Control and Optimization with Differential-Algebraic Constraints Banff, October 24–29, 2010

Numerical Solution of Descriptor Riccati Equations for Linearized Navier-Stokes Control Problems

Eberhard Bänsch¹ Peter Benner^{2,3} Jens Saak³

¹Institut f
ür Angewandte Mathematik, Lehrstuhl 3 Friedrich-Alexander Universit
ät Erlangen-N
ürnberg, Germany

²Fakultät für Mathematik, Professur Mathematik in Industrie und Technik Technische Universität Chemnitz, Germany

³Computational Methods in Systems and Control Theory Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Germany

Friedrich-Alexander-Universität Erlangen-Nürnberg

1/42

Control and Optimization with Differential-Algebraic Constraints Banff, October 24–29, 2010

Linear Feedback Stabilization of Flow Problems

Eberhard Bänsch¹ Peter Benner^{2,3} Jens Saak³

¹Institut f
ür Angewandte Mathematik, Lehrstuhl 3 Friedrich-Alexander Universit
ät Erlangen-N
ürnberg, Germany

²Fakultät für Mathematik, Professur Mathematik in Industrie und Technik Technische Universität Chemnitz, Germany

³Computational Methods in Systems and Control Theory Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Germany

Friedrich-Alexander-Universität Erlangen-Nürnberg

1/42

Overview

- 2 Solving Large-Scale AREs
- Solving AREs for Linearized Navier-Stokes Eqns.
- 4 Further Applications
- 5 Conclusions and Future Work

Optimal control-based stabilization for Navier-Stokes equations

• Stabilization to steady-state solution w of flows (with velocity field v and pressure χ), described by incompressible Navier-Stokes equations

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} - \frac{1}{Re} \Delta \mathbf{v} + \nabla \chi = f$$
 (1a)

$$\operatorname{div} v = 0 \tag{1b}$$

on $Q_{\infty} := \Omega \times (0, \infty)$, $\Omega \subseteq \mathbb{R}^d$, d = 2, 3, with smooth boundary $\Gamma := \partial \Omega$, and boundary and initial conditions

$$egin{array}{rcl} v & = & g & {
m on} \ \Sigma_\infty := \Gamma imes (0,\infty), \\ v(0) & = & w+z(0) & (w \ {
m given \ velocity \ field). \end{array}$$

- Existence of stabilizing linear state feedback control proved in 2D [FERNÁNDEZ-CARA ET AL 2004] and 3D [FURSIKOV 2004].
- Construction of stabilizing feedback control based on associated linear-quadratic optimal control problem:
 - for distributed control, see [Barbu 2003, Barbu/Sritharan 1998, Barbu/Triggiani 2004];
 - for boundary control, see [BARBU/LASIECKA/TRIGGIANI 2006/07] (tangential) and [RAYMOND 2005–07, BAHDRA 2009] (normal).

References

Introduction

Optimal control-based stabilization for Navier-Stokes equations

۱

• Stabilization to steady-state solution w of flows (with velocity field v and pressure χ), described by incompressible Navier-Stokes equations

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} - \frac{1}{Re} \Delta \mathbf{v} + \nabla \chi = f$$
 (1a)

$$\operatorname{div} v = 0 \tag{1b}$$

on $Q_{\infty} := \Omega \times (0, \infty)$, $\Omega \subseteq \mathbb{R}^d$, d = 2, 3, with smooth boundary $\Gamma := \partial \Omega$, and boundary and initial conditions

$$egin{array}{rcl} v & = & g & ext{on } \Sigma_\infty := \Gamma imes (0,\infty), \ v(0) & = & w+z(0) & (w ext{ given velocity field}). \end{array}$$

- Existence of stabilizing linear state feedback control proved in 2D [FERNÁNDEZ-CARA ET AL 2004] and 3D [FURSIKOV 2004].
- Construction of stabilizing feedback control based on associated linear-quadratic optimal control problem:
 - for distributed control, see [Barbu 2003, Barbu/Sritharan 1998, Barbu/Triggiani 2004];
 - for boundary control, see [BARBU/LASIECKA/TRIGGIANI 2006/07] (tangential) and [RAYMOND 2005–07, BAHDRA 2009] (normal).

olving Large-Scale AREs

Solving AREs for lin. NS

Further Applications

Conclusions

References

Optimal control-based stabilization for NSEs Analytical solution [RAYMOND''05-'07]

Assume w solves the stationary Navier-Stokes equations

$$w \cdot \nabla w - \frac{1}{Re} \Delta w + \nabla \chi_s = f, \quad \text{div } w = 0,$$
 (2)

with Dirichlet boundary condition w = g on Γ , w possibly unstable.

If we can determine a Dirichlet boundary control u so that the corresponding controlled system for z := v - w,

$$\partial_t z + (z \cdot \nabla)w + (w \cdot \nabla)z + (z \cdot \nabla)z - \frac{1}{Re}\Delta z + \nabla p = 0 \quad \text{in } Q_{\infty},$$

$$\operatorname{div} z = 0 \quad \operatorname{in } Q_{\infty},$$

$$z = bu \quad \operatorname{in } \Sigma_{\infty},$$

$$z(0) = z_0 \quad \operatorname{in } \Omega,$$

is stable for "small" initial values $z_0 \in X(\Omega) \subset V^0_n(\Omega)$, where

$$V_n^0(\Omega) := L_2(\Omega) \cap \{ \operatorname{div} z = 0 \} \cap \{ z \cdot n = 0 \text{ on } \Gamma \},$$

then \exists constants $c, \omega > 0$ so that $||z(t)||_{X(\Omega)} \leq ce^{-\omega t}$.

 $\begin{cases} Solution to instationary Navier-Stokes equations with <math>v = w + z$, $\chi = \chi_s + p$, and $v(0) = w + z_0$ in Ω is controlled to w.

Max Planck Institute Magdeburg

olving Large-Scale AREs

Solving AREs for lin. NS

Further Applications

Conclusions

References

Optimal control-based stabilization for NSEs Analytical solution [RAYMOND''05-'07]

Assume w solves the stationary Navier-Stokes equations

$$w \cdot \nabla w - \frac{1}{Re} \Delta w + \nabla \chi_s = f, \quad \text{div } w = 0,$$
 (2)

with Dirichlet boundary condition w = g on Γ , w possibly unstable. If we can determine a Dirichlet boundary control u so that the corresponding controlled system for z := v - w,

$$\partial_t z + (z \cdot \nabla)w + (w \cdot \nabla)z + (z \cdot \nabla)z - \frac{1}{Re}\Delta z + \nabla p = 0 \quad \text{in } Q_{\infty},$$

$$\operatorname{div} z = 0 \quad \operatorname{in } Q_{\infty},$$

$$z = bu \quad \operatorname{in } \Sigma_{\infty},$$

$$z(0) = z_0 \quad \operatorname{in } \Omega,$$

is stable for "small" initial values $z_0 \in X(\Omega) \subset V^0_n(\Omega)$, where

$$V^0_n(\Omega) := L_2(\Omega) \cap \{\operatorname{div} z = 0\} \cap \{z \cdot n = 0 \text{ on } \Gamma\},$$

then \exists constants $c, \omega > 0$ so that $||z(t)||_{X(\Omega)} \leq ce^{-\omega t}$.

 $\implies \begin{cases} \text{Solution to instationary Navier-Stokes equations with } v = w + z, \\ \chi = \chi_s + p, \text{ and } v(0) = w + z_0 \text{ in } \Omega \text{ is controlled to } w. \end{cases}$

olving Large-Scale AREs

Solving AREs for lin. NS

Further Applications

Conclusions

References

Optimal control-based stabilization for NSEs Analytical solution [RAYMOND''05-'07]

Assume w solves the stationary Navier-Stokes equations

$$w \cdot \nabla w - \frac{1}{Re} \Delta w + \nabla \chi_s = f, \quad \text{div } w = 0,$$
 (2)

with Dirichlet boundary condition w = g on Γ , w possibly unstable. If we can determine a Dirichlet boundary control u so that the corresponding controlled system for z := v - w,

$$\partial_t z + (z \cdot \nabla)w + (w \cdot \nabla)z + (z \cdot \nabla)z - \frac{1}{Re}\Delta z + \nabla p = 0 \quad \text{in } Q_{\infty},$$

$$\operatorname{div} z = 0 \quad \operatorname{in } Q_{\infty},$$

$$z = bu \quad \operatorname{in } \Sigma_{\infty},$$

$$z(0) = z_0 \quad \operatorname{in } \Omega,$$

is stable for "small" initial values $z_0 \in X(\Omega) \subset V^0_n(\Omega)$, where

$$V^0_n(\Omega) := L_2(\Omega) \cap \{\operatorname{div} z = 0\} \cap \{z \cdot n = 0 \text{ on } \Gamma\},$$

then \exists constants $c, \omega > 0$ so that $||z(t)||_{X(\Omega)} \leq ce^{-\omega t}$.

 $\implies \begin{cases} \text{Solution to instationary Navier-Stokes equations with } v = w + z, \\ \chi = \chi_s + p, \text{ and } v(0) = w + z_0 \text{ in } \Omega \text{ is controlled to } w. \end{cases}$

Max Planck Institute Magdeburg

olving Large-Scale AREs

Solving AREs for lin. N

Further Applications

Conclusions

References

Optimal control-based stabilization for NSEs Analytical solution [RAYMOND⁴'05–'07]

Linearized Navier-Stokes control system:

$$\partial_t z + (z \cdot \nabla)w + (w \cdot \nabla)z - \frac{1}{Re}\Delta z - \omega z + \nabla p = 0$$
 in Q_{∞} (3a)

 $\operatorname{div} z = 0 \quad \text{in} \ Q_{\infty} \qquad (3b)$

$$z = bu$$
 in Σ_{∞} (3c)

$$z(0) = z_0 \text{ in } \Omega, \qquad (3d)$$

 ωz with $\omega > 0$ de-stabilizes the system further, needed to guarantee exponential stabilization, ω controls decay rate!

