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Introduction
Optimal control-based stabilization for Navier-Stokes equations

Stabilization to steady-state solution w of flows (with velocity field v and
pressure χ), described by incompressible Navier-Stokes equations

∂tv + v · ∇v − 1

Re
∆v +∇χ = f (1a)

div v = 0 (1b)

on Q∞ := Ω× (0,∞), Ω ⊆ Rd , d = 2, 3, with smooth boundary Γ := ∂Ω,
and boundary and initial conditions

v = g on Σ∞ := Γ× (0,∞),

v(0) = w + z(0) (w given velocity field).

Existence of stabilizing linear state feedback control proved in 2D
[Fernández-Cara et al 2004] and 3D [Fursikov 2004].

Construction of stabilizing feedback control based on associated
linear-quadratic optimal control problem:

for distributed control, see [Barbu 2003, Barbu/Sritharan 1998,

Barbu/Triggiani 2004];
for boundary control, see [Barbu/Lasiecka/Triggiani 2006/07]

(tangential) and [Raymond 2005–07, Bahdra 2009] (normal).
Max Planck Institute Magdeburg Eberhard Bänsch, Peter Benner, Jens Saak, 3/42
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Optimal control-based stabilization for NSEs
Analytical solution [Raymond‘’05–’07]

Assume w solves the stationary Navier-Stokes equations

w · ∇w − 1

Re
∆w +∇χs = f , div w = 0, (2)

with Dirichlet boundary condition w = g on Γ, w possibly unstable.
If we can determine a Dirichlet boundary control u so that the corresponding
controlled system for z := v − w ,

∂tz + (z · ∇)w + (w · ∇)z + (z · ∇)z − 1

Re
∆z +∇p = 0 in Q∞,

div z = 0 in Q∞,

z = bu in Σ∞,

z(0) = z0 in Ω,

is stable for “small” initial values z0 ∈ X (Ω) ⊂ V 0
n (Ω), where

V 0
n (Ω) := L2(Ω) ∩ {div z = 0} ∩ {z · n = 0 on Γ},

then ∃ constants c, ω > 0 so that ‖z(t)‖X (Ω) ≤ ce−ωt .

=⇒
n Solution to instationary Navier-Stokes equations with v = w + z ,

χ = χs + p, and v(0) = w + z0 in Ω is controlled to w .

Max Planck Institute Magdeburg Eberhard Bänsch, Peter Benner, Jens Saak, 4/42
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Introduction Solving Large-Scale AREs Solving AREs for lin. NSE Further Applications Conclusions References

Optimal control-based stabilization for NSEs
Analytical solution [Raymond‘’05–’07]

Linearized Navier-Stokes control system:

∂tz + (z · ∇)w + (w · ∇)z − 1

Re
∆z − ωz +∇p = 0 in Q∞ (3a)

div z = 0 in Q∞ (3b)

z = bu in Σ∞ (3c)

z(0) = z0 in Ω, (3d)

ωz with ω > 0 de-stabilizes the system further, needed to guarantee exponential

stabilization, ω controls decay rate!

Cost functional (with P = Helmholtz projector)

J(z , u) =
1

2

Z ∞
0

〈Pz ,Pz〉L2(Ω) + ρu(t)2 dt, (4)

the linear-quadratic optimal control problem associated to (3) becomes

inf {J(z , u) | (z , u) satisfies (3), u ∈ L2(0,∞)} . (5)

Max Planck Institute Magdeburg Eberhard Bänsch, Peter Benner, Jens Saak, 5/42
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Optimal control-based stabilization for NSEs
Analytical solution [Raymond‘’05–’07]

Proposition [Raymond ’05, Bahdra ’09]

The solution to the instationary Navier-Stokes equations with perturbed
initial data is exponentially controlled to the steady-state solution w by
the feedback law

u = −ρ−1B∗ΠzH ,

where

– zH := Pz , with P : L2(Ω) 7→ V 0
n (Ω) being the Helmholtz projector

( div zH ≡ 0);

– Π = Π∗ ∈ L(V 0
n (Ω)) is the unique nonnegative semidefinite weak

solution of the operator Riccati equation

0 = I + (A + ωI )∗Π + Π(A + ωI )− Π(BτB
∗
τ + ρ−1BnB

∗
n )Π,

A is the linearized Navier-Stokes operator restricted to V 0
n ;

Bτ and Bn correspond to the projection of the control action in the
tangential and normal directions.
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Long-Term Plan

Apply optimal control-based feedback stabilization to (multi-)field problems
with increasing complexity:

Proof of concept: Navier-Stokes with normal boundary control for model
problem (von Kármán vortex shedding).

Navier-Stokes coupled with (passive) transport of (reactive) species.

Phase transition liquid/solid with convection.

Stabilization of a flow with a free capillary surface.

Control for electrically conducting fluids in presence of outer magnetic
fields (MHD).

