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Introduction  
•  RTO State of Art  D-RTO 
•  Challenges for dynamic optimization  direct 

transcription 

Nonlinear Model Predictive Control (NMPC) 
•  Fast NMPC 
•  Problem formulation and NLP Sensitivity 
•  Moving Horizon Estimation (MHE) 

ASU Optimization Case Study 
•  Fast NMPC 
•  NMPC + MHE 
•  Dynamic Optimization (periodic conditions) 

Conclusions 
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RTO – State of the Art 

Data Reconciliation & Parameter 
Identification  

• Estimation problem formulations 
• Steady state model 
• Maximum likelihood objective  
 functions considered to get   
 parameters (p) 

Minp  Φ(x, y, p, w) 
s.t. c(x, u, p, w) = 0 

x ∈ X, p ∈ P 

Plant 

DR-PE 
c(x, u, p) = 0 

RTO 
c(x, u, p) = 0 

APC 

y 

p 

u 

w 

Real-time optimization  
• Steady state model for states (x) 
• Supply setpoints (u) to APC  
 (control system) 
• Model mismatch, measured and  
 unmeasured disturbances (w)  

Minu  F(x, u, w) 
s.t. c(x, u, p, w) = 0 
x ∈ X, u ∈ U 
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RTO Characteristics 

Plant 

DR-PE 
c(x, u, p) = 0 

RTO 
c(x, u, p) = 0 

APC 

y 

p 

u 

w 

• Data reconciliation – identify gross errors and consistency in data 
• Periodic update of process model identification  
• Usually requires APC loops (MPC, DMC, etc.) 
• RTO/APC interactions: Assume decomposition of time scales 

• APC to handle disturbances and fast dynamics 
• RTO to handle static operations 

• Typical cycle: 1-2 hours, closed loop 
• State of art operation - widely implemented in refineries and petrochemical   
 plants 

10 
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Dynamic On-line Optimization:  
Plant 

DR-PE 
c(x, x’, u, p) = 0 

D-RTO 

c(x, x’, u, p) = 0 

PC 

y 

p 

u 

w 

m 

Integrate On-line Optimization with APC   
• Consistent, first-principle dynamic models 
• Consistent, feed-forward optimization 
• Increase in computational complexity  
• Time-critical calculations  
Essential for:  
• Feed changes 
• Nonstandard operations 
• Optimal disturbance rejection 
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     tf, final time 
     u, control variables 
     p, time independent parameters 

     t,  time 
     z, differential variables 
     y, algebraic variables 

Dynamic Optimization Problem   

  

€ 

min   ψ z( t), y( t),u(t), p, t f( )

  

€ 

dz( t)
dt

= F z(t), y(t),u( t), t, p( )

€ 

G z(t),y(t),u(t),t, p( ) = 0

s.t.  
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Dynamic Optimization Approaches   

DAE Optimization Problem 

Multiple Shooting      

Embeds DAE Solvers/Sensitivity Handles instabilities 

Single Shooting 

     Hasdorff (1977), Sullivan (1977),  
     Vassiliadis (1994), Barton (1995)… Discretize 

controls 

Simultaneous Collocation 

Large/Sparse NLP - Betts; B… 

Apply a NLP solver 
     Efficient for constrained problems 

Simultaneous Approach 

Larger NLP 

Discretize state, control variables 

Indirect/Variational  

     Pontryagin(1962) 

 Bock and coworkers,… 
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to tf 

×
 ×
 ×
 ×


Collocation points 

•
 •

•
•
 •


•

•


•

•


•

•


•


True solution 
Polynomials 

×
 ×
×
 ×


•


Finite element, n 

tn 

Mesh points 
h 

×
 ×
 ×
 ×


×
 ×

×


×

element n ×
×
×
×


Algebraic and  
Control variables 

Discontinuous 

×


×


×
 ×
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€ 

min   ψ zi,yi,q,ui,q,p,t f( )

  

€ 

dz
dt
 

 
 

 

 
 
i, j

= F zi-1,
dz
dt i, j

, zi , yi, j,ui, j , p
 

 
 

 

 
  

  

€ 

G zi-1,
dz
dt i, j

,zi , yi, j,ui, j , p
 

 
 

 

 
 = 0

  

€ 

zi
l ≤ zi ≤ zi

u

yi, j
l ≤ y i, j ≤ yi, j

u

ui, j
l ≤ ui, j ≤ ui, j

u

pl ≤ p ≤ pu

s.t.  