Cost functional (with P = Helmholtz projector)

$$J(z,u) = \frac{1}{2} \int_0^\infty \langle Pz, Pz \rangle_{L_2(\Omega)} + \rho u(t)^2 dt,$$
(4)

the linear-quadratic optimal control problem associated to (3) becomes

inf
$$\{J(z, u) \mid (z, u) \text{ satisfies } (3), u \in L_2(0, \infty)\}$$
. (5)

olving Large-Scale AREs

Solving AREs for lin.

Further Applications

Conclusions

References

Optimal control-based stabilization for NSEs Analytical solution [RAYMOND⁴'05–'07]

Linearized Navier-Stokes control system:

$$\partial_t z + (z \cdot \nabla)w + (w \cdot \nabla)z - \frac{1}{Re}\Delta z - \omega z + \nabla p = 0$$
 in Q_{∞} (3a)

 $\operatorname{div} z = 0 \quad \text{in} \ Q_{\infty} \qquad (3b)$

$$z = bu$$
 in Σ_{∞} (3c)

$$z(0) = z_0 \text{ in } \Omega, \qquad (3d)$$

 ωz with $\omega > 0$ de-stabilizes the system further, needed to guarantee exponential stabilization, ω controls decay rate!

Cost functional (with P = Helmholtz projector)

$$J(z,u) = \frac{1}{2} \int_0^\infty \langle Pz, Pz \rangle_{L_2(\Omega)} + \rho u(t)^2 dt, \qquad (4)$$

the linear-quadratic optimal control problem associated to (3) becomes

inf
$$\{J(z, u) \mid (z, u) \text{ satisfies (3)}, u \in L_2(0, \infty)\}$$
. (5)

Max Planck Institute Magdeburg

5/42

lving Large-Scale AREs

Solving AREs for lin. NS

Further Applications

Conclusions

References

Optimal control-based stabilization for NSEs Analytical solution [RAYMOND''05-'07]

Proposition [Raymond '05, Bahdra '09]

The solution to the instationary Navier-Stokes equations with perturbed initial data is exponentially controlled to the steady-state solution w by the feedback law

 $u=-\rho^{-1}B^*\Pi z_H,$

where

- $z_H := Pz$, with $P : L_2(\Omega) \mapsto V_n^0(\Omega)$ being the Helmholtz projector ($\rightsquigarrow \operatorname{div} z_H \equiv 0$);
- $\Pi = \Pi^* \in \mathcal{L}(V_n^0(\Omega))$ is the unique nonnegative semidefinite weak solution of the operator Riccati equation

 $0 = I + (A + \omega I)^* \Pi + \Pi (A + \omega I) - \Pi (B_{\tau} B_{\tau}^* + \rho^{-1} B_n B_n^*) \Pi,$

A is the linearized Navier-Stokes operator restricted to V_n^0 ; B_{τ} and B_n correspond to the projection of the control action in the tangential and normal directions.

lving Large-Scale AREs

Solving AREs for lin. NS

Further Applications

Conclusions

References

Optimal control-based stabilization for NSEs Analytical solution [RAYMOND''05-'07]

Proposition [RAYMOND '05, BAHDRA '09]

The solution to the instationary Navier-Stokes equations with perturbed initial data is exponentially controlled to the steady-state solution w by the feedback law

 $u=-\rho^{-1}B^*\Pi z_H,$

where

- $z_H := Pz$, with $P : L_2(\Omega) \mapsto V_n^0(\Omega)$ being the Helmholtz projector ($\rightsquigarrow \operatorname{div} z_H \equiv 0$);

- $\Pi = \Pi^* \in \mathcal{L}(V_n^0(\Omega))$ is the unique nonnegative semidefinite weak solution of the operator Riccati equation

 $0 = I + (A + \omega I)^* \Pi + \Pi (A + \omega I) - \Pi (B_{\tau} B_{\tau}^* + \rho^{-1} B_n B_n^*) \Pi,$

A is the linearized Navier-Stokes operator restricted to V_n^0 ; B_{τ} and B_n correspond to the projection of the control action in the tangential and normal directions.

lving Large-Scale AREs

Solving AREs for lin. NS

Further Applications

Conclusions

References

Optimal control-based stabilization for NSEs Analytical solution [RAYMOND''05-'07]

Proposition [Raymond '05, Bahdra '09]

The solution to the instationary Navier-Stokes equations with perturbed initial data is exponentially controlled to the steady-state solution w by the feedback law

 $u=-\rho^{-1}B^*\Pi z_H,$

where

- $z_H := Pz$, with $P : L_2(\Omega) \mapsto V_n^0(\Omega)$ being the Helmholtz projector ($\rightsquigarrow \operatorname{div} z_H \equiv 0$);
- $\Pi = \Pi^* \in \mathcal{L}(V_n^0(\Omega))$ is the unique nonnegative semidefinite weak solution of the operator Riccati equation

 $0 = I + (A + \omega I)^* \Pi + \Pi (A + \omega I) - \Pi (B_\tau B_\tau^* + \rho^{-1} B_n B_n^*) \Pi,$

A is the linearized Navier-Stokes operator restricted to V_n^0 ; B_{τ} and B_n correspond to the projection of the control action in the tangential and normal directions.

lving Large-Scale AREs

Solving AREs for lin. NS

Further Applications

Conclusions

References

Optimal control-based stabilization for NSEs Analytical solution [RAYMOND''05-'07]

Proposition [Raymond '05, Bahdra '09]

The solution to the instationary Navier-Stokes equations with perturbed initial data is exponentially controlled to the steady-state solution w by the feedback law

 $u=-\rho^{-1}B^*\Pi z_H,$

where

- $z_H := Pz$, with $P : L_2(\Omega) \mapsto V_n^0(\Omega)$ being the Helmholtz projector ($\rightsquigarrow \operatorname{div} z_H \equiv 0$);
- $\Pi = \Pi^* \in \mathcal{L}(V_n^0(\Omega))$ is the unique nonnegative semidefinite weak solution of the operator Riccati equation

 $0 = I + (A + \omega I)^* \Pi + \Pi (A + \omega I) - \Pi (B_\tau B_\tau^* + \rho^{-1} B_n B_n^*) \Pi,$

A is the linearized Navier-Stokes operator restricted to V_n^0 ; B_{τ} and B_n correspond to the projection of the control action in the tangential and normal directions.

References

Long-Term Plan

Apply optimal control-based feedback stabilization to (multi-)field problems with increasing complexity:

- **Proof of concept:** Navier-Stokes with **normal** boundary control for model problem (von Kármán vortex shedding).
- Navier-Stokes coupled with (passive) transport of (reactive) species.
- Phase transition liquid/solid with convection.
- Stabilization of a flow with a free capillary surface.
- Control for electrically conducting fluids in presence of outer magnetic fields (MHD).

All scenarios require

- formulation as abstract parabolic Cauchy problem,
- definition of quadratic cost functional,
- formulation of corresponding ARE,
- spatial discretization (FEM),
- numerical solution of large-scale ARE.

References

Long-Term Plan

Apply optimal control-based feedback stabilization to (multi-)field problems with increasing complexity:

- **Proof of concept:** Navier-Stokes with **normal** boundary control for model problem (von Kármán vortex shedding).
- Navier-Stokes coupled with (passive) transport of (reactive) species.
- Phase transition liquid/solid with convection.
- Stabilization of a flow with a free capillary surface.
- Control for electrically conducting fluids in presence of outer magnetic fields (MHD).

All scenarios require

- formulation as abstract parabolic Cauchy problem,
- definition of quadratic cost functional,
- formulation of corresponding ARE,
- spatial discretization (FEM),
- numerical solution of large-scale ARE.

Proof of concept: von Kármán vortex street

Computations by Heiko Weichelt

References

Solving Large-Scale AREs

Low-Rank Newton-ADI for AREs

Consider

$$0 = \mathcal{R}(X) := C^{\mathsf{T}}C + A^{\mathsf{T}}X + XA - XBB^{\mathsf{T}}X$$

Re-write Newton's method for AREs $(A_j := A - BB^T X_j)$

 $D\mathcal{R}(X_j)(N_j) = -\mathcal{R}(X_j)$

$$A_j^T \underbrace{(X_j + N_j)}_{=X_{j+1}} + \underbrace{(X_j + N_j)}_{=X_{j+1}} A_j = \underbrace{-C^T C - X_j B B^T X}_{=:-W_j W_j^T}$$

Set $X_j = Z_j Z_j^T$ for rank $(Z_j) \ll n \Longrightarrow$

 $A_{j}^{T}(Z_{j+1}Z_{j+1}^{T}) + (Z_{j+1}Z_{j+1}^{T})A_{j} = -W_{j}W_{j}^{T}$

Factored Newton Iteration [B./LI/PENZL '99/'08]

Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and exploit 'sparse + low-rank' structure of A_i .

References

Solving Large-Scale AREs

Low-Rank Newton-ADI for AREs

Consider

$$0 = \mathcal{R}(X) := C^T C + A^T X + XA - XBB^T X$$

Re-write Newton's method for AREs $(A_j := A - BB^T X_j)$

$$A_j^T N_j + N_j A_j = -\mathcal{R}(X_j)$$

$$\underset{=X_{j+1}}{\overset{\longrightarrow}{\longrightarrow}} A_j^T \underbrace{(X_j + N_j)}_{=X_{j+1}} + \underbrace{(X_j + N_j)}_{=X_{j+1}} A_j = \underbrace{-C^T C - X_j B B^T X_j}_{=:-W_j W_j^T}$$
Set $X_j = Z_j Z_j^T$ for rank $(Z_j) \ll n \Longrightarrow$

$A_j^{\mathsf{T}}(Z_{j+1}Z_{j+1}^{\mathsf{T}}) + (Z_{j+1}Z_{j+1}^{\mathsf{T}})A_j = -W_jW_j^{\mathsf{T}}$

Factored Newton Iteration [B./Li/Penzl '99/'08]

Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and exploit 'sparse + low-rank' structure of A_i .