All scenarios require

formulation as abstract parabolic Cauchy problem,

definition of quadratic cost functional,

formulation of corresponding ARE,

spatial discretization (FEM),

numerical solution of large-scale ARE.
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Introduction
Proof of concept: von Kármán vortex street

von Kármán vortex street (Re = 300)

Vortex suppression by blowing in at upper end of cylinder,
without . . .

and with stabilizing feedback

Computations by Heiko Weichelt
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Solving Large-Scale AREs
Low-Rank Newton-ADI for AREs

Consider
0 = R(X ) := CT C + AT X + XA− XBBT X

Re-write Newton’s method for AREs (Aj := A− BBT Xj )

DR(Xj ) (Nj ) = −R(Xj )

⇐⇒
AT

j (Xj + Nj )︸ ︷︷ ︸
=Xj+1

+ (Xj + Nj )︸ ︷︷ ︸
=Xj+1

Aj = −CT C − XjBBT Xj︸ ︷︷ ︸
=:−Wj W T

j

Set Xj = ZjZ
T
j for rank (Zj )� n =⇒

AT
j

(
Zj+1Z

T
j+1

)
+
(
Zj+1Z

T
j+1

)
Aj = −WjW

T
j

Factored Newton Iteration [B./Li/Penzl ’99/’08]

Solve Lyapunov equations for Zj+1 directly by factored ADI iteration and
exploit ‘sparse + low-rank’ structure of Aj .
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Low-Rank Newton-ADI for AREs
Low-Rank Approximation

Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

Linear 1D heat equation with
point control,

Ω = [ 0, 1 ],

FEM discretization using linear
B-splines,

h = 1/100 =⇒ n = 101.

Idea: X = X T ≥ 0 =⇒

X = ZZT =
n∑

k=1

λkzkzT
k ≈ Z (r)(Z (r))T =

r∑
k=1

λkzkzT
k .

=⇒ Goal: compute Z (r) ∈ Rn×r directly w/o ever forming X !

Max Planck Institute Magdeburg Eberhard Bänsch, Peter Benner, Jens Saak, 10/42
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Review: LRCF-ADI for Lyapunov Equations

Consider FX + XF T = −GGT

ADI iteration for the Lyapunov equation (LE) [Wachspress ’95]

For j = 1, . . . , J
X0 = 0

(F + pj I )Xj− 1
2

= −GGT − Xj−1(F T − pj I )

(F + pj I )X T
j = −GGT − X T

j− 1
2

(F T − pj I )

Rewrite as one step iteration and factorize Xi = ZiZ
T
i , i = 0, . . . , J

Z0Z
T
0 = 0

ZjZ
T
j = −2pj (F + pj I )−1GGT (F + pj I )−T

+(F + pj I )−1(F − pj I )Zj−1Z
T
j−1(F − pj I )T (F + pj I )−T

. . . low-rank Cholesky factor ADI
[Penzl ’97/’00, Li/White ’99/’02, B./Li/Penzl ‘99/’08, Gugercin/Sorensen/Antoulas ’03]
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Review: LRCF-ADI for Lyapunov Equations
The Work Horse

Algorithm 1 Low-rank Cholesky factor ADI iteration (LRCF-ADI)

[Penzl ’97/’00, Li/White ’99/’02, B./Li/Penzl ’99/’08]

Input: F ,G defining FX + XF T = −GGT and shifts {p1, . . . , pimax}
Output: Z = Zimax ∈ Cn×timax , such that ZZH ≈ X

1: Solve (F + p1I ) V1 =
√
−2 Re (p1)G for V1.

2: Z1 = V1

3: for i = 2, 3, . . . , imax do
4: Solve (F + pi I )Ṽ = Vi−1 for Ṽ .

5: Vi =
√

Re (pi )/Re (pi−1)
(
Vi−1 − (pi + pi−1)Ṽ

)
6: Zi = [Zi−1 Vi ]
7: end for

Max Planck Institute Magdeburg Eberhard Bänsch, Peter Benner, Jens Saak, 12/42
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Krylov Subspace Based Solvers for Lyapunov Equations

Consider Schur/singular value decomposition X = UΣUT ,
U ∈ Rn×n, UT U = I , Σ = diag (σ1, . . . , σn) and |σ1| ≥ |σ2| ≥ · · · ≥ |σn|.
The best rank-m Frobenius-norm approximation to X is thus given by

Xm := U

[
Σm 0
0 0

]
UT = UmΣmUT

m .