  

€ 

zi = f dz
dt i−1, j

, zi−1

 

 
 

 

 
 
i

  

€ 

z0
o = z(0)

Need large-scale NLP code! 
 IPOPT 
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IPOPT Algorithm – Features 
(Wächter, Laird, B., 2002-2009) 

Line Search Strategies for 
Globalization 

- l2 exact penalty merit function 

- augmented Lagrangian merit function 

- Filter method (adapted and extended 
from Fletcher and Leyffer) 

Hessian Calculation  

- BFGS (full/LM and reduced space) 

- SR1 (full/LM and reduced space) 

- Exact full Hessian (direct) 

- Exact reduced Hessian (direct) 

- Preconditioned CG  

Algorithmic Properties 
Globally, superlinearly convergent 
(Wächter and B., 2005) 

Easily tailored to different problem 
structures  

Freely Available 
CPL License and COIN-OR 
distribution: http://www.coin-or.org  

IPOPT 3.x rewritten in C++ 

Solved on many thousands of test 
problems and applications 

Wide and growing user community 
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Nonlinear Model Predictive Control (NMPC) 

Process 

NMPC Controller 

d : disturbances 
z : differential states 
y : algebraic states 

u : manipulated 
     variables 

ysp : set points 

NMPC Estimation and Control 

  

€ 

min
u

J(x(k)) = ψ(zl ,ul )+E(zN )
l= 0

N

∑

s.t.
zl+1 = f (zl ,ul )
z0 = x(k)
Bounds

NMPC Subproblem 

Why NMPC? 
  Track a profile – evolve from 

linear dynamic models (MPC) 
  Severe nonlinear dynamics (e.g, 

sign changes in gains) 
  Operate process over wide range 

(e.g., startup and shutdown) 

Model Updater 

€ 

′ z = F z,y,u, p,d( )
0 = G z,y,u, p,d( )
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MPC - Background 
Motivate: embed dynamic model in moving horizon framework to drive 

process to desired state 
•  Generic MIMO controller  
•  Direct handling of input and output constraints 
•  Slow time-scales in chemical processes – consistent with dynamic 

operating policies 

Different types 
•  Linear Models: Step Response (DMC) and State-space 
•  Empirical Models: Neural Nets, Volterra Series 
•  Hybrid Models: linear with binary variables, multi-models 
•  First Principle Models – direct link to off-line planning 

NMPC Pros and Cons 
+ Operate process over wide range (e.g., startup and shutdown) 
+ Vehicle for Dynamic Real-time Optimization 
- Need Fast NLP Solver for Time-critical, on-line optimization 
- Computational Delay from On-line Optimization degrades performance 
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What about Fast NMPC? 
Fast NMPC is not just NMPC with a fast solver 

Computational delay – between receipt of process measurement and 
injection of control, determined by cost of dynamic optimization  

Leads to loss of performance and stability (see Findeisen and 
Allgöwer, 2004; Santos et al., 2001)  
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NMPC – Can we avoid on-line optimization? 
Divide Dynamic Optimization Problem: 

•   preparation, feedback response and transition stages (Bock, Diehl et al., 
1998-2006) 

•  solve complete NLP in background (‘between’ sampling times) 
       as part of preparation and transition stages 
•  solve perturbed problem on-line 
•   > two orders of magnitude reduction in on-line computation  

Based on NLP sensitivity of z0 for dynamic systems 
•  Extended to Collocation approach – Zavala et al. (2008, 2009) 
•  Similar approach for MH State and Parameter Estimation – Zavala et al. (2008) 

Stability Properties (Zavala, B., 2009) 
•  Nominal stability – no disturbances nor model mismatch  

–  Lyapunov-based analysis for NMPC 
•  Robust stability – some degree of mismatch  

–  Input to State Stability (ISS) from Magni et al. (2005) 
•  Extension to economic objective functions 



8 

15 

Parametric Programming  

NLP Sensitivity   Rely upon Existence and Differentiability of Path 

   Main Idea: Obtain         and  find               by Taylor Series Expansion             

Optimality Conditions  

Solution Triplet 
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Optimality Conditions of  

Obtaining   

 Already Factored at Solution 

 Sensitivity Calculation from Single Backsolve 

 Approximate Solution Retains Active Set 

KKT Matrix IPOPT   

   Apply Implicit Function Theorem to                                  around  
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Solve NLP(k) in background (between tk and tk+1) 

