
Example 1: 3d Convection-Diffusion Equation
- FDM for 3D convection-diffusion equation on $[0, 1]^3$
- proposed in [Simoncini '07], $q = p = 1$
- non-symmetric $A \in \mathbb{R}^{n \times n}$, $n = 10\,648$

Example 2: 2d Convection-Diffusion Equation
- FDM for 2D convection-diffusion equations on $[0, 1]^2$
- LyaPack benchmark, $q = p = 1$, e.g., demo_11
- non-symmetric $A \in \mathbb{R}^{n \times n}$, $n = 22\,500$.

- 16 shift parameters
- Penzl’s heuristic from 50/25 Ritz/harmonic Ritz values of A
Feedback Iteration

Test Results (ADI-loop): Example 1

<table>
<thead>
<tr>
<th>Newton-ADI</th>
<th>rel. change</th>
<th>rel. residual</th>
<th>ADI</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9.97 \cdot 10^{-01}</td>
<td>9.27 \cdot 10^{-01}</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>3.67 \cdot 10^{-02}</td>
<td>9.58 \cdot 10^{-02}</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>1.36 \cdot 10^{-02}</td>
<td>1.09 \cdot 10^{-03}</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>3.48 \cdot 10^{-04}</td>
<td>1.01 \cdot 10^{-07}</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>6.41 \cdot 10^{-08}</td>
<td>1.34 \cdot 10^{-10}</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>7.47 \cdot 10^{-16}</td>
<td>1.34 \cdot 10^{-10}</td>
<td>97</td>
</tr>
</tbody>
</table>

CPU time: 4805.8 sec.

<table>
<thead>
<tr>
<th>Newton-Galerkin-ADI</th>
<th>rel. change</th>
<th>rel. residual</th>
<th>ADI</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRCF-ADI-GP(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NWT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9.97 \cdot 10^{-01}</td>
<td>9.29 \cdot 10^{-01}</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>3.67 \cdot 10^{-02}</td>
<td>9.60 \cdot 10^{-02}</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>1.36 \cdot 10^{-02}</td>
<td>1.09 \cdot 10^{-03}</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>3.47 \cdot 10^{-04}</td>
<td>1.01 \cdot 10^{-07}</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>6.41 \cdot 10^{-08}</td>
<td>1.03 \cdot 10^{-10}</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>1.23 \cdot 10^{-11}</td>
<td>1.98 \cdot 10^{-11}</td>
<td>27</td>
</tr>
</tbody>
</table>

CPU time: 1460.1 sec.

test system: Intel® Xeon® 5160 3.00GHz ; 16 GB RAM; 64Bit-MATLAB ® (R2010a) using threaded BLAS (romulus) stopping criterion tolerances: 10^{-10}
Feedback Iteration

Test Results (ADI-loop): Example 2

<table>
<thead>
<tr>
<th>Newton-ADI</th>
<th>Newton-Galerkin-ADI</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWT</td>
<td>rel. change</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$2.88 \cdot 10^{-01}$</td>
</tr>
<tr>
<td>3</td>
<td>$2.13 \cdot 10^{-01}$</td>
</tr>
<tr>
<td>4</td>
<td>$1.77 \cdot 10^{-01}$</td>
</tr>
<tr>
<td>5</td>
<td>$2.47 \cdot 10^{-01}$</td>
</tr>
<tr>
<td>6</td>
<td>$3.04 \cdot 10^{-01}$</td>
</tr>
<tr>
<td>7</td>
<td>$1.78 \cdot 10^{-02}$</td>
</tr>
<tr>
<td>8</td>
<td>$2.60 \cdot 10^{-05}$</td>
</tr>
<tr>
<td>9</td>
<td>$2.75 \cdot 10^{-11}$</td>
</tr>
</tbody>
</table>