Krylov projection idea [Saad ’90, Jaimoukha/Kasenally ’94]

Solve

(UT
m FUm)Ym + Ym(UT

m F T Um) = −UT
m GGT Um, (6)

on colspan(Um) and get Xm as

Xm = UmYmUT
m .
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Krylov Subspace Based Solvers for Lyapunov Equations

Consider Schur/singular value decomposition X = UΣUT ,
U ∈ Rn×n, UT U = I , Σ = diag (σ1, . . . , σn) and |σ1| ≥ |σ2| ≥ · · · ≥ |σn|.
The best rank-m Frobenius-norm approximation to X is thus given by

Xm := U

[
Σm 0
0 0

]
UT = UmΣmUT

m .

Note that a factorization
ZmZT

m = Xm

can easily be computed from a Cholesky factorization of

Ym = Z̃mZ̃T
m

as
Zm = UmZ̃m.
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Krylov Subspace Based Solvers for Lyapunov Equations
Basic Algorithm

Algorithm 2 Basic Krylov Subspace Method for the Lyapunov Equation

Input: F ,G defining FX + XF T = −GGT , an initial Krylov subspace V,
e.g., V = Kp(F ,G ) or V = Kp(F ,G ) ∪ Kp(F−1,G )1 with orthogonal
basis V ∈ Cn×p.

Output: Z ∈ Cn×t , such that ZZH ≈ X
repeat

if not first step then
increase dimension of V and update V .

end if
Solve the “small” LE for Z̃ with a classical solver:

(V T FV )Z̃ Z̃T + Z̃ Z̃T (V T F T V ) = −V T GGT V ,

Lift Z̃ to the full space: Z = V Z̃
until res(Z )< TOL

1(K-PIK, [Simoncini ’07])
Max Planck Institute Magdeburg Eberhard Bänsch, Peter Benner, Jens Saak, 14/42
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LRCF-ADI with Galerkin Projection
ADI and Rational Krylov

[Li ’00; Theorem 2] interprets the column span of the ADI solution as a
certain rational Krylov subspace

L(F , G , p) := span

8<: . . . ,

−1Y
i=−j

(F + pi I )−1G , . . . , (F + p−2I )−1(F + p−1I )−1G ,

(F + p−1I )−1G , G , (F + p1I )G ,

(F + p2I )(F + p1I )G , . . . ,

jY
i=1

(F + pi I )G . . .

9=;

Idea

Solve on current subspace of L(F ,G ,p) in the ADI step to increase the
quality of the iterate.
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LRCF-ADI with Galerkin Projection

Projected ADI Step → LRCF-ADI-GP
[B./Li/Truhar’09, Saak’09, B./Saak’10]

1 Compute the LRCF-ADI iterate Zi

2 Compute orthogonal basis via RRQR factorizationa: QiRi Πi = Zi

3 Solve (for Z̃ ) the projected Lyapunov equation

(QT
i FQi )Z̃ Z̃T + Z̃ Z̃T (QT

i F T Qi ) = −QT
i GGT Qi

4 Update Zi according to Zi := Qi Z̃

aeconomy size QR with column pivoting; crucial to compute correct subspace if
Zi rank deficient.

Need to ensure that projected systems remain stable, e.g.,
F + F T < 0;

may perform projected ADI step only every k-th step (e.g. k = 5)  
restarted ADI with shifts Λ(QT

i FQi ).
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LRCF-ADI with Galerkin Projection
Test Example: Optimal Cooling of Steel Profiles

Mathematical model: boundary control for
linearized 2D heat equation.

c · ρ ∂
∂t

x = λ∆x , ξ ∈ Ω

λ
∂

∂n
x = κ(uk − x), ξ ∈ Γk , 1 ≤ k ≤ 7,

∂

∂n
x = 0, ξ ∈ Γ0.

=⇒ q = 7, p = 6.

FEM Discretization, different models for
initial mesh (n = 371),
1, 2, 3, 4 steps of mesh refinement ⇒
n = 1 357, 5 177, 20 209, 79 841. 2

3
4

9 10

1516

22

34

43

47

51

55

60 63

83
92

Source: Physical model: courtesy of Mannesmann/Demag.

Math. model: Tröltzsch/Unger ’99/’01, Penzl ’99, S. ’03.
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LRCF-ADI with Galerkin Projection
Numerical Results

Steel profile n=20 209 good shifts
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LRCF-ADI with Galerkin Projection
Numerical Results

Steel profile n=20 209 bad shifts
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Solving Large-Scale AREs
LRCF-NM for the ARE

Consider R(X ) := CT C + AT X + XA− XBBT X = 0

Newton’s Iteration for the ARE

R′|X (N`) = −R(X`), X`+1 = X` + N`, ` = 0, 1, . . .

where the Frechét derivative of R at X is the Lyapunov operator

R′|X : Q 7→ (A− BBT X )T Q + Q(A− BBT X ),

i.e., in every Newton step solve a

Lyapunov Equation [Kleinman ’68]

F T
` X`+1 + X`+1F` = −G`G

T
` ,

where F` := A− BBT X`, G := [−CT , −X`B ].