References

Solving Large-Scale AREs

Low-Rank Newton-ADI for AREs

Consider

$$0 = \mathcal{R}(X) := C^{\mathsf{T}}C + A^{\mathsf{T}}X + XA - XBB^{\mathsf{T}}X$$

Re-write Newton's method for AREs $(A_j := A - BB^T X_j)$

 $A_{j}^{T} N_{j} + N_{j} A_{j} = -\mathcal{R}(X_{j})$ $A_{j}^{T} \underbrace{(X_{j} + N_{j})}_{=X_{j+1}} + \underbrace{(X_{j} + N_{j})}_{=X_{j+1}} A_{j} = \underbrace{-C^{T} C - X_{j} B B^{T} X_{j}}_{=:-W_{j} W_{j}^{T}}$ Set $X_{j} = Z_{j} Z_{j}^{T}$ for rank $(Z_{j}) \ll n \Longrightarrow$

$$A_j^T (Z_{j+1} Z_{j+1}^T) + (Z_{j+1} Z_{j+1}^T) A_j = -W_j W_j^T$$

Factored Newton Iteration [B./LI/PENZL '99/'08]

Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and exploit 'sparse + low-rank' structure of A_j .

Low-Rank Approximation

Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

- Linear 1D heat equation with point control,
- $\Omega = [0, 1],$
- FEM discretization using linear B-splines,
- $h = 1/100 \implies n = 101.$

Idea: $X = X^T \ge 0 \implies$

$$X = ZZ^{T} = \sum_{k=1}^{n} \lambda_k z_k z_k^{T} \approx Z^{(r)} (Z^{(r)})^{T} = \sum_{k=1}^{r} \lambda_k z_k z_k^{T}.$$

 \implies Goal: compute $Z^{(r)} \in \mathbb{R}^{n \times r}$ directly w/o ever forming X!

\implies Goal: compute $Z^{(r)} \in \mathbb{R}^{n \times r}$ directly w/o ever forming X! Eberhard Bänsch, Peter Benner, Jens Saak,

$X = ZZ^{T} = \sum_{k=1}^{n} \lambda_{k} z_{k} z_{k}^{T} \approx Z^{(r)} (Z^{(r)})^{T} = \sum_{k=1}^{r} \lambda_{k} z_{k} z_{k}^{T}.$

Consider spectrum of ARE solution (analogous for Lyapunov equations).

Idea: $X = X^T > 0 \implies$

Low-Rank Newton-ADI for AREs

B-splines,

- Example:
 - Linear 1D heat equation with point control,
 - $\Omega = [0, 1],$

Low-Rank Approximation

- FEM discretization using linear
- $h = 1/100 \implies n = 101.$

10/42

Consider

olving Large-Scale AREs

Solving AREs for lin. N

Further Applications

onclusions ____

References

Review: LRCF-ADI for Lyapunov Equations

$$FX + XF^T = -GG^T$$

ADI iteration for the Lyapunov equation (LE)

For
$$j = 1, ..., J$$

 $X_0 = 0$
 $(F + p_j I) X_{j-\frac{1}{2}} = -GG^T - X_{j-1}(F^T - p_j I)$
 $(F + p_j I) X_j^T = -GG^T - X_{j-\frac{1}{2}}^T(F^T - p_j I)$

Rewrite as one step iteration and factorize $X_i = Z_i Z_i^T$, i = 0, ..., J

$$Z_{0}Z_{0}^{T} = 0$$

$$Z_{j}Z_{j}^{T} = -2p_{j}(F + p_{j}I)^{-1}GG^{T}(F + p_{j}I)^{-T} + (F + p_{j}I)^{-1}(F - p_{j}I)Z_{j-1}Z_{j-1}^{T}(F - p_{j}I)^{T}(F + p_{j}I)^{-T}$$

$\ldots \rightsquigarrow$ low-rank Cholesky factor ADI

[PENZL '97/'00, LI/WHITE '99/'02, B./LI/PENZL '99/'08, GUGERCIN/SORENSEN/ANTOULAS '03]

Consider

olving Large-Scale AREs

Solving AREs for lin. N

Further Applications

onclusions

References

Review: LRCF-ADI for Lyapunov Equations

$$FX + XF^T = -GG^T$$

ADI iteration for the Lyapunov equation (LE)

[Wachspress '95]

For
$$j = 1, ..., J$$

 $X_0 = 0$
 $(F + p_j I) X_{j-\frac{1}{2}} = -GG^T - X_{j-1}(F^T - p_j I)$
 $(F + p_j I) X_j^T = -GG^T - X_{j-\frac{1}{2}}^T(F^T - p_j I)$

Rewrite as one step iteration and factorize $X_i = Z_i Z_i^T$, i = 0, ..., J

$$Z_{0}Z_{0}^{T} = 0$$

$$Z_{j}Z_{j}^{T} = -2p_{j}(F + p_{j}I)^{-1}GG^{T}(F + p_{j}I)^{-T} + (F + p_{j}I)^{-1}(F - p_{j}I)Z_{j-1}Z_{j-1}^{T}(F - p_{j}I)^{T}(F + p_{j}I)^{-T}$$

$\ldots \rightsquigarrow$ low-rank Cholesky factor ADI

[PENZL '97/'00, LI/WHITE '99/'02, B./LI/PENZL '99/'08, GUGERCIN/SORENSEN/ANTOULAS '03]

Consider

olving Large-Scale AREs

Solving AREs for lin. N

Further Applications

onclusions

References

Review: LRCF-ADI for Lyapunov Equations

$$FX + XF^T = -GG^T$$

ADI iteration for the Lyapunov equation (LE)

[Wachspress '95]

For
$$j = 1, ..., J$$

 $X_0 = 0$
 $(F + p_j I) X_{j-\frac{1}{2}} = -GG^T - X_{j-1}(F^T - p_j I)$
 $(F + p_j I) X_j^T = -GG^T - X_{j-\frac{1}{2}}^T(F^T - p_j I)$

Rewrite as one step iteration and factorize $X_i = Z_i Z_i^T$, i = 0, ..., J

$$Z_{0}Z_{0}^{T} = 0$$

$$Z_{j}Z_{j}^{T} = -2p_{j}(F + p_{j}I)^{-1}GG^{T}(F + p_{j}I)^{-T} + (F + p_{j}I)^{-1}(F - p_{j}I)Z_{j-1}Z_{j-1}^{T}(F - p_{j}I)^{T}(F + p_{j}I)^{-T}$$

$\ldots \rightsquigarrow$ low-rank Cholesky factor ADI

[PENZL '97/'00, LI/WHITE '99/'02, B./LI/PENZL '99/'08, GUGERCIN/SORENSEN/ANTOULAS '03]

Review: LRCF-ADI for Lyapunov Equations

The Work Horse

Algorithm 1 Low-rank Cholesky factor ADI iteration (LRCF-ADI)

[Penzl '97/'00, Li/White '99/'02, B./Li/Penzl '99/'08]

Input: F, G defining $FX + XF^T = -GG^T$ and shifts $\{p_1, \ldots, p_{i_{max}}\}$ **Output:** $Z = Z_{i_{max}} \in \mathbb{C}^{n \times t_{i_{max}}}$, such that $ZZ^H \approx X$

1: Solve
$$(F + p_1 I) V_1 = \sqrt{-2 \operatorname{Re}(p_1)G}$$
 for V_1 .
2: $Z_1 = V_1$
3: for $i = 2, 3, ..., i_{max}$ do
4: Solve $(F + p_i I) \tilde{V} = V_{i-1}$ for \tilde{V} .
5: $V_i = \sqrt{\operatorname{Re}(p_i)/\operatorname{Re}(p_{i-1})} \left(V_{i-1} - (p_i + \overline{p_{i-1}})\tilde{V}\right)$
6: $Z_i = [Z_{i-1} \ V_i]$
7: end for

tion Solving Large-Scale ARE

Es Solving AREs for lin. N

References

Krylov Subspace Based Solvers for Lyapunov Equations

Consider Schur/singular value decomposition $X = U\Sigma U^T$, $U \in \mathbb{R}^{n \times n}$, $U^T U = I$, $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_n)$ and $|\sigma_1| \ge |\sigma_2| \ge \dots \ge |\sigma_n|$. The best rank-*m* Frobenius-norm approximation to *X* is thus given by

$$X_m := U \begin{bmatrix} \Sigma_m & 0 \\ 0 & 0 \end{bmatrix} U^T = U_m \Sigma_m U_m^T.$$

Krylov projection idea

[SAAD '90, JAIMOUKHA/KASENALLY '94]

Solve

$$(U_m^{\mathsf{T}} F U_m) Y_m + Y_m (U_m^{\mathsf{T}} F^{\mathsf{T}} U_m) = -U_m^{\mathsf{T}} G G^{\mathsf{T}} U_m,$$
(6)

on $colspan(U_m)$ and get X_m as

$$X_m = U_m Y_m U_m^T.$$

Krylov Subspace Based Solvers for Lyapunov Equations

Consider Schur/singular value decomposition $X = U\Sigma U^T$, $U \in \mathbb{R}^{n \times n}$, $U^T U = I$, $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_n)$ and $|\sigma_1| \ge |\sigma_2| \ge \dots \ge |\sigma_n|$. The best rank-*m* Frobenius-norm approximation to *X* is thus given by

$$X_m := U \begin{bmatrix} \Sigma_m & 0 \\ 0 & 0 \end{bmatrix} U^T = U_m \Sigma_m U_m^T.$$

Krylov projection idea

[SAAD '90, JAIMOUKHA/KASENALLY '94]

Solve

$$(U_m^{\mathsf{T}} F U_m) Y_m + Y_m (U_m^{\mathsf{T}} F^{\mathsf{T}} U_m) = -U_m^{\mathsf{T}} G G^{\mathsf{T}} U_m,$$
(6)

on $colspan(U_m)$ and get X_m as

$$X_m = U_m Y_m U_m^T.$$

Further Applications

onclusions ____

References

Max Planck Institute Magdeburg

Krylov Subspace Based Solvers for Lyapunov Equations

Consider Schur/singular value decomposition $X = U\Sigma U^T$, $U \in \mathbb{R}^{n \times n}$, $U^T U = I$, $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_n)$ and $|\sigma_1| \ge |\sigma_2| \ge \dots \ge |\sigma_n|$. The best rank-*m* Frobenius-norm approximation to *X* is thus given by

$$X_m := U \begin{bmatrix} \Sigma_m & 0 \\ 0 & 0 \end{bmatrix} U^T = U_m \Sigma_m U_m^T.$$