CPU time: **493.81 sec.**

CPU time: **280.55 sec.**

test system: Intel® Core™2 Quad Q9400 2.66 GHz; 4 GB RAM; 64Bit-MATLAB (R2009a) using threaded BLAS (reynolds)

stopping criterion tolerances: 10^{-10}
Feedback Iteration

Test Results (both-loops): Example 1

<table>
<thead>
<tr>
<th>Newton-ADI</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NWT</td>
<td>rel. change</td>
<td>rel. residual</td>
<td>ADI</td>
</tr>
<tr>
<td>1</td>
<td>$9.97 \cdot 10^{-01}$</td>
<td>$9.27 \cdot 10^{-01}$</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>$3.67 \cdot 10^{-02}$</td>
<td>$9.58 \cdot 10^{-02}$</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>$1.36 \cdot 10^{-02}$</td>
<td>$1.09 \cdot 10^{-03}$</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>$3.48 \cdot 10^{-04}$</td>
<td>$1.01 \cdot 10^{-07}$</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>$6.41 \cdot 10^{-08}$</td>
<td>$1.34 \cdot 10^{-10}$</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>$7.47 \cdot 10^{-16}$</td>
<td>$1.34 \cdot 10^{-10}$</td>
<td>97</td>
</tr>
</tbody>
</table>

CPU time: 4805.8 sec.

<table>
<thead>
<tr>
<th>NG-ADI</th>
<th>inner = 5, outer = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWT</td>
<td>rel. change</td>
</tr>
<tr>
<td>1</td>
<td>$9.98 \cdot 10^{-01}$</td>
</tr>
<tr>
<td>CPU time: 497.6 sec.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NG-ADI</th>
<th>inner = 1, outer = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWT</td>
<td>rel. change</td>
</tr>
<tr>
<td>1</td>
<td>$9.98 \cdot 10^{-01}$</td>
</tr>
<tr>
<td>CPU time: 856.6 sec.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NG-ADI</th>
<th>inner = 0, outer = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWT</td>
<td>rel. change</td>
</tr>
<tr>
<td>1</td>
<td>$9.98 \cdot 10^{-01}$</td>
</tr>
<tr>
<td>CPU time: 506.6 sec.</td>
<td></td>
</tr>
</tbody>
</table>

test system: Intel® Xeon® 5160 3.00GHz ; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS (romulus)

stopping criterion tolerances: 10^{-10}
Feedback Iteration

Test Results (both-loops): Example 2

Newton-ADI

<table>
<thead>
<tr>
<th>NWT</th>
<th>rel. change</th>
<th>rel. residual</th>
<th>ADI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.70 \cdot 10^{02}</td>
<td>46</td>
</tr>
<tr>
<td>2</td>
<td>2.88 \cdot 10^{-01}</td>
<td>4.25 \cdot 10^{01}</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>2.13 \cdot 10^{-01}</td>
<td>1.06 \cdot 10^{01}</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>1.77 \cdot 10^{-01}</td>
<td>2.58 \cdot 10^{00}</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>2.47 \cdot 10^{-01}</td>
<td>5.15 \cdot 10^{-01}</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>3.04 \cdot 10^{-01}</td>
<td>3.26 \cdot 10^{-02}</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>1.78 \cdot 10^{-02}</td>
<td>6.90 \cdot 10^{-05}</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>2.60 \cdot 10^{-05}</td>
<td>1.08 \cdot 10^{-10}</td>
<td>46</td>
</tr>
<tr>
<td>9</td>
<td>2.75 \cdot 10^{-11}</td>
<td>1.07 \cdot 10^{-10}</td>
<td>50</td>
</tr>
</tbody>
</table>

CPU time: 493.81 sec.

NG-ADI \ inner= 5, outer= 1

<table>
<thead>
<tr>
<th>NWT</th>
<th>rel. change</th>
<th>rel. residual</th>
<th>ADI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.30 \cdot 10^{-11}</td>
<td>35</td>
</tr>
</tbody>
</table>

CPU time: 24.1 sec.

NG-ADI \ inner= 1, outer= 1

<table>
<thead>
<tr>
<th>NWT</th>
<th>rel. change</th>
<th>rel. residual</th>
<th>ADI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.31 \cdot 10^{-11}</td>
<td>34</td>
</tr>
</tbody>
</table>

CPU time: 26.8 sec.