Max Planck Institute Magdeburg Eberhard Bänsch, Peter Benner, Jens Saak, 20/42
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Solving Large-Scale AREs
LRCF-NM for the ARE

Factored Newton-Kleinman Iteration [B./Li/Penzl ’99/’08]

F` = A− BBT X` =: A− BK` is “sparse + low rank”,
G` = [ CT , KT

` ] is low rank factor.

Apply LRCF-ADI in every Newton step;

exploit structure of F` using Sherman-Morrison-Woodbury formula:

(A− BK` + p
(`)
k In)−1 =

(In + (A + p
(`)
k In)−1B(Im − K`(A + p

(`)
k In)−1B)−1K`)(A + p

(`)
k In)−1
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LRCF-NM for the ARE
Algorithms

Algorithm 3 Low-Rank Cholesky Factor Newton Method (LRCF-NM)

Input: A, B, C , K (0) for which A− BK (0)T
is stable

Output: Z = Z (kmax ), such that ZZH approximates the solution X of

CT C + AT X + XA− XBBT X = 0.

1: for k = 1, 2, . . . , kmax do

2: Determine (sub)optimal ADI shift parameters p
(k)
1 , p

(k)
2 , . . .

with respect to the matrix F (k) = AT − K (k−1)BT .
3: G (k) =

[
CT K (k−1)

]
4: Compute Z (k) using Algorithm 1 (LRCF-ADI) or (LRCF-ADI-GP)

such that F (k)Z (k)Z (k)H
+ Z (k)Z (k)H

F (k)T ≈ −G (k)G (k)T
.

5: K (k) = Z (k)(Z (k)H
B)

6: end for
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LRCF-NM for the ARE
Algorithms

Algorithm 4 Simplified Low-Rank Cholesky Factor Newton Method (LRCF-NM-S)

Input: A, B, C , K (0) for which A− BK (0)T
is stable

Output: Z = Z (kmax ), such that ZZH approximates the solution X of

CT C + AT X + XA− XBBT X = 0.

1: Determine (sub)optimal ADI shift parameters p1, p2, . . .
with respect to F (0) = AT − K (0)BT or F (∞) = limk→∞ F (k).

2: for k = 1, 2, . . . , kmax do
3: G (k) =

[
CT K (k−1)

]
4: Compute Z (k) using Algorithm 1 (LRCF-ADI) or (LRCF-ADI-GP)

such that F (k)Z (k)Z (k)H
+ Z (k)Z (k)H

F (k)T ≈ −G (k)G (k)T
.

5: K (k) = Z (k)(Z (k)H
B)

6: end for
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LRCF-NM for the ARE
Algorithms

Algorithm 5 Low-Rank Cholesky Factor Galerkin-Newton Method (LRCF-NM-GP)

Input: A, B, C , K (0) for which A− BK (0)T
is stable

Output: Z = Z (kmax ), such that ZZH approximates the solution X of

CT C + AT X + XA− XBBT X = 0.

1: for k = 1, 2, . . . , kmax do

2: Determine (sub)optimal ADI shift parameters p
(k)
1 , p

(k)
2 , . . .

with respect to the matrix F (k) = AT − K (k−1)BT .
3: G (k) =

[
CT K (k−1)

]
4: Compute Z (k) using Algorithm 1 (LRCF-ADI) or (LRCF-ADI-GP)

such that F (k)Z (k)Z (k)H
+ Z (k)Z (k)H

F (k)T ≈ −G (k)G (k)T
.

5: Project ARE, solve and prolongate solution.

6: K (k) = Z (k)(Z (k)H
B)

7: end for
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Solving for the Feedback Operator
Feedback Iteration

Optimal feedback
K∗ = BT X∗ = BT Z∗Z

T
∗

can be computed by direct feedback iteration:

jth Newton iteration:

Kj = BT ZjZ
T
j =

kmax∑
k=1

(BT Vj,k )V T
j,k

j→∞
−−−−→ K∗ = BT Z∗Z

T
∗

Kj can be updated in ADI iteration, Aj = BKj

⇒ no need to form Zj , need only fixed workspace for Kj ∈ Rm×n!

Related to earlier work by [Banks/Ito ’91].

Zj,k = [Zj,k−1,Vj,k ],

j : Newton index,

k: ADI index.
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Feedback Iteration
Test Examples

Example 1: 3d Convection-Diffusion Equation

FDM for 3D convection-diffusion equation on [0, 1]3

proposed in [Simoncini ’07], q = p = 1

non-symmetric A ∈ Rn×n , n = 10 648

Example 2: 2d Convection-Diffusion Equation

FDM for 2D convection-diffusion equations on [0, 1]2

LyaPack benchmark, q = p = 1, e.g., demo l1

non-symmetric A ∈ Rn×n, n = 22 500.