 $Z_m Z_m^T = X_m$

Note that a factorization

can easily be computed from a Cholesky factorization of

$$Y_m = \tilde{Z}_m \tilde{Z}_m^T$$

as

$$Z_m = U_m \tilde{Z}_m.$$

Ø

Krylov Subspace Based Solvers for Lyapunov Equations Basic Algorithm

Algorithm 2 Basic Krylov Subspace Method for the Lyapunov Equation

- **Input:** F, G defining $FX + XF^T = -GG^T$, an initial Krylov subspace \mathcal{V} , e.g., $\mathcal{V} = \mathcal{K}_p(F, G)$ or $\mathcal{V} = \mathcal{K}_p(F, G) \cup \mathcal{K}_p(F^{-1}, G)^1$ with orthogonal basis $V \in \mathbb{C}^{n \times p}$.
- **Output:** $Z \in \mathbb{C}^{n \times t}$, such that $ZZ^H \approx X$

repeat

if not first step then

increase dimension of \mathcal{V} and update V.

end if

Solve the "small" LE for \tilde{Z} with a classical solver:

$$(V^{\mathsf{T}} F V) \tilde{Z} \tilde{Z}^{\mathsf{T}} + \tilde{Z} \tilde{Z}^{\mathsf{T}} (V^{\mathsf{T}} F^{\mathsf{T}} V) = -V^{\mathsf{T}} G G^{\mathsf{T}} V,$$

Lift \tilde{Z} to the full space: $Z = V\tilde{Z}$ until res(Z) < TOL

¹(K-PIK, [SIMONCINI '07])

LRCF-ADI with Galerkin Projection

ADI and Rational Krylov

 $[{\rm Li}~{}^{\prime}00;$ Theorem 2] interprets the column span of the ADI solution as a certain rational Krylov subspace

$$\mathcal{L}(F, G, \mathbf{p}) := span \left\{ \dots, \prod_{i=-j}^{-1} (F + p_i I)^{-1} G, \dots, (F + p_{-2} I)^{-1} (F + p_{-1} I)^{-1} G, (F + p_{-1} I)^{-1} G, G, (F + p_1 I) G, (F + p_2 I) (F + p_1 I) G, \dots, \prod_{i=1}^{j} (F + p_i I) G \dots \right\}$$

Idea

Solve on current subspace of $\mathcal{L}(F, G, \mathbf{p})$ in the ADI step to increase the quality of the iterate.

LRCF-ADI with Galerkin Projection

ADI and Rational Krylov

 $[{\rm Li}~{}^{\prime}00;$ Theorem 2] interprets the column span of the ADI solution as a certain rational Krylov subspace

$$\mathcal{L}(F, G, \mathbf{p}) := span \left\{ \dots, \prod_{i=-j}^{-1} (F + p_i I)^{-1} G, \dots, (F + p_{-2} I)^{-1} (F + p_{-1} I)^{-1} G, (F + p_{-1} I)^{-1} G, G, (F + p_1 I) G, (F + p_2 I) (F + p_1 I) G, \dots, \prod_{i=1}^{j} (F + p_i I) G \dots \right\}$$

Idea

Solve on current subspace of $\mathcal{L}(F, G, \mathbf{p})$ in the ADI step to increase the quality of the iterate.

olving Large-Scale AREs

Solving AREs for lin. N

Further Applications

onclusions

References

LRCF-ADI with Galerkin Projection

Projected ADI Step ightarrow LRCF-ADI-GP

[B./Li/Truhar'09, Saak'09, B./Saak'10]

- Compute the LRCF-ADI iterate Z_i
- **②** Compute orthogonal basis via RRQR factorization^{*a*}: $Q_i R_i \Pi_i = Z_i$
- Solve (for \tilde{Z}) the projected Lyapunov equation

 $(Q_i^T F Q_i) \tilde{Z} \tilde{Z}^T + \tilde{Z} \tilde{Z}^T (Q_i^T F^T Q_i) = -Q_i^T G G^T Q_i$

• Update Z_i according to $Z_i := Q_i \tilde{Z}$

 $^a\mathrm{economy}$ size QR with column pivoting; crucial to compute correct subspace if Z_i rank deficient.

- Need to ensure that projected systems remain stable, e.g., $F + F^T < 0$;
- may perform projected ADI step only every k-th step (e.g. k = 5) \rightsquigarrow restarted ADI with shifts $\Lambda(Q_i^T F Q_i)$.

olving Large-Scale AREs

Solving AREs for lin. N 0000000000 Further Applications

onclusions

References

LRCF-ADI with Galerkin Projection

$\mathsf{Projected} \mathsf{ADI} \mathsf{Step} \to \mathsf{LRCF}\mathsf{-}\mathsf{ADI}\mathsf{-}\mathsf{GP}$

[B./Li/Truhar'09, Saak'09, B./Saak'10]

- Compute the LRCF-ADI iterate Z_i
- Ompute orthogonal basis via RRQR factorization
- Solve (for \tilde{Z}) the projected Lyapunov equation

 $(Q_i^T F Q_i) \tilde{Z} \tilde{Z}^T + \tilde{Z} \tilde{Z}^T (Q_i^T F^T Q_i) = -Q_i^T G G^T Q_i$

• Update Z_i according to $Z_i := Q_i \tilde{Z}$

- Need to ensure that projected systems remain stable, e.g., $F + F^T < 0$;
- may perform projected ADI step only every k-th step (e.g. k = 5) → restarted ADI with shifts Λ(Q_i^T FQ_i).

ving Large-Scale AREs Solv

Solving AREs for lin. N

Further Applications

onclusions

References

LRCF-ADI with Galerkin Projection

Test Example: Optimal Cooling of Steel Profiles

• Mathematical model: boundary control for linearized 2D heat equation.

$$c \cdot \rho \frac{\partial}{\partial t} x = \lambda \Delta x, \quad \xi \in \Omega$$

$$\lambda \frac{\partial}{\partial n} x = \kappa (u_k - x), \quad \xi \in \Gamma_k, \ 1 \le k \le 7$$

$$\frac{\partial}{\partial n} x = 0, \qquad \xi \in \Gamma_0.$$

$$\implies q = 7, p = 6.$$

• FEM Discretization, different models for initial mesh (n = 371), 1, 2, 3, 4 steps of mesh refinement \Rightarrow n = 1357, 5177, 20209, 79841.

Source: Physical model: courtesy of Mannesmann/Demag. Math. model: TRÖLTZSCH/UNGER '99/'01, PENZL '99, S. '03.

lving Large-Scale AREs

Solving AREs for lin.

Further Applications

onclusions

References

LRCF-ADI with Galerkin Projection

Steel profile n=20209 good shifts

LRCF-ADI with Galerkin Projection

Numerical Results

Steel profile n=20 209 good shifts

lving Large-Scale AREs

Solving AREs for lin. 200000**00**000000 Further Applications

onclusions

References

LRCF-ADI with Galerkin Projection

Steel profile n=20 209 bad shifts

LRCF-ADI with Galerkin Projection

Numerical Results

Steel profile n=20 209 bad shifts

er Applications

Solving Large-Scale AREs

Consider
$$\mathfrak{R}(X) := C^T C + A^T X + XA - XBB^T X = 0$$

Newton's Iteration for the ARE

 $\mathfrak{R}'|_X(N_\ell) = -\mathfrak{R}(X_\ell), \qquad X_{\ell+1} = X_\ell + N_\ell, \qquad \ell = 0, 1, \dots$

where the Frechét derivative of \Re at X is the Lyapunov operator

$$\mathfrak{R}'|_X: \quad Q \mapsto (A - BB^T X)^T Q + Q(A - BB^T X),$$

i.e., in every Newton step solve a

Lyapunov Equation

$$F_{\ell}^{T}X_{\ell+1} + X_{\ell+1}F_{\ell} = -G_{\ell}G_{\ell}^{T},$$

where $F_{\ell} := A - BB^T X_{\ell}$, $G := [-C^T, -X_{\ell}B]$.

LEINMAN '68]

ng Large-Scale AREs Solving J

Solving AREs for lin. NSE

Further Applications

nclusions

References

Solving Large-Scale AREs LRCF-NM for the ARE

Factored Newton-Kleinman Iteration	[B./Li/Penzl '99/'08]
$F_{\ell} = A - BB^{T}X_{\ell} =: A - BK_{\ell} $ is "spars $G_{\ell} = [C^{T}, K_{\ell}^{T}] $ is low ra	se + low rank", ink factor.
 Apply LRCF-ADI in every Newton step; exploit structure of F_l using Sherman-Morris 	son-Woodbury formula:

ng Large-Scale AREs Solving A

ng AREs for lin. NSE

Further Applications

References

Solving Large-Scale AREs LRCF-NM for the ARE

[B./LI/PENZL '99/'08]

$$\begin{aligned} F_{\ell} &= A - BB^{\mathsf{T}} X_{\ell} =: A - BK_{\ell} \\ G_{\ell} &= [C^{\mathsf{T}}, K_{\ell}^{\mathsf{T}}] \end{aligned}$$

Factored Newton-Kleinman Iteration

- is "sparse + low rank", is low rank factor.
- Apply LRCF-ADI in every Newton step;
- exploit structure of F_{ℓ} using Sherman-Morrison-Woodbury formula:

 $(A - BK_{\ell} + \rho_{k}^{(\ell)} l_{n})^{-1} = (l_{n} + (A + \rho_{k}^{(\ell)} l_{n})^{-1} B(l_{m} - K_{\ell} (A + \rho_{k}^{(\ell)} l_{n})^{-1} B)^{-1} K_{\ell}) (A + \rho_{k}^{(\ell)} l_{n})^{-1}$

-act

ng Large-Scale AREs Solving A

REs for lin. NSE Fu

Further Applications

References

Solving Large-Scale AREs LRCF-NM for the ARE

ored Newton-Kleinman Iterati	ion	[B./Li/Penzl,
$egin{aligned} \mathcal{F}_\ell &= \mathcal{A} - \mathcal{B}\mathcal{B}^T X_\ell =: \mathcal{A} - \mathcal{B}\mathcal{K}_\ell \ \mathcal{G}_\ell &= \left[\ \mathcal{C}^T, \ \mathcal{K}_\ell^T ight] \end{aligned}$	is ' is le	'sparse + low rank", ow rank factor.