NG-ADI \ inner= 0, outer= 1

<table>
<thead>
<tr>
<th>NWT</th>
<th>rel. change</th>
<th>rel. residual</th>
<th>ADI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.27 \cdot 10^{-15}</td>
<td>46</td>
</tr>
</tbody>
</table>

CPU time: 24.0 sec.

test system: Intel® Core™2 Quad Q9400 2.66 GHz; 4 GB RAM; 64Bit-MATLAB (R2009a) using threaded BLAS (reynolds)

stopping criterion tolerances: \(10^{-10}\)
Feedback Iteration

Computation Time Scales Linearly with Problem Size

\[\begin{align*}
\partial_t x(\xi, t) &= \Delta x(\xi, t) \quad \text{in } \Omega \\
\partial_{\nu} x &= b(\xi) \cdot u(t) - x \quad \text{on } \Gamma_c \\
\partial_{\nu} x &= -x \quad \text{on } \partial\Omega \setminus \Gamma_c \\
x(\xi, 0) &= 1
\end{align*} \]

Control operator: Here \(b(\xi) = 4 \left(1 - \xi_2 \right) \xi_2 \) for \(\xi \in \Gamma_c \) and 0 otherwise.

Output equation: \(y = C x \), where

\[
C : L^2(\Omega) \to \mathbb{R} \\
x(\xi, t) \mapsto y(t) = \int_{\Omega} x(\xi, t) \, d\xi, \quad \Rightarrow C_h = 1 \cdot M_h.
\]

Cost functional:

\[
J(u) = \int_{0}^{\infty} y^2(t) + u^2(t) \, dt.
\]
Feedback Iteration

Scaling results

simplified Low Rank Newton-Galerkin ADI

- generalized state space form implementation
- Penzl shifts (16/50/25) with respect to initial matrices
- projection acceleration in every outer iteration step
- projection acceleration in every 5-th inner iteration step

test system: Intel® Xeon® 5160 @ 3.00 GHz; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS (romulus)

stopping criterion tolerances: 10^{-10}
Feedback Iteration

Scaling results

Computation Times

<table>
<thead>
<tr>
<th>discretization level</th>
<th>problem size</th>
<th>time in seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>81</td>
<td>$5.53 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>4</td>
<td>289</td>
<td>$1.33 \cdot 10^{-1}$</td>
</tr>
<tr>
<td>5</td>
<td>1089</td>
<td>$2.84 \cdot 10^{-1}$</td>
</tr>
<tr>
<td>6</td>
<td>4225</td>
<td>$1.51 \cdot 10^{0}$</td>
</tr>
<tr>
<td>7</td>
<td>16641</td>
<td>$9.52 \cdot 10^{0}$</td>
</tr>
<tr>
<td>8</td>
<td>66049</td>
<td>$5.97 \cdot 10^{1}$</td>
</tr>
<tr>
<td>9</td>
<td>263169</td>
<td>$4.72 \cdot 10^{2}$</td>
</tr>
<tr>
<td>10</td>
<td>1050625</td>
<td>$6.89 \cdot 10^{3}$</td>
</tr>
<tr>
<td>11</td>
<td>4198401</td>
<td>$8.08 \cdot 10^{4}$</td>
</tr>
</tbody>
</table>

(Finest level: **8.813.287.577.601 unknowns**, taking symmetry into account.)

Test system: Intel® Xeon® 5160 @ 3.00 GHz; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS (*romulus*), stopping criterion tolerances: 10^{-10}
Feedback Iteration

Scaling results

test system: Intel® Xeon® 5160 @ 3.00 GHz; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS (romulus)

stopping criterion tolerances: 10^{-10}
Solving AREs for Linearized Navier-Stokes Eqns.

\[0 = M + (A + \omega M)^T X + X (A + \omega M) - MXBB^T XM \]

Problems with Newton-Kleinman

1. Discretization of Helmholtz-projected linearized Navier-Stokes equations would need divergence-free finite elements.

 Here, we want to use standard discretization (Taylor-Hood elements available in flow solver NAVIER).

 Explicit projection of ansatz functions possible using application of Helmholtz projection, but too expensive in general.

2. Each step of Newton-Kleinman iteration: solve

 \[
 A_j^T Z_{j+1} Z_{j+1}^T M + M Z_{j+1} Z_{j+1}^T A_j = - M - K_j^T K_j
 \]

 \(n_v := \text{rank} (M) = \text{dim of ansatz space for velocities.} \)

 \(\rightsquigarrow \) need to solve \(n_v + m \) linear systems of equations in each step of Newton-ADI iteration!

3. Linearized system (i.e., \(A + \omega M \)) is unstable in general.

 But to start Newton iteration, a stabilizing initial guess is needed!
Solving AREs for Linearized Navier-Stokes Eqns.

0 = M + (A + ωM)^T X + X(A + ωM) − MXBB^T XM

Problems with Newton-Kleinman

1. Discretization of Helmholtz-projected linearized Navier-Stokes equations would need divergence-free finite elements. Here, we want to use standard discretization (Taylor-Hood elements available in flow solver NAVIER).