16 shift parameters

Penzl’s heuristic from 50/25 Ritz/harmonic Ritz values of A
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Introduction Solving Large-Scale AREs Solving AREs for lin. NSE Further Applications Conclusions References

Feedback Iteration
Test Results (ADI-loop): Example 1

Newton-ADI
NWT rel. change rel. residual ADI

1 9.97 · 10−01 9.27 · 10−01 100

2 3.67 · 10−02 9.58 · 10−02 94

3 1.36 · 10−02 1.09 · 10−03 98

4 3.48 · 10−04 1.01 · 10−07 97

5 6.41 · 10−08 1.34 · 10−10 97

6 7.47 · 10−16 1.34 · 10−10 97

CPU time: 4 805.8 sec.

Newton-Galerkin-ADI LRCF-ADI-GP(5)

NWT rel. change rel. residual ADI

1 9.97 · 10−01 9.29 · 10−01 80

2 3.67 · 10−02 9.60 · 10−02 30

3 1.36 · 10−02 1.09 · 10−03 28

4 3.47 · 10−04 1.01 · 10−07 35

5 6.41 · 10−08 1.03 · 10−10 25

6 1.23 · 10−11 1.98 · 10−11 27

CPU time: 1 460.1 sec.

test system: Intel® Xeon® 5160 3.00GHz ; 16 GB RAM;
64Bit-MATLAB ® (R2010a) using threaded BLAS (romulus)
stopping criterion tolerances: 10−10
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Feedback Iteration
Test Results (ADI-loop): Example 2

Newton-ADI
NWT rel. change rel. residual ADI

1 1 1.70 · 10+02 46

2 2.88 · 10−01 4.25 · 10+01 39

3 2.13 · 10−01 1.06 · 10+01 43

4 1.77 · 10−01 2.58 · 10+00 46

5 2.47 · 10−01 5.15 · 10−01 43

6 3.04 · 10−01 3.26 · 10−02 52

7 1.78 · 10−02 6.90 · 10−05 50

8 2.60 · 10−05 1.08 · 10−10 46

9 2.75 · 10−11 1.07 · 10−10 50

CPU time: 493.81 sec.

Newton-Galerkin-ADI LRCF-ADI-GP(5)

NWT rel. change rel. residual ADI

1 1 1.70 · 10+02 35

2 2.88 · 10−01 4.25 · 10+01 15

3 2.13 · 10−01 1.06 · 10+01 20

4 1.77 · 10−01 2.58 · 10+00 20

5 2.47 · 10−01 5.15 · 10−01 20

6 3.04 · 10−01 3.26 · 10−02 17

7 1.78 · 10−02 6.90 · 10−05 20

8 2.60 · 10−05 1.10 · 10−10 20

9 2.75 · 10−11 1.92 · 10−12 20

CPU time: 280.55 sec.

test system: Intel®Core™2 Quad Q9400 2.66 GHz; 4 GB RAM;
64Bit-MATLAB (R2009a) using threaded BLAS (reynolds)
stopping criterion tolerances: 10−10
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Feedback Iteration
Test Results (both-loops): Example 1

Newton-ADI
NWT rel. change rel. residual ADI

1 9.97 · 10−01 9.27 · 10−01 100

2 3.67 · 10−02 9.58 · 10−02 94

3 1.36 · 10−02 1.09 · 10−03 98

4 3.48 · 10−04 1.01 · 10−07 97

5 6.41 · 10−08 1.34 · 10−10 97

6 7.47 · 10−16 1.34 · 10−10 97

CPU time: 4 805.8 sec.

NG-ADI inner= 5, outer= 1
NWT rel. change rel. residual ADI

1 9.98 · 10−01 5.04 · 10−11 80

CPU time: 497.6 sec.

NG-ADI inner= 1, outer= 1
NWT rel. change rel. residual ADI

1 9.98 · 10−01 7.42 · 10−11 71

CPU time: 856.6 sec.

NG-ADI inner= 0, outer= 1
NWT rel. change rel. residual ADI

1 9.98 · 10−01 6.46 · 10−13 100

CPU time: 506.6 sec.

test system: Intel® Xeon® 5160 3.00GHz ; 16 GB RAM;
64Bit-MATLAB (R2010a) using threaded BLAS (romulus)
stopping criterion tolerances: 10−10
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Feedback Iteration
Test Results (both-loops): Example 2

Newton-ADI
NWT rel. change rel. residual ADI

1 1 1.70 · 10+02 46

2 2.88 · 10−01 4.25 · 10+01 39

3 2.13 · 10−01 1.06 · 10+01 43

4 1.77 · 10−01 2.58 · 10+00 46

5 2.47 · 10−01 5.15 · 10−01 43

6 3.04 · 10−01 3.26 · 10−02 52

7 1.78 · 10−02 6.90 · 10−05 50

8 2.60 · 10−05 1.08 · 10−10 46

9 2.75 · 10−11 1.07 · 10−10 50

CPU time: 493.81 sec.