€ 

min     J(x(k),  u(k)) =  E(xk+N |k ) + ψ(xl |k,vl |k )
l= k+1

k+N−1

∑

s.t.    xk+1|k = f (x(k),u(k))
        xl+1|k = f (xl |k,vl |k ),   l =  k +1,...k +N -1
        xl |k ∈ X,     vl |k ∈U,     xk+N |k ∈ X f

Solve NLP in background (between steps, not on‐line)  
Update using sensi=vity on‐line 

tk           tk+1       tk+2         

u(k) 

x(k) 

tk+N 

xk+1|k 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Solve  NLP(k) in background (between tk and tk+1) 
Sensi=vity to update problem on‐line to get (u(k+1)) 

  

€ 

Wk Ak −I
Ak
T 0 0
Zk 0 Xk

 

 

 
 
 

 

 

 
 
 

  
Δx
Δλ

Δz

 

 

 
 
 

 

 

 
 
 

=  

0


xk+1|k − x(k +1)
0

 

 

 
 
 
 
 

 

 

 
 
 
 
 

Solve NLP in background (between steps, not on‐line)  
Update using sensi=vity on‐line 

x(k)  x(k+1) 

u(k+1) 
u(k) 

tk           tk+1       tk+2          tk+N 

xk+1|k 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Solve  NLP(k) in background (between tk and tk+1) 
Sensi=vity to update problem on‐line to get (u(k+1)) 
Solve  NLP(k+1) in background (between tk+1 and tk+2) 

€ 

min     J(x(k +1), u(k +1)) =  E(xk+N +1|k+1) + ψ(xl |k+1,vl |k+1)
l= k+2

k+N

∑

s.t.    xk+2|k+1 = f (x(k +1),u(k +1))
        xl+1|k+1 = f (xl |k,vl |k ),   l =  k +2,...k +N
        xl |k+1 ∈ X,     vl |k+1 ∈U,     xk+N +1|k+1 ∈ X f

Solve NLP in background (between steps, not on‐line)  
Update using sensi=vity on‐line 

tk           tk+1       tk+2          tk+N 

x(k)  x(k+1) 

u(k+1) 
u(k) 

xk+2|k+1 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Stability Properties of asNMPC 

x(k+1) = f(x(k), u(k)) + g(x(k), u(k), w(k))  
plant and model not identical 
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State and Parameter Estimation 

Process 

NMPC Controller 

d : disturbances 
z : differential states 
y : algebraic states 

u : manipulated 
     variables 

ysp : set points 

NMPC Estimation and Control 
Moving Horizon Estimation? 
  Estimate a finite number of 

states and model parameters 
(unmeasured disturbances, rate 
constants, transport parameters) 

  Compensate for process drifts 
and slowly changing conditions 

  Allow better controller 
performance 

  Alternatives to EKF, UKF… 
Model Updater 

€ 

′ z = F z,y,u, p,d( )
0 = G z,y,u, p,d( )

22 

Large State Dimensionality 

Degrees of Freedom 

Solution Time  Order of Minutes 
Highly Nonlinear, Ill-Conditioned? 
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Given yl, zl, set “fake measurement” 
Solve  MN in background (between tl and tl+1) 

€ 

zl +1 = f (zl ,wl ),  y l +1 ≈ χ(zl +1)

Obtain measurement at tl+1, use KKT sensi=vity on‐line to get zl+1 
Solve  P(l+1) in background (between tl+1 and tl+2) 

24 

NMPC for High Purity Distillation 
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Nonlinear Model Predictive Control: Air Sep’n Unit 
(Huang, B., 2008) 

Objective: force the 
production rates to follow the 
set-points, while main their 
purities. 
4 manipulated variables. 
4 output variables. 

Horizon: 100 minutes in 20  
                finite elements. 
Sampling time: 5 minutes. 

26 

Mass balance:  

Component balance:  

Energy balance:  

Phase equilibrium:  

Hydrodynamics :  

 Assumption:  
    Vapor holdups are negligible. 
    Ideal vapor phases. 
    Well mixed entering streams. 
    Constant pressure drop. 
    Equilibrium stage model. 

Summation:  

Mi 

Li Vi+1 

Vi 
Li-1 

Index 2 system. 