 Explicit projection of ansatz functions possible using application of Helmholtz projection, but too expensive in general.

2. Each step of Newton-Kleinman iteration: solve

 \[A_j^T Z_{j+1} Z_{j+1}^T M + MZ_{j+1} Z_{j+1}^T A_j = -M - K_j^T K_j \]

 \[n_v := \text{rank}(M) = \text{dim of ansatz space for velocities}. \]

 \[\Rightarrow \text{need to solve } n_v + m \text{ linear systems of equations in each step of Newton-ADI iteration!} \]

3. Linearized system (i.e., A + ωM) is unstable in general.

 But to start Newton iteration, a stabilizing initial guess is needed!
Solving AREs for Linearized Navier-Stokes Eqns.

\[0 = M + (A + \omega M)^T X + X(A + \omega M) - MXBB^T XM \]

Problems with Newton-Kleinman

1. Discretization of Helmholtz-projected linearized Navier-Stokes equations would need divergence-free finite elements.

 Here, we want to use standard discretization
 (Taylor-Hood elements available in flow solver \textsc{Navier}).

 Explicit projection of ansatz functions possible using application of Helmholtz projection, but too expensive in general.

2. Each step of Newton-Kleinman iteration: solve

 \[A_j^T Z_{j+1} Z_{j+1}^T M + MZ_{j+1} Z_{j+1}^T A_j = -M - K_j^T K_j \]

 \(n_v := \text{rank}(M) = \text{dim of ansatz space for velocities.} \)

 \(\leadsto \) need to solve \(n_v + m \) linear systems of equations in each step of Newton-ADI iteration!

3. Linearized system (i.e., \(A + \omega M \)) is unstable in general.

 But to start Newton iteration, a stabilizing initial guess is needed!
Solving AREs for Linearized Navier-Stokes Eqns.

\[0 = M + (A + \omega M)^T X + X(A + \omega M) - MXBB^T XM \]

Problems with Newton-Kleinman

1. Discretization of Helmholtz-projected linearized Navier-Stokes equations would need divergence-free finite elements.
 Here, we want to use standard discretization (Taylor-Hood elements available in flow solver \texttt{Navier}).
 Explicit projection of ansatz functions possible using application of Helmholtz projection, but too expensive in general.

2. Each step of Newton-Kleinman iteration: solve

\[A_j Z_{j+1} + Z_{j+1} M + M Z_{j+1} Z_{j+1}^T M = -M K_j^T K_j \]

3. Linearized system (i.e., \(A + \omega M \)) is unstable in general.
 But to start Newton iteration, a stabilizing initial guess is needed!

References

[Hein '10] \textit{MPC/LQG-Based Optimal Control of Nonlinear Parabolic PDEs}; PhD thesis Chemnitz UT.
Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 1. Problem/no need for divergence free FE

- Incompressible Navier-Stokes-Equations

\[
\frac{\partial \mathbf{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla p = 0 \quad + \text{B.C.} \quad \nabla \cdot \mathbf{v} = 0
\]

(NSE)

- Spatial FE discretization

\[
M \dot{\mathbf{v}}(t) = K(\mathbf{v})\mathbf{v}(t) - Gp(t) + B_1 \mathbf{u}(t) \\
0 = G^T \mathbf{v}(t)
\]

(dNSE)

- Linearization and change of notation

\[
E_{11} \dot{\mathbf{v}}(t) = A_{11} \mathbf{v}(t) + A_{12} p(t) + B_1 \mathbf{u}(t) \\
0 = A_{12}^T \mathbf{v}(t)
\]

(NSDAE)
Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 1. Problem/no need for divergence free FE

- Incompressible Navier-Stokes-Equations

\[
\frac{\partial \mathbf{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla p = 0 \quad + \text{B.C.}
\]
\[
\nabla \cdot \mathbf{v} = 0
\]

\(\text{(NSE)}\)

- Spatial FE discretization

\[
M \dot{\mathbf{v}}(t) = K(\mathbf{v}) \mathbf{v}(t) - Gp(t) + B_1 \mathbf{u}(t)
\]
\[
0 = G^T \mathbf{v}(t)
\]

\(\text{(dNSE)}\)