NG-ADI inner= 5, outer= 1
NWT rel. change rel. residual ADI

1 1 3.30 · 10−11 35

CPU time: 24.1 sec.

NG-ADI inner= 1, outer= 1
NWT rel. change rel. residual ADI

1 1 1.31 · 10−11 34

CPU time: 26.8 sec.

NG-ADI inner= 0, outer= 1
NWT rel. change rel. residual ADI

1 1 3.27 · 10−15 46

CPU time: 24.0 sec.

test system: Intel®Core™2 Quad Q9400 2.66 GHz; 4 GB RAM;
64Bit-MATLAB (R2009a) using threaded BLAS (reynolds)
stopping criterion tolerances: 10−10
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Feedback Iteration
Computation Time Scales Linearly with Problem Size

Ω

(0, 1)

(0, 0)

(1, 1)

(1, 0)

Γc

∂tx(ξ, t) = ∆x(ξ, t) in Ω

∂νx = b(ξ) · u(t)− x on Γc

∂νx = −x on ∂Ω \ Γc

x(ξ, 0) = 1

Control operator: Here b(ξ) = 4 (1− ξ2) ξ2 for ξ ∈ Γc and 0 otherwise.
Output equation: y = Cx , where

C : L2(Ω) → R
x(ξ, t) 7→ y(t) =

∫
Ω

x(ξ, t) dξ,
⇒ Ch = 1 ·Mh.

Cost functional:

J (u) =

∫ ∞
0

y2(t) + u2(t) dt.
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Feedback Iteration
Scaling results

simplified Low Rank Newton-Galerkin ADI

generalized state space form implementation

Penzl shifts (16/50/25) with respect to initial matrices

projection acceleration in every outer iteration step

projection acceleration in every 5-th inner iteration step

test system: Intel®Xeon® 5160 @ 3.00 GHz; 16 GB RAM;
64Bit-MATLAB (R2010a) using threaded BLAS (romulus)
stopping criterion tolerances: 10−10
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Feedback Iteration
Scaling results

Computation Times

discretization level problem size time in seconds
3 81 5.53 · 10−2

4 289 1.33 · 10−1

5 1 089 2.84 · 10−1

6 4 225 1.51 · 10+0

7 16 641 9.52 · 10+0

8 66 049 5.97 · 10+1

9 263 169 4.72 · 10+2

10 1 050 625 6.89 · 10+3

11 4 198 401 8.08 · 10+4

(Finest level: 8.813.287.577.601 unknowns, taking symmetry into account.)

test system: Intel®Xeon® 5160 @ 3.00 GHz; 16 GB RAM;
64Bit-MATLAB (R2010a) using threaded BLAS (romulus)
stopping criterion tolerances: 10−10
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Solving AREs for Linearized Navier-Stokes Eqns.
0 = M + (A + ωM)T X + X (A + ωM)−MXBBT XM

Problems with Newton-Kleinman

1 Discretization of Helmholtz-projected linearized Navier-Stokes equations
would need divergence-free finite elements.

Here, we want to use standard discretization
(Taylor-Hood elements available in flow solver Navier).

Explicit projection of ansatz functions possible using application of
Helmholtz projection, but too expensive in general.

2 Each step of Newton-Kleinman iteration: solve

AT
j Zj+1Z T

j+1M + MZj+1Z T
j+1Aj = −M − K T

j Kj

nv := rank (M) = dim of ansatz space for velocities.

 need to solve nv + m linear systems of equations in each step of
Newton-ADI iteration!

3 Linearized system (i.e., A + ωM) is unstable in general.

But to start Newton iteration, a stabilizing initial guess is needed!
√
�

0 = I + (A +ωI)∗X + X(A +ωI)−X(BτB∗τ + ρ−1BnB∗n)X

[B. ’08 ]Partial Stabilization of Descriptor Systems Using Spectral
Projectors; to appear in V. Olshevsky et al (eds.), Numerical Linear Algebra in Signals,

Systems and Control, Lecture Notes in Electrical Engineering, Springer-Verlag.

[Hein ’10 ]MPC/LQG-Based Optimal Control of Nonlinear Parabolic PDEs;
PhD thesis Chemnitz UT.
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Solving AREs for Linearized Navier-Stokes Eqns.
Solution to 1. Problem/no need for divergence free FE

incompressible Navier-Stokes-Equations

∂v

∂t
− 1

Re
∆v + v.∇v +∇p = 0 + B.C.