Fi 

Case Study: Basic Air Separation Unit 

€ 

yij = K(xi,Ti)ij xij

yij
j
∑ = K(xi,Ti)ij xij

j
∑ =1

Enthalpy Definitions:   

€ 

hi
L =ϕ L (xi,Ti)

hi
V =ϕV (yi,Ti)
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Energy balance:  

Summation:  

Define dummy 
variables € 

K(xi,Ti)ij xij
j
∑ =1

€ 

K(xi,Ti)ij xij
j
∑ =1

Air Separation Unit: Reformulate to Index 1 

One Component balance:  

Energy balance:  

Eliminate following ODEs  

Reformulated index 1 system 
contains 320 ODEs, 1200 AEs. 
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ASU Nonlinear MPC - Case 1  

                   Output Variables                                             Manipulated Variables   
The green dot-dashed lines are the set-points, the blue dashed lines are the linear 
controller profiles and red solid lines are AS-NMPC profile. 

t = 30-60 min, product rates are ramped down by 30%. t =1000-1030 
min, they are ramped back.  AS-NMPC is compared to MPC with linear 
input-output empirical model. 

All the tuning parameters are favored to the linear controller. 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Blue dashed lines are ideal NMPC profile  
Red lines are AS-NMPC profile. 
In contrast, linearized controller is unstable 

At t = 30-60 min, product rates are ramped down by 40%.  
At t =1000-1030 min, they are ramped back. 5% disturbance is added to Mi.  

N = 20, K = 3 
320 ODEs, 1200 AEs. 
Variables: 117,140 
Constraints: 116,900 

400 NLPs solved 
Background: 200 CPUs, 6 iters. 
Online:  1 CPUs 

Computational Feedback Delay 
Reduced from 200  1 second. 

NMPC of Air Separation Unit – Case 2 
(Huang, B., 2009) 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Offset-free Formulation 
•  Apply MHE results as state and output corrections for NMPC problem 
•  Modify with an advanced step approach  as-MHE 

Combining MHE & NMPC 
(Huang, Patwardhan, B., 2009) 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Combined MHE and NMPC for ASU  
(Huang, B., 2009) 

AMPL/IPOPT (DuoCore 2.4 GHz) 
NMPC background (6 iter/200 CPUs) 
MHE background (15 iter/90 CPUs) 

• N=5, K=3 
• 29,285 constraints 
• 30,885 variables 

Online NMPC+MHE ~ 2 CPUs 

Change in model mismatch  
(hydraulic parameter) 

•  Setpoint 
•  MHE/NMPC with correction 
•  NMPC without correction 
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D-RTO with Economic Objectives 
 Beyond NMPC Tracking 

Plant 

DR-PE 
c(x, u, p) = 0 

RTO 
c(x, u, p) = 0 

APC 

y 

p 

u 

w 

Plant 

DR-PE 
c(x, x’, u, p) = 0 

D-RTO 

c(x, x’, u, p) = 0 

PC 

y 

p 

u 

m 

Benefits of combining RTO with NMPC? 
• Direct, dynamic production maximization 
• Remove artificial tracking objective 
• Remove artificial steady state problem 
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Challenges with D-RTO 
Replace regulation objective with economic objective in NMPC? 

Active ongoing activity: 
•  Bartusiak (2007) 
•  Chachuat et al. (2008) 
•  Dadhe and Engell (2008), Engell (2007, 2009) 
•  Diehl and Rawlings (2009), Rawlings and Amrit (2009) 
•  Kadam et al. (2008) 
•  Zavala, B. (2009) 
•  Swartz et al. (2010) 

Need strict convexity of Lyapunov function for stability (i.e., K  function) 

Suggestion: Regularize economic objective so that NLP satisfies SSOC 

Many Open Stability/Robustness Questions Still Remain 

 - need to find (and assume) an optimal steady state profit? 

 - how to consider cyclic problems? 
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NMPC with Economic Objective 

• periodic boundary condition 
• equivalent to endpoint constraint 
    formulation for MPC 
• l(z,v) – strongly convex economic  
    objective function (regularized) 
• alternate infinite horizon formulation 
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D-RTO: Preliminary ASU Results 

• D-RTO results – cannot be obtained with two-tier strategy 
• Computational Costs – comparable to as-NMPC 
• Superior Performance over profile tracking – accommodates 
disturbances directly 
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Dynamic optimization essential for many processes 
Batch processes 
Polymer processes (especially grade transitions) 
Periodic adsorption processes 

Chemical Process Operations: RTO  D-RTO 
   Need for First-Principles Dynamic Models  
   Extension to On-Line Economic Decision-Making 

NMPC and MHE Computational Strategies 
   Full-Discretization +  Fast Sensitivity Calculations 

Large Scale Models 
    ASU process with DAE model    
    Advantages over linear MPC 
    Extended to Uncertainties – NMPC + MHE Formulations 
    Direct Dynamic Optimization 

Conclusions 
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