- Linearization and change of notation

\[
E_{11} \dot{\mathbf{v}}(t) = A_{11} \mathbf{v}(t) + A_{12} p(t) + B_1 \mathbf{u}(t)
\]
\[
0 = A_{12}^T \mathbf{v}(t)
\]

\(\text{(NSDAE)}\)
Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 1. Problem/no need for divergence free FE

- incompressible Navier-Stokes-Equations

\[
\frac{\partial \mathbf{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla \mathbf{p} = 0 \quad + \text{B.C.} \quad (\text{NSE}) \\
\n\n\n\n
- Spatial FE discretization

\[
M \dot{\mathbf{v}}(t) = K(\mathbf{v}) \mathbf{v}(t) - G \mathbf{p}(t) + B_1 \mathbf{u}(t) \\
0 = G^T \mathbf{v}(t) \quad (\text{dNSE})
\]

- Linearization and change of notation

\[
E_{11} \dot{\mathbf{v}}(t) = A_{11} \mathbf{v}(t) + A_{12} \mathbf{p}(t) + B_1 \mathbf{u}(t) \\
0 = A_{12}^T \mathbf{v}(t) \quad (\text{NSDAE})
\]
Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 1. Problem/no need for divergence free FE

- Incompressible Navier-Stokes-Equations

\[
\begin{align*}
\frac{\partial \mathbf{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla p &= 0 \quad + \text{B.C.} \\
\nabla \cdot \mathbf{v} &= 0
\end{align*}
\] (NSE)

- Spatial FE discretization

\[
\begin{align*}
M \dot{\mathbf{v}}(t) &= K(\nu)\mathbf{v}(t) - Gp(t) + B_1 \mathbf{u}(t) \\
0 &= G^T \mathbf{v}(t)
\end{align*}
\] (dNSE)

- Linearization and change of notation

\[
\begin{align*}
E_{11} \dot{\mathbf{v}}(t) &= A_{11} \mathbf{v}(t) + A_{12} p(t) + B_1 \mathbf{u}(t) \\
0 &= A_{12}^T \mathbf{v}(t)
\end{align*}
\] (NSDAE)
Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 1. Problem/no need for divergence free FE

\[
E_{11} \dot{v}(t) = A_{11} v(t) + A_{12} p(t) + B_1 u(t) \\
0 = A_{12}^T v(t)
\]
Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 1. Problem/no need for divergence free FE

\begin{align*}
E_{11} \dot{v}(t) &= A_{11} v(t) + A_{12} p(t) + B_1 u(t) \\
0 &= A_{12}^T v(t)
\end{align*}

Multiplication of line one from the left by $A_{12}^T E_{11}^{-1}$ together with

\begin{align*}
0 &= A_{12}^T v(t) \Rightarrow 0 = A_{12}^T \dot{v}(t)
\end{align*}

reveals the hidden manifold

\begin{align*}
0 &= A_{12}^T E_{11}^{-1} A_{11} v(t) + A_{12}^T E_{11}^{-1} A_{12} p(t) + A_{12}^T E_{11}^{-1} B_1 u(t),
\end{align*}
Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 1. Problem/no need for divergence free FE

\[
E_{11} \dot{v}(t) = A_{11} v(t) + A_{12} p(t) + B_1 u(t) \\
0 = A_{12}^T v(t)
\]

Multiplication of line one from the left by \(A_{12}^T E_{11}^{-1} \) together with

\[
0 = A_{12}^T v(t) \Rightarrow 0 = A_{12}^T \dot{v}(t)
\]

reveals the

hidden manifold

\[
0 = A_{12}^T E_{11}^{-1} A_{11} v(t) + A_{12}^T E_{11}^{-1} A_{12} p(t) + A_{12}^T E_{11}^{-1} B_1 u(t),
\]

which implies

\[
p(t) = - \left(A_{12}^T E_{11}^{-1} A_{12} \right)^{-1} A_{12}^T E_{11}^{-1} A_{11} v(t) - \left(A_{12}^T E_{11}^{-1} A_{12} \right)^{-1} A_{12}^T E_{11}^{-1} B_1 u(t).
\]
Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 1. Problem/no need for divergence free FE

Inserting p we find

$$E_{11} \dot{v}(t) = \left(I - A_{12} \left(A_{12}^T E_{11}^{-1} A_{12} \right)^{-1} A_{12}^T E_{11}^{-1} \right) A_{11} v(t)$$

$$+ \left(I - A_{12} \left(A_{12}^T E_{11}^{-1} A_{12} \right)^{-1} A_{12}^T E_{11}^{-1} \right) B_1 u(t)$$