∇.v = 0
(NSE)

Spatial FE discretization

Mv̇(t) = K (v)v(t)− Gp(t) + B1u(t)

0 = GT v(t)
(dNSE)

Linearization and change of notation

E11v̇(t) = A11v(t) + A12p(t) + B1u(t)

0 = AT
12v(t)

(NSDAE)
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Solving AREs for Linearized Navier-Stokes Eqns.
Solution to 1. Problem/no need for divergence free FE

E11v̇(t) = A11v(t) + A12p(t) + B1u(t)

0 = AT
12v(t)

Multiplication of line one from the left by AT
12E
−1
11 together with

0 = AT
12v(t)⇒ 0 = AT

12v̇(t) reveals the

0 = AT
12E
−1
11 A11v(t) + AT

12E
−1
11 A12p(t) + AT

12E
−1
11 B1u(t),

hidden manifold
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Solving AREs for Linearized Navier-Stokes Eqns.
Solution to 1. Problem/no need for divergence free FE

E11v̇(t) = A11v(t) + A12p(t) + B1u(t)

0 = AT
12v(t)

Multiplication of line one from the left by AT
12E
−1
11 together with

0 = AT
12v(t)⇒ 0 = AT

12v̇(t) reveals the

0 = AT
12E
−1
11 A11v(t) + AT

12E
−1
11 A12p(t) + AT

12E
−1
11 B1u(t),

hidden manifold

which implies

p(t) = −
(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11 A11v(t)−

(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11 B1u(t).
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Solving AREs for Linearized Navier-Stokes Eqns.
Solution to 1. Problem/no need for divergence free FE

Inserting p we find

E11v̇(t) =
(
I − A12

(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11

)
A11v(t)

+
(
I − A12

(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11

)
B1u(t)

Definition [Heinkenschloss/Sorensen/Sun ’08]

Π := I − A12

(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11
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Solving AREs for Linearized Navier-Stokes Eqns.
Derivation of the Projected State Space System and Matrix Equations

Definition [Heinkenschloss/Sorensen/Sun ’08]

Π := I − A12

(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11

Properties

Π2 = Π

ΠE11 = E11ΠT

null(Π) = range(A12)

range(Π) = null(AT
12E
−1
11 )

This implies

Lemma 1 [Heinkenschloss/Sorensen/Sun ’08]

Π is an oblique projector.

AT
12z = 0⇔ ΠT z = z

⇒ ΠT v(t) = v(t)
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Solving AREs for Linearized Navier-Stokes Eqns.
Derivation of the Projected State Space System and Matrix Equations

Thus (NSDAE) is equivalent to

Projected state space system

ΠE11ΠT d

dt
v(t) = ΠA11ΠT v(t) + ΠB1u(t).

Leads to

projected Riccati equation

ΠΠT + ΠAT
11ΠT XΠE11ΠT + ΠET

11ΠT XΠA11ΠT

−ΠET
11ΠT XΠB1B

T
1 ΠT XΠE11ΠT = 0

ΠT XΠ = X .

If necessary p can be determined from

p(t) = −
(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11 A11v(t)−

(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11 B1u(t).
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Introduction Solving Large-Scale AREs Solving AREs for lin. NSE Further Applications Conclusions References

Solving AREs for Linearized Navier-Stokes Eqns.
Derivation of the Projected State Space System and Matrix Equations

Thus (NSDAE) is equivalent to

Projected state space system

ΠE11ΠT d

dt
v(t) = ΠA11ΠT v(t) + ΠB1u(t).

Leads to

projected Riccati equation

ΠΠT + ΠAT
11ΠT XΠE11ΠT + ΠET

11ΠT XΠA11ΠT

−ΠET
11ΠT XΠB1B

T
1 ΠT XΠE11ΠT = 0

ΠT XΠ = X .

If necessary p can be determined from

p(t) = −
(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11 A11v(t)−

(
AT

12E
−1
11 A12

)−1
AT

12E
−1
11 B1u(t).

Max Planck Institute Magdeburg Eberhard Bänsch, Peter Benner, Jens Saak, 36/42
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Solving AREs for Linearized Navier-Stokes Eqns.
Solving the Projected Matrix Equations

Apply factored-Newton-ADI

Central question

How do we solve systems of equations (A` := A11 − BK`)

Z = ΠT Z , Π (E11 + p`A`) ΠT Z = ΠG̃

in the (inner) ADI steps avoiding the computation of Π?

For A` = A11, i.e., K` = 0:

Lemma [Heinkenschloss/Sorensen/Sun ’08]

Z = ΠT Z

Π (E11 + p`A11) ΠT Z = ΠG̃
⇔
[
E11 + p` A12

AT
12 0

] [
Z
Λ

]
=

[
G̃
0

]
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Introduction Solving Large-Scale AREs Solving AREs for lin. NSE Further Applications Conclusions References

Solving AREs for Linearized Navier-Stokes Eqns.
Solving the Projected Matrix Equations

Apply factored-Newton-ADI

Central question

How do we solve systems of equations (A` := A11 − BK`)

Z = ΠT Z , Π (E11 + p`A`) ΠT Z = ΠG̃

in the (inner) ADI steps avoiding the computation of Π?