- Apply LRCF-ADI in every Newton step;
- exploit structure of F_{ℓ} using Sherman-Morrison-Woodbury formula:

$$(A - BK_{\ell} + p_{k}^{(\ell)}I_{n})^{-1} = (I_{n} + (A + p_{k}^{(\ell)}I_{n})^{-1}B(I_{m} - K_{\ell}(A + p_{k}^{(\ell)}I_{n})^{-1}B)^{-1}K_{\ell})(A + p_{k}^{(\ell)}I_{n})^{-1}$$

LRCF-NM for the ARE

Algorithms

Algorithm 3 Low-Rank Cholesky Factor Newton Method (LRCF-NM)

Input: A, B, C, $K^{(0)}$ for which $A - BK^{(0)T}$ is stable **Output:** $Z = Z^{(k_{max})}$, such that ZZ^H approximates the solution X of $C^{T}C + A^{T}X + XA - XBB^{T}X = 0$

1: for
$$k = 1, 2, ..., k_{max}$$
 do

Determine (sub)optimal ADI shift parameters $p_1^{(k)}, p_2^{(k)}, \ldots$ 2. with respect to the matrix $F^{(k)} = A^T - K^{(k-1)}B^T$

3:
$$G^{(k)} = \begin{bmatrix} C^T & K^{(k-1)} \end{bmatrix}$$

Compute $Z^{(k)}$ using Algorithm 1 (LRCF-ADI) or (LRCF-ADI-GP) 4. $F^{(k)} Z^{(k)} Z^{(k)}^{H} + Z^{(k)} Z^{(k)}^{H} F^{(k)}^{T} \approx -G^{(k)} G^{(k)}^{T}$ such that

5:
$$K^{(k)} = Z^{(k)}(Z^{(k)}{}^HB)$$

6: end for

Algorithms

Algorithm 4 Simplified Low-Rank Cholesky Factor Newton Method (LRCF-NM-S)

Input: A, B, C, $K^{(0)}$ for which $A - BK^{(0)T}$ is stable **Output:** $Z = Z^{(k_{max})}$, such that ZZ^{H} approximates the solution X of $C^{T}C + A^{T}X + XA - XBB^{T}X = 0$.

- 1: Determine (sub)optimal ADI shift parameters $p_1, p_2, ...$ with respect to $F^{(0)} = A^T - K^{(0)}B^T$ or $F^{(\infty)} = \lim_{k \to \infty} F^{(k)}$.
- 2: **for** $k = 1, 2, ..., k_{max}$ **do** 3: $G^{(k)} = \begin{bmatrix} C^T & K^{(k-1)} \end{bmatrix}$
- 4: Compute $Z^{(k)}$ using Algorithm 1 (LRCF-ADI) or (LRCF-ADI-GP) such that $F^{(k)}Z^{(k)}Z^{(k)H} + Z^{(k)}Z^{(k)H}F^{(k)T} \approx -G^{(k)}G^{(k)T}$.

5:
$$K^{(k)} = Z^{(k)}(Z^{(k)}{}^H B)$$

6: end for

Algorithms

Algorithm 5 Low-Rank Cholesky Factor Galerkin-Newton Method (LRCF-NM-GP)

Input: A, B, C, $K^{(0)}$ for which $A - BK^{(0)}^{T}$ is stable **Output:** $Z = Z^{(k_{max})}$, such that ZZ^H approximates the solution X of $C^{T}C + A^{T}X + XA - XBB^{T}X = 0$

1: for
$$k = 1, 2, ..., k_{max}$$
 do

Determine (sub)optimal ADI shift parameters $p_1^{(k)}, p_2^{(k)}, \dots$ with respect to the matrix $F^{(k)} = A^T - K^{(k-1)}B^T$. 2.

3:
$$G^{(k)} = \begin{bmatrix} C^T & K^{(k-1)} \end{bmatrix}$$

- Compute $Z^{(k)}$ using Algorithm 1 (LRCF-ADI) or (LRCF-ADI-GP) 4. such that $F^{(k)}Z^{(k)}Z^{(k)H} + Z^{(k)}Z^{(k)H}F^{(k)T} \approx -G^{(k)}G^{(k)T}$
- Project ARE, solve and prolongate solution. 5:
- $K^{(k)} = Z^{(k)}(Z^{(k)}{}^{H}B)$ 6:
- 7: end for

 \Rightarrow no need to form Z_i , need only fixed workspace for $K_i \in \mathbb{R}^{m \times n}$!

Related to earlier work by [BANKS/ITO '91].

Test Examples

Example 1: 3d Convection-Diffusion Equation

- FDM for 3D convection-diffusion equation on $[0, 1]^3$
- proposed in [Simoncini '07], q = p = 1
- non-symmetric $A \in \mathbb{R}^{n imes n}$, $n = 10\,648$

Example 2: 2d Convection-Diffusion Equation

- FDM for 2D convection-diffusion equations on $[0,1]^2$
- LyaPack benchmark, q = p = 1, e.g., demo_l1
- non-symmetric $A \in \mathbb{R}^{n \times n}$, n = 22500.
- 16 shift parameters
- Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A

Further Applica

References

Feedback Iteration

Test Results (ADI-loop): Example 1

Newton-ADI Newton-Galerkin-ADI NWT rel. change rel. residual ADI NWT rel. change rel. residual ADI $9.97 \cdot 10^{-01}$ $9.27 \cdot 10^{-01}$ $9.97 \cdot 10^{-01}$ $9.29 \cdot 10^{-01}$ 1 100 1 80 $3.67 \cdot 10^{-02}$ $9.58 \cdot 10^{-02}$ $3.67 \cdot 10^{-02}$ $9.60 \cdot 10^{-02}$ 2 94 2 30 $1.09 \cdot 10^{-03}$ $1.36 \cdot 10^{-02}$ $1.36 \cdot 10^{-02}$ $1.09 \cdot 10^{-03}$ 3 98 3 28 $3.48 \cdot 10^{-04}$ $1.01 \cdot 10^{-07}$ $3.47 \cdot 10^{-04}$ $1.01 \cdot 10^{-07}$ 4 97 4 35 $6.41 \cdot 10^{-08}$ $1.34 \cdot 10^{-10}$ $6.41 \cdot 10^{-08}$ $1.03 \cdot 10^{-10}$ 5 97 5 25 $7.47 \cdot 10^{-16}$ $1.34 \cdot 10^{-10}$ $1.23 \cdot 10^{-11}$ $1.98 \cdot 10^{-11}$ 6 97 6 27 CPU time: 4805.8 sec. CPU time: 1460.1 sec.

test system: Intel[®] Xeon[®] 5160 3.00GHz ; 16 GB RAM; 64Bit-MATLAB R (R2010a) using threaded BLAS (romulus) stopping criterion tolerances: 10^{-10}

Further Applicat

References

Feedback Iteration

Test Results (ADI-loop): Example 2

Newton-ADI

NWT	rel. change	rel. residual	ADI
1	1	$1.70 \cdot 10^{+02}$	46
2	$2.88 \cdot 10^{-01}$	$4.25\cdot10^{+01}$	39
3	$2.13 \cdot 10^{-01}$	$1.06 \cdot 10^{+01}$	43
4	$1.77 \cdot 10^{-01}$	$2.58\cdot10^{+00}$	46
5	$2.47 \cdot 10^{-01}$	$5.15 \cdot 10^{-01}$	43
6	$3.04 \cdot 10^{-01}$	$3.26 \cdot 10^{-02}$	52
7	$1.78 \cdot 10^{-02}$	$6.90 \cdot 10^{-05}$	50
8	$2.60 \cdot 10^{-05}$	$1.08 \cdot 10^{-10}$	46
9	$2.75 \cdot 10^{-11}$	$1.07 \cdot 10^{-10}$	50
CPU time: 493.81 sec.			

Newt	on-Galerki	n-ADI LRCF-4	ADI-GP(5)
NWT	rel. change	rel. residual	ADI
1	1	$1.70 \cdot 10^{+02}$	35
2	$2.88 \cdot 10^{-01}$	$4.25 \cdot 10^{+01}$	15
3	$2.13 \cdot 10^{-01}$	$1.06 \cdot 10^{+01}$	20
4	$1.77 \cdot 10^{-01}$	$2.58 \cdot 10^{+00}$	20
5	$2.47 \cdot 10^{-01}$	$5.15 \cdot 10^{-01}$	20
6	$3.04 \cdot 10^{-01}$	$3.26 \cdot 10^{-02}$	17
7	$1.78 \cdot 10^{-02}$	$6.90 \cdot 10^{-05}$	20
8	$2.60 \cdot 10^{-05}$	$1.10 \cdot 10^{-10}$	20
9	$2.75 \cdot 10^{-11}$	$1.92 \cdot 10^{-12}$	20
	CPU time:	280.55 sec.	

test system: Intel[®]Core[™]2 Quad Q9400 2.66 GHz; 4 GB RAM; 64Bit-MATLAB (R2009a) using threaded BLAS (reynolds) stopping criterion tolerances: 10⁻¹⁰

Further Applic

Feedback Iteration

Test Results (both-loops): Example 1

Newton-ADI

NWT	rel. change	rel. residual	ADI
1	$9.97 \cdot 10^{-01}$	$9.27 \cdot 10^{-01}$	100
2	$3.67 \cdot 10^{-02}$	$9.58 \cdot 10^{-02}$	94
3	$1.36 \cdot 10^{-02}$	$1.09 \cdot 10^{-03}$	98
4	$3.48 \cdot 10^{-04}$	$1.01 \cdot 10^{-07}$	97
5	$6.41 \cdot 10^{-08}$	$1.34 \cdot 10^{-10}$	97
6	$7.47 \cdot 10^{-16}$	$1.34 \cdot 10^{-10}$	97
	CPU time:	4805.8 sec.	