Definition

$\Pi := I - A_{12} \left(A_{12}^T E_{11}^{-1} A_{12} \right)^{-1} A_{12}^T E_{11}^{-1}$

[Heinkenschloss/Sorensen/Sun ’08]
Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 1. Problem/no need for divergence free FE

Inserting p we find

$$E_{11} \dot{\nu}(t) = \left(I - A_{12} \left(A_{12}^T E_{11}^{-1} A_{12} \right)^{-1} A_{12}^T E_{11}^{-1} \right) A_{11} \nu(t)$$

$$+ \left(I - A_{12} \left(A_{12}^T E_{11}^{-1} A_{12} \right)^{-1} A_{12}^T E_{11}^{-1} \right) B_1 u(t)$$

Definition

$\Pi := I - A_{12} \left(A_{12}^T E_{11}^{-1} A_{12} \right)^{-1} A_{12}^T E_{11}^{-1}$
Solving AREs for Linearized Navier-Stokes Eqns.

Derivation of the Projected State Space System and Matrix Equations

Definition

\[
\Pi := I - A_{12} \left(A_{12}^T E_{11}^{-1} A_{12} \right)^{-1} A_{12}^T E_{11}^{-1}
\]

Properties

- \(\Pi^2 = \Pi \)
- \(\Pi E_{11} = E_{11} \Pi^T \)
- \(\text{null}(\Pi) = \text{range}(A_{12}) \)
- \(\text{range}(\Pi) = \text{null}(A_{12}^T E_{11}^{-1}) \)

This implies

Lemma 1

- \(\Pi \) is an oblique projector.
- \(A_{12}^T z = 0 \iff \Pi^T z = z \)
- \(\Rightarrow \Pi^T \nu(t) = \nu(t) \)
Solving AREs for Linearized Navier-Stokes Eqns.
Derivation of the Projected State Space System and Matrix Equations

Definition

\[\Pi := I - A_{12} \left(A_{12}^T E_{11}^{-1} A_{12} \right)^{-1} A_{12}^T E_{11}^{-1} \]

Properties

- \(\Pi^2 = \Pi \)
- \(\Pi E_{11} = E_{11} \Pi^T \)
- \(\text{null}(\Pi) = \text{range}(A_{12}) \)
- \(\text{range}(\Pi) = \text{null}(A_{12}^T E_{11}^{-1}) \)

This implies

Lemma 1

- \(\Pi \) is an oblique projector.
- \(A_{12}^T z = 0 \iff \Pi^T z = z \)
- \(\Rightarrow \Pi^T \nu(t) = \nu(t) \)
Solving AREs for Linearized Navier-Stokes Eqns.

Derivation of the Projected State Space System and Matrix Equations

Thus (NSDAE) is equivalent to

Projected state space system

\[
\Pi E_{11} \Pi^T \frac{d}{dt} v(t) = \Pi A_{11} \Pi^T v(t) + \Pi B_1 u(t).
\]

Leads to

Projected Riccati equation

\[
\Pi \Pi^T + \Pi A_{11}^T \Pi^T \Pi E_{11} \Pi^T + \Pi E_{11}^T \Pi^T \Pi A_{11} \Pi^T \\
- \Pi E_{11}^T \Pi^T \Pi B_1 B_1^T \Pi^T \Pi E_{11} \Pi^T = 0 \\
\Pi^T \Pi \Pi = \Pi.
\]

If necessary, \(p \) can be determined from

\[
p(t) = - (A_{12}^T E_{11}^{-1} A_{12})^{-1} A_{12}^T E_{11}^{-1} A_{11} v(t) - (A_{12}^T E_{11}^{-1} A_{12})^{-1} A_{12}^T E_{11}^{-1} B_1 u(t).
\]
Solving AREs for Linearized Navier-Stokes Eqns.