For A` = A11, i.e., K` = 0:

Lemma [Heinkenschloss/Sorensen/Sun ’08]

Z = ΠT Z

Π (E11 + p`A11) ΠT Z = ΠG̃
⇔
[
E11 + p`A` A12

AT
12 0

] [
Z
Λ

]
=

[
G̃
0

]

exploit “sparse + low rank” structure of A`,

precondition our saddle point problem.
(joint work with A. Wathen/M. Stoll)

tasks
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Solving AREs for Linearized Navier-Stokes Eqns.
Solution to 2. Problem: remove W from r.h.s. of Lyapunov eqns. in Newton-ADI

One step of Newton-Kleinman iteration for ARE:

AT
j (Xj + Nj )︸ ︷︷ ︸

=Xj+1

+Xj+1Aj = −W − (XjB)︸ ︷︷ ︸
=K T

j

BT Xj︸ ︷︷ ︸
=Kj

for j = 1, 2, . . .

Subtract two consecutive equations =⇒

AT
j Nj + NjAj = NT

j−1BBT Nj−1 for j = 1, 2, . . .

See [Banks/Ito ’91, B./Hernández/Pastor ’03, Morris/Navasca ’05] for details

and applications of this variant.

But: need BT N0 = K1 − K0!

Assuming K0 is known, need to compute K1.
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Solving AREs for Linearized Navier-Stokes Eqns.
Solution to 2. Problem: remove W from r.h.s. of Lyapunov eqns. in Newton-ADI

Solution idea:

K1 = BT X1

= BT

Z ∞
0

e(A−BK0)T t(W + K T
0 K0)e(A−BK0)t dt

=

Z ∞
0

g(t) dt ≈
NX
`=0

γ`g(t`),

where g(t) = (
“

e(A−BK0)tB
”T

(W + K T
0 K0)

´
e(A−BK0)t .

[Borgggaard/Stoyanov ’08]:

evaluate g(t`) using ODE solver applied to ẋ = (A− BK0)x + adjoint eqn.
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Solving AREs for Linearized Navier-Stokes Eqns.
Solution to 2. Problem: remove W from r.h.s. of Lyapunov eqns. in Newton-ADI

Better solution idea:
(related to frequency domain POD [Willcox/Peraire ’02])

K1 = BT X1 (Notation: A0 := A− BK0)

= BT · 1

2π

Z ∞
−∞

(ωIn − A0)−H (W + K T
0 K0)(ωIn − A0)−1 dω

=

Z ∞
−∞

f (ω) dω ≈
NX
`=0

γ`f (ω`),

where f (ω) = ( −
`
(ωIn + A0)−1B

´T
(W + K T

0 K0)
´

(ωIn − A0)−1.

Evaluation of f (ω`) requires

1 sparse LU decmposition (complex!),

2m forward/backward solves,

m sparse and 2m low-rank matrix-vector products.

Use adaptive quadrature with high accuracy, e.g. Gauß-Kronrod (quadgk in
MATLAB).
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Further Applications
Navier-Stokes Coupled with (Passive) Transport of (Reactive) Species

Goal: stabilize concentration at certain level
Model equations:

∂tv − 1

Re
∆v + v.∇v +∇p = f

div v = 0

∂tc + v.∇c− 1

Re · Sc
∆c = 0

with boundary conditions:

v = v0 c = c0 = const on Γin

v = 0 ∂νc = 0 on Γwall

v = 0 c = 0 on Γr ,
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Model equations:

∂tv − 1

Re
∆v + v.∇v +∇p = f

div v = 0

∂tc + v.∇c− 1

Re · Sc
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Further Applications
Results for Re = 10, Sc = 10

movie
no control piecewise constant feedback

Computations by Heiko Weichelt
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Further Applications
Results for Re = 10, Sc = 10
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Conclusions and Future Work

Progress in solving AREs in the last decade now allows application
of Riccati feedback to realistic PDE control problems.

Implementation for Navier-Stokes and multi-field flow problems in
progress, requires many details not encountered for linear
convection-diffusion or beam equations.

For 3D problems, need dedicated preconditioned iterative ”saddle
point” solver.
”(1,1)”-term is nonsymmetric sparse matrix + low-rank perturbation  joint

work with A. Wathen, M. Stoll.

Model reduction based on LQG balanced truncation for flow
problems in L2(0,∞; Vn(Ω)) can be based on derived Riccati solver.
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Introduction Solving Large-Scale AREs Solving AREs for lin. NSE Further Applications Conclusions References

References

1 P. Benner.
Partial Stabilization of Descriptor Systems Using Spectral Projectors.
In V. Olshevsky et al (eds.), Numerical Linear Algebra in Signals, Systems, and Control,
Lecture Notes in Electrical Engineering, Springer-Verlag (to appear).
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