NG-A	ADI inne	er=5, oute	r=1
NWT 1	rel. change 9.98 · 10 ⁻⁰¹ CPU time:	rel. residual 5.04 \cdot 10 ⁻¹¹ 497.6 sec.	ADI 80
NG-A	ADI inne	er $= 1$, oute	r=1
NWT 1	rel. change 9.98 · 10 ⁻⁰¹ CPU time:	rel. residual 7.42 \cdot 10 ⁻¹¹ 856.6 sec.	ADI 71
NG-ADI inner= 0, outer= 1			
NWT	rel. change	rel. residual	ADI
1	9.98 · 10 ⁻⁰¹ CPU time:	6.46 · 10 ⁻¹³ 506.6 sec.	100

test system: Intel[®] Xeon[®] 5160 3.00GHz ; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS (romulus) stopping criterion tolerances: 10^{-10}

Further Applica

Feedback Iteration

Test Results (both-loops): Example 2

Newton-ADI

NWT	rel. change	rel. residual	ADI
1	1	$1.70 \cdot 10^{+02}$	46
2	$2.88 \cdot 10^{-01}$	$4.25 \cdot 10^{+01}$	39
3	$2.13 \cdot 10^{-01}$	$1.06 \cdot 10^{+01}$	43
4	$1.77 \cdot 10^{-01}$	$2.58\cdot10^{+00}$	46
5	$2.47 \cdot 10^{-01}$	$5.15 \cdot 10^{-01}$	43
6	$3.04 \cdot 10^{-01}$	$3.26 \cdot 10^{-02}$	52
7	$1.78 \cdot 10^{-02}$	$6.90 \cdot 10^{-05}$	50
8	$2.60 \cdot 10^{-05}$	$1.08 \cdot 10^{-10}$	46
9	$2.75 \cdot 10^{-11}$	$1.07 \cdot 10^{-10}$	50
	CPU time:	493.81 sec.	

NG-A	ADI in	ner= 5, ou	ter= 1
NWT	rel. change	rel. residual	ADI
1	1	$3.30 \cdot 10^{-11}$	35
	CPU tim	e: 24.1 sec.	
NG-A	ADI in	$ner{=}1$, out	ter $= 1$
NWT	rel. change	rel. residual	ADI
1	1	$1.31 \cdot 10^{-11}$	34
CPU time: 26.8 sec.			
NG-A	ADI in	ner= 0, ou	ter $= 1$
NWT	rel. change	rel. residual	ADI
1	1	$3.27 \cdot 10^{-15}$	46
CPU time: 24.0 sec.			

test system: Intel[®] Core[™]2 Quad Q9400 2.66 GHz; 4 GB RAM; 64Bit-MATLAB (R2009a) using threaded BLAS (reynolds) stopping criterion tolerances: 10⁻¹⁰

Introduction Solving Large-Scale AREs	Solving AREs for lin. NSE		
Feedback Iteration	on		Q
Computation Time Scales Line	arly with Problem Siz	e	
(0,1)	$\left. \begin{array}{c} (1,1) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$t) = \Delta x(\xi, t)$ $b_{\nu} x = b(\xi) \cdot u(t) - b_{\nu} x = -x$	in Ω - x on Γ_c on $\partial \Omega \setminus \Gamma_c$

(0,0) (1,0) **Control operator:** Here $b(\xi) = 4(1 - \xi_2)\xi_2$ for $\xi \in \Gamma_c$ and 0 otherwise. **Output equation:** y = Cx, where

 $x(\xi, 0) = 1$

$$\begin{array}{rcl} \mathcal{C}:\mathcal{L}^2(\Omega) & \to \mathbb{R} \\ x(\xi,t) & \mapsto y(t) = \int_{\Omega} x(\xi,t) \, d\xi, \end{array} \Rightarrow \mathcal{C}_h = \underline{1} \cdot M_h. \end{array}$$

Cost functional:

$$\mathcal{J}(u) = \int_0^\infty y^2(t) + u^2(t) \, dt.$$

Feedback Iteration

Scaling results

simplified Low Rank Newton-Galerkin ADI

- generalized state space form implementation
- Penzl shifts (16/50/25) with respect to initial matrices
- projection acceleration in every outer iteration step
- projection acceleration in every 5-th inner iteration step

test system: Intel[®]Xeon[®] 5160 @ 3.00 GHz; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS (romulus) stopping criterion tolerances: 10^{-10}

Further Application

References

Feedback Iteration

moutation Time

Scaling results

.omput	ation rimes			
	discretization level	problem size	time in seconds	
	3	81	$5.53 \cdot 10^{-2}$	
	4	289	$1.33\cdot10^{-1}$	
	5	1 089	$2.84 \cdot 10^{-1}$	
	6	4 225	$1.51\cdot 10^{+0}$	
	7	16 641	$9.52\cdot10^{+0}$	
	8	66 049	$5.97\cdot10^{+1}$	
	9	263 169	$4.72 \cdot 10^{+2}$	
	10	1 050 625	$6.89 \cdot 10^{+3}$	
	11	4 198 401	$8.08\cdot10^{+4}$	

(Finest level: 8.813.287.577.601 unknowns, taking symmetry into account.)

test system: Intel[®]Xeon[®] 5160 @ 3.00 GHz; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS (romulus) stopping criterion tolerances: 10^{-10}

Feedback Iteration

Scaling results

test system: Intel[®]Xeon[®] 5160 @ 3.00 GHz; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS (romulus) stopping criterion tolerances: 10^{-10}

References

Solving AREs for Linearized Navier-Stokes Eqns. $0 = M + (A + \omega M)^T X + X(A + \omega M) - M X B B^T X M$

Problems with Newton-Kleinman

Discretization of Helmholtz-projected linearized Navier-Stokes equations would need divergence-free finite elements.

Here, we want to use standard discretization

(Taylor-Hood elements available in flow solver $\ensuremath{\operatorname{NAVIER}}\xspace$).

Explicit projection of ansatz functions possible using application of Helmholtz projection, but too expensive in general.

Each step of Newton-Kleinman iteration: solve

$$A_{j}^{T}Z_{j+1}Z_{j+1}^{T}M + MZ_{j+1}Z_{j+1}^{T}A_{j} = -M - K_{j}^{T}K_{j}$$

 $n_v := \operatorname{rank}(M) = \operatorname{dim} \operatorname{of} \operatorname{ansatz} \operatorname{space} \operatorname{for velocities}.$ \rightsquigarrow need to solve $n_v + m$ linear systems of equations in each step of Newton-ADI iteration!

Solution Linearized system (i.e., $A + \omega M$) is unstable in general. But to start Newton iteration, a stabilizing initial guess is needed!

 $n_v := \operatorname{rank}(M) = \operatorname{dim} \operatorname{of} \operatorname{ansatz} \operatorname{space} \operatorname{for} \operatorname{velocities}.$

 \rightarrow need to solve $n_v + m$ linear systems of equations in each step of Newton-ADI iteration!

Solution Linearized system (i.e., $A + \omega M$) is unstable in general. But to start Newton iteration, a stabilizing initial guess is needed!

References

Solving AREs for Linearized Navier-Stokes Eqns. $0 = M + (A + \omega M)^T X + X(A + \omega M) - M X B B^T X M$

Problems with Newton-Kleinman

Discretization of Helmholtz-projected linearized Navier-Stokes equations would need divergence-free finite elements.

Here, we want to use standard discretization

(Taylor-Hood elements available in flow solver $\ensuremath{\operatorname{NAVIER}}\xspace$).

Explicit projection of ansatz functions possible using application of Helmholtz projection, but too expensive in general.

Each step of Newton-Kleinman iteration: solve

$$A_j^T Z_{j+1} Z_{j+1}^T M + M Z_{j+1} Z_{j+1}^T A_j = -M - K_j^T K_j$$

 $n_v := \operatorname{rank}(M) = \operatorname{dim}$ of ansatz space for velocities.

 \rightarrow need to solve $n_v + m$ linear systems of equations in each step of Newton-ADI iteration!

Solution Linearized system (i.e., $A + \omega M$) is unstable in general. But to start Newton iteration, a stabilizing initial guess is needed!

 ∇

Solving AREs for Linearized Navier-Stokes Eqns. $0 = M + (A + \omega M)^T X + X(A + \omega M) - M X B B^T X M$

Problems with Newton-Kleinman

Discretization of Helmholtz-projected linearized Navier-Stokes equations would need divergence-free finite elements.

Here, we want to use standard discretization

(Taylor-Hood elements available in flow solver NAVIER).

Explicit projection of ansatz functions possible using application of Helmholtz projection, but too expensive in general.

Each step of Newton-Kleinman iteration: solve

Solution Linearized system (i.e., $A + \omega M$) is unstable in general.

But to start Newton iteration, a stabilizing initial guess is needed!