Derivation of the Projected State Space System and Matrix Equations

Thus (NSDAE) is equivalent to

Projected state space system

\[\Pi E_{11} \Pi^T \frac{d}{dt} \nu(t) = \Pi A_{11} \Pi^T \nu(t) + \Pi B_1 u(t). \]

Leads to

Projected Riccati equation

\[
\Pi \Pi^T + \Pi A_{11}^T \Pi^T \chi \Pi E_{11} \Pi^T + \Pi E_{11}^T \Pi^T \chi \Pi A_{11} \Pi^T \\
- \Pi E_{11}^T \Pi^T \chi \Pi B_1 B_1^T \Pi^T \chi \Pi E_{11} \Pi^T = 0 \\
\Pi^T \chi \Pi = \chi.
\]

If necessary \(p \) can be determined from

\[p(t) = - \left(A_{12}^T E_{11}^{-1} A_{12} \right)^{-1} A_{12}^T E_{11}^{-1} A_{11} \nu(t) - \left(A_{12}^T E_{11}^{-1} A_{12} \right)^{-1} A_{12}^T E_{11}^{-1} B_1 u(t). \]
Solving AREs for Linearized Navier-Stokes Eqns.

Solving the Projected Matrix Equations

Apply factored-Newton-ADI

Central question

How do we solve systems of equations

\[Z = \Pi^T Z, \quad \Pi (E_{11} + p\ell A_\ell) \Pi^T Z = \Pi \tilde{G} \]

in the (inner) ADI steps avoiding the computation of \(\Pi \)?

For \(A_\ell = A_{11} \), i.e., \(K_\ell = 0 \):

Lemma

\[
\begin{align*}
\Pi (E_{11} + p\ell A_{11}) \Pi^T Z &= \Pi \tilde{G} \\
\iff \\
\begin{bmatrix} E_{11} + p\ell & A_{12} \\ A_{12}^T & 0 \end{bmatrix} \begin{bmatrix} Z \\ \Lambda \end{bmatrix} &= \begin{bmatrix} \tilde{G} \\ 0 \end{bmatrix}
\end{align*}
\]

[Heinkenschloss/Sorensen/Sun '08]
Solving AREs for Linearized Navier-Stokes Eqns.

Solving the Projected Matrix Equations

Apply factored-Newton-ADI

Central question

How do we solve systems of equations

\[Z = \Pi^T Z, \quad \Pi (E_{11} + p_\ell A_\ell) \Pi^T Z = \Pi \tilde{G} \]

in the (inner) ADI steps avoiding the computation of \(\Pi \)?

For \(A_\ell = A_{11} \), i.e., \(K_\ell = 0 \):

Lemma

\[
\Pi (E_{11} + p_\ell A_{11}) \Pi^T Z = \Pi \tilde{G} \iff \begin{bmatrix} E_{11} + p_\ell A_{11} & A_{12} \\ A_{12}^T & 0 \end{bmatrix} \begin{bmatrix} Z \\ \Lambda \end{bmatrix} = \begin{bmatrix} \tilde{G} \\ 0 \end{bmatrix}
\]

[Heinkenschloss/Sorensen/Sun '08]
Solving AREs for Linearized Navier-Stokes Eqns.

Solving the Projected Matrix Equations

Apply factored-Newton-ADI

Central question

How do we solve systems of equations

\[A_\ell := A_{11} - BK_\ell \]

\[Z = \Pi^T \Pi \]

\[\Pi (E_{11} + p_\ell A_\ell) \Pi^T Z = \Pi \tilde{G} \]

in the (inner) ADI steps avoiding the computation of \(\Pi \)?

- exploit “sparse + low rank” structure of \(A_\ell \),
- precondition our saddle point problem.

For \(A_\ell = A_{11} \), i.e., \(K_\ell = 0 \):

Lemma

\[\Pi (E_{11} + p_\ell A_{11}) \Pi^T Z = \Pi \tilde{G} \]

\[\Leftrightarrow \begin{bmatrix} E_{11} + p_\ell A_{11} & A_{12} \\ A_{12}^T & 0 \end{bmatrix} \begin{bmatrix} Z \\ \Lambda \end{bmatrix} = \begin{bmatrix} \tilde{G} \\ 0 \end{bmatrix} \]

[Heinkenschloss/Sorensen/Sun ’08]

(joint work with A. Wathen/M. Stoll)
Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 2. Problem: remove W from r.h.s. of Lyapunov eqns. in Newton-ADI

One step of Newton-Kleinman iteration for ARE:

$$A_j^T(X_j + N_j) + X_{j+1}A_j = -W - (X_jB)B^TX_j$$

for $j = 1, 2, \ldots$

$$= X_{j+1}$$

$$= K_j^T = K_j$$

Subtract two consecutive equations \implies

$$A_j^TN_j + N_jA_j = N_{j-1}^TBB^TN_{j-1}$$

for $j = 1, 2, \ldots$

See [Banks/Ito '91, B./Hernández/Pastor '03, Morris/Navasca '05] for details and applications of this variant.

But: need $B^TN_0 = K_1 - K_0!$

Assuming K_0 is known, need to compute K_1.
Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 2. Problem: remove W from r.h.s. of Lyapunov eqns. in Newton-ADI

Solution idea:

$$K_1 = B^T X_1$$

$$= B^T \int_0^\infty e^{(A-BK_0)T} t (W + K_0^T K_0) e^{(A-BK_0)T} dt$$

$$= \int_0^\infty g(t) dt \approx \sum_{\ell=0}^{N} \gamma_\ell g(t_\ell),$$

where $g(t) = \left(e^{(A-BK_0)t} B \right)^T (W + K_0^T K_0) e^{(A-BK_0)t}.$

[Borggaard/Stoyanov '08]:
evaluate $g(t_\ell)$ using ODE solver applied to $\dot{x} = (A - BK_0)x + \text{adjoint eqn}.$
Better solution idea:
(related to frequency domain POD [Willcox/Peraire ’02])

\[
K_1 = B^T X_1
\]

\[
= B^T \cdot \frac{1}{2\pi} \int_{-\infty}^{\infty} (j\omega I_n - A_0)^{-H} (W + K_0^T K_0) (j\omega I_n - A_0)^{-1} d\omega
\]

\[
= \int_{-\infty}^{\infty} f(\omega) d\omega \approx \sum_{\ell=0}^{N} \gamma_\ell f(\omega_\ell),
\]

where \(f(\omega) = \left(-((j\omega I_n + A_0)^{-1} B)^T (W + K_0^T K_0) (j\omega I_n - A_0)^{-1} \right. \)

Evaluation of \(f(\omega_\ell) \) requires

- 1 sparse LU decomposition (complex!),
- 2m forward/backward solves,
- m sparse and 2m low-rank matrix-vector products.

Use adaptive quadrature with high accuracy, e.g. Gauß-Kronrod (quadgk in MATLAB).
Further Applications

Navier-Stokes Coupled with (Passive) Transport of (Reactive) Species

Goal: stabilize concentration at certain level

Model equations:

\[
\partial_t \mathbf{v} - \frac{1}{Re} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla p = f
\]

\[
\text{div} \mathbf{v} = 0
\]

\[
\partial_t c + \mathbf{v} \cdot \nabla c - \frac{1}{Re \cdot Sc} \Delta c = 0
\]

with boundary conditions:

\[
\mathbf{v} = \mathbf{v}_0 \quad c = c_0 = \text{const} \quad \text{on } \Gamma_{in}
\]

\[
\mathbf{v} = 0 \quad \partial_t c = 0 \quad \text{on } \Gamma_{wall}
\]

\[
\mathbf{v} = 0 \quad c = 0 \quad \text{on } \Gamma_r,
\]
Further Applications

Navier-Stokes Coupled with (Passive) Transport of (Reactive) Species

Goal: stabilize concentration at certain level

Model equations:

\[\partial_t \mathbf{v} - \frac{1}{Re} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla p = f \]
\[\text{div} \mathbf{v} = 0 \]
\[\partial_t c + \mathbf{v} \cdot \nabla c - \frac{1}{Re \cdot Sc} \Delta c = 0 \]

Domain:
Further Applications

Results for $Re = 10$, $Sc = 10$

no control

movie

piecewise constant feedback

Computations by Heiko Weichelt
Further Applications

Results for $Re = 10, Sc = 10$
Conclusions and Future Work

- Progress in solving AREs in the last decade now allows application of Riccati feedback to realistic PDE control problems.
- Implementation for Navier-Stokes and multi-field flow problems in progress, requires many details not encountered for linear convection-diffusion or beam equations.
- For 3D problems, need dedicated preconditioned iterative "saddle point" solver.

 "(1,1)"-term is nonsymmetric sparse matrix + low-rank perturbation \rightsquigarrow joint work with A. Wathen, M. Stoll.
- Model reduction based on LQG balanced truncation for flow problems in $L_2(0, \infty; V_n(\Omega))$ can be based on derived Riccati solver.
References