 ∇

Solution to 1. Problem/no need for divergence free FE

incompressible Navier-Stokes-Equations

$$\frac{\partial \mathbf{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla \mathbf{p} = 0 + \text{B.C.}$$

$$\nabla \cdot \mathbf{v} = 0$$
(NSE)

Spatial FE discretization

$$M\dot{v}(t) = K(v)v(t) - Gp(t) + B_1\mathbf{u}(t)$$

$$0 = G^T v(t)$$
(dNSE)

• Linearization and change of notation

$$E_{11}\dot{v}(t) = A_{11}v(t) + A_{12}p(t) + B_1\mathbf{u}(t)$$

0 = $A_{12}^{T}v(t)$ (NSDAE)

Solution to 1. Problem/no need for divergence free FE

incompressible Navier-Stokes-Equations

$$\frac{\partial \mathbf{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla \mathbf{p} = 0 + \text{B.C.}$$
(NSE)

$$\nabla \cdot \mathbf{v} = 0$$

Spatial FE discretization

$$M\dot{v}(t) = K(v)v(t) - G\rho(t) + B_1\mathbf{u}(t)$$

$$0 = G^{\mathsf{T}}v(t) \qquad (dNSE)$$

• Linearization and change of notation

$$E_{11}\dot{v}(t) = A_{11}v(t) + A_{12}p(t) + B_1\mathbf{u}(t)$$

0 = $A_{12}^{T}v(t)$ (NSDAE)

Solution to 1. Problem/no need for divergence free FE

incompressible Navier-Stokes-Equations

$$\frac{\partial \mathbf{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla \mathbf{p} = 0 + \text{B.C.}$$

$$\nabla \cdot \mathbf{v} = 0$$
(NSE)

Spatial FE discretization

$$M\dot{\mathbf{v}}(t) = K(\mathbf{v})\mathbf{v}(t) - G\mathbf{p}(t) + B_1\mathbf{u}(t)$$

$$\mathbf{0} = G^{\mathsf{T}}\mathbf{v}(t) \qquad (\text{dNSE})$$

Linearization and change of notation

$$E_{11}\dot{v}(t) = A_{11}v(t) + A_{12}p(t) + B_1\mathbf{u}(t)$$

$$0 = A_{12}^{T}v(t)$$
 (NSDAE)

Solution to 1. Problem/no need for divergence free FE

incompressible Navier-Stokes-Equations

$$\frac{\partial \mathbf{v}}{\partial t} - \frac{1}{\text{Re}} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla \mathbf{p} = 0 + \text{B.C.}$$

$$\nabla \cdot \mathbf{v} = 0$$
(NSE)

Spatial FE discretization

$$M\dot{v}(t) = K(v)v(t) - Gp(t) + B_1\mathbf{u}(t)$$

$$0 = G^T v(t)$$
(dNSE)

Linearization and change of notation

$$E_{11}\dot{v}(t) = A_{11}v(t) + A_{12}p(t) + B_1\mathbf{u}(t)$$

$$0 = A_{12}^Tv(t)$$
(NSDAE)

Iving Large-Scale AREs Solvi

Solving AREs for lin. NSE

Further Applications

Conclusions

References

Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 1. Problem/no need for divergence free FE

$$E_{11}\dot{v}(t) = A_{11}v(t) + A_{12}p(t) + B_1\mathbf{u}(t)$$
$$0 = A_{12}^{T}v(t)$$

Iving Large-Scale AREs Solving

Solving AREs for lin. NSE

Further Applications

Conclusions

References

Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 1. Problem/no need for divergence free FE

$$E_{11}\dot{v}(t) = A_{11}v(t) + A_{12}p(t) + B_1\mathbf{u}(t)$$
$$0 = A_{12}^{T}v(t)$$

Multiplication of line one from the left by $A_{12}^T E_{11}^{-1}$ together with

$$0 = A_{12}^{T} v(t) \Rightarrow 0 = A_{12}^{T} \dot{v}(t) \text{ reveals the}$$

hidden manifold
$$0 = A_{12}^{T} E_{11}^{-1} A_{11} v(t) + A_{12}^{T} E_{11}^{-1} A_{12} p(t) + A_{12}^{T} E_{11}^{-1} B_{1} \mathbf{u}(t),$$

Iving Large-Scale AREs Solving

Solving AREs for lin. NSE

Further Applications

Conclusions

References

Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 1. Problem/no need for divergence free FE

$$E_{11}\dot{v}(t) = A_{11}v(t) + A_{12}p(t) + B_1\mathbf{u}(t)$$
$$0 = A_{12}^{T}v(t)$$

Multiplication of line one from the left by $A_{12}^T E_{11}^{-1}$ together with

$$0 = A_{12}^T v(t) \Rightarrow 0 = A_{12}^T \dot{v}(t)$$
 reveals the

hidden manifold

$$0 = A_{12}^{T} E_{11}^{-1} A_{11} v(t) + A_{12}^{T} E_{11}^{-1} A_{12} \rho(t) + A_{12}^{T} E_{11}^{-1} B_{1} \mathbf{u}(t)$$

which implies

$$p(t) = -\left(A_{12}^{T}E_{11}^{-1}A_{12}\right)^{-1}A_{12}^{T}E_{11}^{-1}A_{11}v(t) - \left(A_{12}^{T}E_{11}^{-1}A_{12}\right)^{-1}A_{12}^{T}E_{11}^{-1}B_{1}\mathbf{u}(t).$$

Iving Large-Scale AREs Solving AREs

Further Applicat

Conclusions

References

Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 1. Problem/no need for divergence free FE

Inserting p we find

$$E_{11}\dot{v}(t) = \left(I - A_{12} \left(A_{12}^{T} E_{11}^{-1} A_{12}\right)^{-1} A_{12}^{T} E_{11}^{-1}\right) A_{11}v(t) + \left(I - A_{12} \left(A_{12}^{T} E_{11}^{-1} A_{12}\right)^{-1} A_{12}^{T} E_{11}^{-1}\right) B_{1}\mathbf{u}(t)$$

Definition

[Heinkenschloss/Sorensen/Sun '08]

$$\exists := I - A_{12} \left(A_{12}^{T} E_{11}^{-1} A_{12} \right)^{-1} A_{12}^{T} E_{11}^{-1}$$

ving Large-Scale AREs Solving AREs f

for lin. NSE Furth

Further Applications

onclusions

References

Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 1. Problem/no need for divergence free FE

Inserting p we find

$$E_{11}\dot{v}(t) = \left(I - A_{12} \left(A_{12}^{T} E_{11}^{-1} A_{12}\right)^{-1} A_{12}^{T} E_{11}^{-1}\right) A_{11}v(t) + \left(I - A_{12} \left(A_{12}^{T} E_{11}^{-1} A_{12}\right)^{-1} A_{12}^{T} E_{11}^{-1}\right) B_{1}\mathbf{u}(t)$$

Definition

Heinkenschloss/Sorensen/Sun '08]

$$\Pi := I - A_{12} \left(A_{12}^{T} E_{11}^{-1} A_{12} \right)^{-1} A_{12}^{T} E_{11}^{-1}$$

lving Large-Scale AREs Solving

Solving AREs for lin. NSE

Further Applications

Conclusions

References

Solving AREs for Linearized Navier-Stokes Eqns.

Derivation of the Projected State Space System and Matrix Equations

Definition

[Heinkenschloss/Sorensen/Sun '08]

$$\Pi := I - A_{12} \left(A_{12}^{T} E_{11}^{-1} A_{12} \right)^{-1} A_{12}^{T} E_{11}^{-1}$$

Properties

• $\Pi^2 = \Pi$ • $\Pi E_{11} = E_{11} \Pi^T$ • r

•
$$null(\Pi) = range(A_{12})$$

• $range(\Pi) = null(A_{12}^{T}E_{11}^{-1})$

This implies

Lemma 1

• Π is an oblique projector.

•
$$A_{12}^T z = 0 \Leftrightarrow \Pi^T z = z$$

• $\Rightarrow \Pi^T v(t) = v(t)$

Derivation of the Projected State Space System and Matrix Equations

Definition

$$\Pi := I - A_{12} \left(A_{12}^{T} E_{11}^{-1} A_{12} \right)^{-1} A_{12}^{T} E_{11}^{-1}$$

Properties

- ··· (A) • $\Pi^2 = \Pi$
- $\Pi E_{11} = E_{11} \Pi^T$

•
$$null(\Pi) = range(A_{12})$$

• $range(\Pi) = null(A_{12}^T E_{11}^{-1})$

This implies

Lemma 1

Π is an oblique projector.

•
$$A_{12}^T z = 0 \Leftrightarrow \Pi^T z = z$$

• $\Rightarrow \Pi^T v(t) = v(t)$

Iving Large-Scale AREs Solving J

Solving AREs for lin. NSE

Further Applications

Conclusions

References

Solving AREs for Linearized Navier-Stokes Eqns.

Thus (NSDAE) is equivalent to

Projected state space system

$$\Pi E_{11} \Pi^T \frac{d}{dt} \mathbf{v}(t) = \Pi A_{11} \Pi^T \mathbf{v}(t) + \Pi B_1 \mathbf{u}(t).$$

Leads to

projected Riccati equation

$$\Pi \Pi^{T} + \Pi A_{11}^{T} \Pi^{T} X \Pi E_{11} \Pi^{T} + \Pi E_{11}^{T} \Pi^{T} X \Pi A_{11} \Pi^{T}$$
$$- \Pi E_{11}^{T} \Pi^{T} X \Pi B_{1} B_{1}^{T} \Pi^{T} X \Pi E_{11} \Pi^{T} = 0$$
$$\Pi^{T} X \Pi = X$$

If necessary p can be determined from

 $p(t) = -\left(A_{12}^{T}E_{11}^{-1}A_{12}\right)^{-1}A_{12}^{T}E_{11}^{-1}A_{11}v(t) - \left(A_{12}^{T}E_{11}^{-1}A_{12}\right)^{-1}A_{12}^{T}E_{11}^{-1}B_{1}u(t).$
Iving Large-Scale AREs Solving J

Solving AREs for lin. NSE

Further Applications

Conclusions

References

Solving AREs for Linearized Navier-Stokes Eqns.

Thus (NSDAE) is equivalent to

Projected state space system

$$\Pi E_{11} \Pi^T \frac{d}{dt} \mathbf{v}(t) = \Pi A_{11} \Pi^T \mathbf{v}(t) + \Pi B_1 \mathbf{u}(t).$$

Leads to

projected Riccati equation

$$\Pi \Pi^{T} + \Pi A_{11}^{T} \Pi^{T} X \Pi E_{11} \Pi^{T} + \Pi E_{11}^{T} \Pi^{T} X \Pi A_{11} \Pi^{T}$$
$$- \Pi E_{11}^{T} \Pi^{T} X \Pi B_{1} B_{1}^{T} \Pi^{T} X \Pi E_{11} \Pi^{T} = 0$$
$$\Pi^{T} X \Pi = X$$

If necessary p can be determined from

$$p(t) = -\left(A_{12}^{\mathsf{T}}E_{11}^{-1}A_{12}\right)^{-1}A_{12}^{\mathsf{T}}E_{11}^{-1}A_{11}v(t) - \left(A_{12}^{\mathsf{T}}E_{11}^{-1}A_{12}\right)^{-1}A_{12}^{\mathsf{T}}E_{11}^{-1}B_{1}\mathbf{u}(t).$$

References

Solving AREs for Linearized Navier-Stokes Eqns.

Solving the Projected Matrix Equations

Apply factored-Newton-ADI

Central question

How do we solve systems of equations

$$(A_\ell := A_{11} - BK_\ell)$$

$$Z = \Pi^T Z, \qquad \Pi \left(E_{11} + p_{\ell} A_{\ell} \right) \Pi^T Z = \Pi \tilde{G}$$

in the (inner) ADI steps avoiding the computation of Π ?

For $A_{\ell} = A_{11}$, i.e., $K_{\ell} = 0$:

Lemma

Heinkenschloss/Sorensen/Sun '08]

$$\begin{array}{ccc} Z &= \Pi^T Z \\ \Pi \left(E_{11} + p_{\ell} A_{11} \right) \Pi^T Z &= \Pi \tilde{G} \end{array} \Leftrightarrow \begin{bmatrix} E_{11} + p_{\ell} & A_{12} \\ A_{12}^T & 0 \end{bmatrix} \begin{bmatrix} Z \\ \Lambda \end{bmatrix} = \begin{bmatrix} \tilde{G} \\ 0 \end{bmatrix}$$

Further Applications

Conclusions

References

Solving AREs for Linearized Navier-Stokes Eqns.

Solving the Projected Matrix Equations

Apply factored-Newton-ADI

Central question

How do we solve systems of equations

$$(A_\ell := A_{11} - BK_\ell)$$

$$Z = \Pi^T Z, \qquad \Pi \left(E_{11} + p_{\ell} A_{\ell} \right) \Pi^T Z = \Pi \tilde{G}$$

in the (inner) ADI steps avoiding the computation of Π ?

For $A_{\ell} = A_{11}$, i.e., $K_{\ell} = 0$:

Lemma

[Heinkenschloss/Sorensen/Sun '08]

$$\begin{array}{ccc} Z &= \Pi^{\mathcal{T}} Z \\ \Pi \left(E_{11} + p_{\ell} A_{11} \right) \Pi^{\mathcal{T}} Z &= \Pi \tilde{G} \end{array} \Leftrightarrow \begin{bmatrix} E_{11} + p_{\ell} A_{11} & A_{12} \\ A_{12}^{\mathcal{T}} & 0 \end{bmatrix} \begin{bmatrix} Z \\ \Lambda \end{bmatrix} = \begin{bmatrix} \tilde{G} \\ 0 \end{bmatrix}$$

ving Large-Scale AREs Solving AF

Further Applications

Conclusions

References

Solving AREs for Linearized Navier-Stokes Eqns.

Solving the Projected Matrix Equations

Apply factored-Newton-ADI

Central question

Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 2. Problem: remove W from r.h.s. of Lyapunov eqns. in Newton-ADI

One step of Newton-Kleinman iteration for ARE:

$$A_j^T \underbrace{(X_j + N_j)}_{=X_{j+1}} + X_{j+1}A_j = -W - \underbrace{(X_j B)}_{=K_j^T} \underbrace{B^T X_j}_{=K_j} \quad \text{for } j = 1, 2, \dots$$

Subtract two consecutive equations \Longrightarrow

$$A_j^T N_j + N_j A_j = N_{j-1}^T B B^T N_{j-1} \qquad \text{for } j = 1, 2, \dots$$

See [BANKS/ITO '91, B./HERNÁNDEZ/PASTOR '03, MORRIS/NAVASCA '05] for details and applications of this variant.

But: need $B^T N_0 = K_1 - K_0!$

Assuming K_0 is known, need to compute K_1 .

Solving Large-Scale AREs Solving AREs for lin. NSE

Further Applications

Conclusions

References

Solving AREs for Linearized Navier-Stokes Eqns.

Solution to 2. Problem: remove W from r.h.s. of Lyapunov eqns. in Newton-ADI

Solution idea:

$$\begin{aligned} &\mathcal{K}_1 &= & \boldsymbol{B}^T \boldsymbol{X}_1 \\ &= & \boldsymbol{B}^T \int_0^\infty e^{(\boldsymbol{A} - \boldsymbol{B} \boldsymbol{K}_0)^T t} (\boldsymbol{W} + \boldsymbol{K}_0^T \boldsymbol{K}_0) e^{(\boldsymbol{A} - \boldsymbol{B} \boldsymbol{K}_0) t} \, dt \\ &= & \int_0^\infty g(t) \, dt \approx \sum_{\ell=0}^N \gamma_\ell g(t_\ell), \end{aligned}$$

where
$$g(t) = \left(\left(e^{(A - BK_0)t} B \right)^T \left(W + K_0^T K_0 \right) \right) e^{(A - BK_0)t}$$

[BORGGGAARD/STOYANOV '08]:

evaluate $g(t_{\ell})$ using ODE solver applied to $\dot{x} = (A - BK_0)x + adjoint$ eqn.

References

Solving AREs for Linearized Navier-Stokes Eqns.

Better solution idea:

(related to frequency domain POD [WILLCOX/PERAIRE '02])

$$\begin{split} \mathcal{K}_1 &= & B^T X_1 \qquad (\text{Notation: } A_0 := A - B \mathcal{K}_0) \\ &= & B^T \cdot \frac{1}{2\pi} \int_{-\infty}^{\infty} (\jmath \omega I_n - A_0)^{-H} (W + \mathcal{K}_0^T \mathcal{K}_0) (\jmath \omega I_n - A_0)^{-1} \, d\omega \\ &= & \int_{-\infty}^{\infty} f(\omega) \, d\omega \approx \sum_{\ell=0}^{N} \gamma_\ell f(\omega_\ell), \end{split}$$

where $f(\omega) = \left(-\left((\jmath\omega I_n + A_0)^{-1}B\right)^T (W + K_0^T K_0)\right) (\jmath\omega I_n - A_0)^{-1}$.

Evaluation of $f(\omega_{\ell})$ requires

- 1 sparse LU decmposition (complex!),
- 2*m* forward/backward solves,
- *m* sparse and 2*m* low-rank matrix-vector products.

Use adaptive quadrature with high accuracy, e.g. Gauß-Kronrod (quadgk in MATLAB).

References

Further Applications

Navier-Stokes Coupled with (Passive) Transport of (Reactive) Species

Ø

Goal: stabilize concentration at certain level

Model equations:

$$\partial_t \mathbf{v} - \frac{1}{Re} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla \mathbf{p} = \mathbf{f}$$

div $\mathbf{v} = 0$
 $\partial_t \mathbf{c} + \mathbf{v} \cdot \nabla \mathbf{c} - \frac{1}{Re \cdot Sc} \Delta \mathbf{c} = 0$

with boundary conditions:

 $\begin{aligned} \mathbf{v} &= \mathbf{v}_0 & \mathbf{c} &= \mathbf{c}_0 = const & \text{on } \Gamma_{in} \\ \mathbf{v} &= 0 & \partial_\nu \mathbf{c} &= 0 & \text{on } \Gamma_{wall} \\ \mathbf{v} &= 0 & \mathbf{c} &= 0 & \text{on } \Gamma_r, \end{aligned}$

References

Further Applications

Navier-Stokes Coupled with (Passive) Transport of (Reactive) Species

Ø

Goal: stabilize concentration at certain level

Model equations:

$$\partial_t \mathbf{v} - \frac{1}{Re} \Delta \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \nabla \mathbf{p} = \mathbf{f}$$

div $\mathbf{v} = 0$
 $\partial_t \mathbf{c} + \mathbf{v} \cdot \nabla \mathbf{c} - \frac{1}{Re \cdot Sc} \Delta \mathbf{c} = 0$

Domain:

Results for Re = 10, Sc = 10

movie

no control

piecewise constant feedback

Computations by Heiko Weichelt

Conclusions and Future Work

- Progress in solving AREs in the last decade now allows application of Riccati feedback to realistic PDE control problems.
- Implementation for Navier-Stokes and multi-field flow problems in progress, requires many details not encountered for linear convection-diffusion or beam equations.
- For 3D problems, need dedicated preconditioned iterative "saddle point" solver.
 - "(1,1)"-term is nonsymmetric sparse matrix + low-rank perturbation \rightsquigarrow joint work with A. Wathen, M. Stoll.
- Model reduction based on LQG balanced truncation for flow problems in L₂(0, ∞; V_n(Ω)) can be based on derived Riccati solver.

Refe	rences			
•	P. Benner. Partial Stabilization of Descriptor Systems Using Spectral Projectors. In V. Olshevsky et al (eds.), <i>Numerical Linear Algebra in Signals, Systems, and Control</i> , Lecture Notes in Electrical Engineering, Springer-Verlag (to appear).			
2	E. Bänsch and P. Benner Stabilization of Incompressible Flow Problems by Riccati-Based Feedback In G. Leugering et al. (eds.), <i>Constrained Optimization and Optimal Control for Partial</i> <i>Differential Equations</i> , ISNM, Birkhäuser, Basel, to appear.			
6	P. Benner and J. Saak A Galerkin-Newton-ADI Method for Solving Large-Scale Algebraic Riccati Equations, <i>Preprint SPP1253-090</i> (January 2010) Submitted to SIMAX			
4	P. Benner, JR. Li, and T. Penzl. Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems. <i>Numer. Lin. Alg. Appl.</i> , vol. 15, no. 9, pp. 755–777, 2008.			
6	P. Benner and T. Stykel. Numerical algorithms for projected generalized Riccati equations. Preprint, 2010.			

R. Schneider, T. Rothaug and P. Benner.
Flow stabilisation by Dirichlet boundary control.
Proc. Appl. Math. Mech., vol. 8, pp. 10961–10962, 2008.