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Vehicle-Road Interaction
FEM Simulation
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CPS-Synoptic Scheme

Environment




Environment-Human Interaction

Sensory Inputs

http://www.nature.com/nrn/journal/v5/




CPS-Synoptic Scheme
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“"We know that a lot of the brain has an internal neural simulator”...
“to anticipate or predict the future for a given a input”

Eric Kandel (charlie Rose interview, 2008)



CPS with Driver Assistance System (DAS)
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Vast Majority of DAS systems
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Anti-lock Braking Systems
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Counter-Steering and Over-Steering




The Building Control Systems of the Future
Predictive and Adaptive Autonomy
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Building Energy Demand Challenge

Buildings use 71% of U.S. electricity and 55% of its natural gas

"I Computers 1% L By 2030

I Cooking 5%

I Flectronics 5% o .
5 — 17% growth in
21% Residential | B Refrigeration 9%

I Cooling 10% electricity
I gt 12%

I Water Heat 13% d eman d
I Heating 32%

— — Additional
" I Cooking 2%
Transnortation -%(‘:Jf;gutersb’% 200GW Of
0 W Refrigeration 4% I .« .
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IR Ventilation 7%

W Water Heat 7% cost Of
I Cooling 13%

I Heating 16% S500= 10008B, or

I L ights 28%

I (e 10% SZS'SOB/VF

Buildings construction/renovation contributed 9.5% to US GDP and employs
approximately 8 million people. Buildings’ utility bills totaled $370 Billions in 2005

Source: Buildings Energy Data Book 2007
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Control Hardware Platforms
for Real-Time Implementation

Automotive Micro Robotics
50Mhz, 2 Mbytes 16 Mhz, 128Kbytes

______
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Hi-End PC
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Model Predictive Control

past , future

o <

Manipulated u(t+k)
Inputs

It t+1 t+m t+N

S

t+1t+2 t+1+m t+1+N
e Optimize at time t (new measurements)

e Only apply the first optimal move u(t)
e Repeat the whole optimization at time t +1

e Optimization using current measurements ;e Feedback
www.mpc.berkeley.edu



MPC Algorithm

-
mn [ (o), ult)

f(z,z,u) =0
subj. to u(t) €U, ¥V 1 € [t,t + N
z(r) e X, V1elt+ N]

At time t:
e Measure (or estimate) the current state x(t)

e Find the optimal input profile U™ (t)

e Apply only u(t), T € [t,t+A]

Repeat the same procedure at time t +.4
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MPC Algorithm

4+ N—-1

II:I&I:I Z I(::;,,ui)

k=i

[ Tiy1 = f(zw, us)
ur €U
T € X

L #e= z(t) >,

subj. to <

At time t:
e Measure (or estimate) the current state x(t)

* Find the optimal input sequence U™ ={u",, U".,,, U 15 ey U pop.1)

* Apply only u(t)=u,, and discard u™,,,, U, ,,, ...

Repeat the same procedure at time t +1

Predictive, Multivariable, Model Based, Constraints Satisfaction



Important Issues in
Model Predictive Control

1. Feasibility and Stability
Optimization problem may be infeasible at some future time step

Even assuming perfect model, no disturbances:

predicted open-loop trajectories
—+
closed-loop trajectories

2. Performance +H+N-1
What is achieved by repeatedly minimizing Z (zx,ur)
k=t

3. Computation

Can we guarantee real-time implementation on embedded
platforms

www.mpc.berkeley.edu
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Feasiblity and Stability Issue




Feasibility and Stability Constraints

mUiIl Z E(:ck,uk) @

subj. to  {

Tk €A Tt4n EX5 D

zy = x(t)

Modified Problem

(Large Body of Literature)

X; (Robust) Invariant Set

p(x) Control Lyapunov Function



A sketch of the proof....

t+N-—1

e Definethe cost  J(,U)= > U(zk,ur)+p(zesn)
k=t

e Conside the optimal input at time t
e And the sequence

A * - _
Ush?}ft = {ut—|—1a cowyUpt N 151 }

X¢ is a controlled invariant = U, ... feasible at time t+1



A sketch of the proof....

t+N-—1

I . J(z(t),U) = Hxg, ur) + p(xeen)
e Consider the value function ,; B k) T PN

V(z:) = J(z, Uy)

* Bysimple manipulation -

V(mt_|_1) = J({Ilt_|_1, U£k_|_1) < J(xt—l—la Ush’ift) — o t
V(xy) — Uz, up) — p(wpg-n) + Wz N, v) + p(f (g, v))

o|f
v, BB 0(f(@,0) — () + Uz, v)) <0

If p(x), I(x,u)>0, V(t) nonnegative and decreasing along the
closed loop trajectories... stability using Lyapunov arguments



Ongoing Research:

Robust Invariant Computation for
switched linear systems

Robust Invariance for
interconnected linear systems
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N ={1,2,3,4},
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Problem Definition

Centralized Decision Model
At each time instance controller:

o directed graph G = {N, &},
@ each node i € N features dynamics:

af =i+ ¢ — d;,

where: ¢; = u; + gbj —¢;
@ bounded disturbance (demand) d;

@ dynamics of the whole network:

T =x+¢—d

@ knows: the current state vector z,

@ decides on: ¢




Problem Definition

N =1{1,2,3,4},
€ =1{(1,2),(3,2),(1,4), (4,3)}

Centralized Decision Model

o directed graph G = {N, &},
@ each node i € N features dynamics:

af =i+ ¢ — d;,

where: ¢; = u; + gbj —¢;
@ bounded disturbance (demand) d;

@ dynamics of the whole network:

T =x+¢—d

@ Objective: Move flow ¢ while satisfying state and input constraints

for all admissible disturbances.




Motivation

@ Networks of integrators commonly used to model systems for transfer
and storage of materials, products, energy ...
» production—distribution systems,
> interconnected battery cells,
» data storage networks etc.
@ Problem approached from different perspectives:
» optimization (since '60): Gale, Ford & Fulkerson, Rockafellar, Wets,
Bertsekas, Fujishige ...
» dynamical systems: Blanchini et al.
@ Our contribution: address complexity issues by considering
decentralized constrained robust control



Problem Definition: Constraints

States and disturbances

@ given x € R™ denote: z(S) := in, for some S C {1,...

i€S
@ bounding functions: z, 7, u,u,d,d: N LR,

reX ={z:z(8) <z(S) <T(S), VS C N},
deD:={d: d(S) <d(S) <d(S), VS C N}
Example for N' = {1, 2}:
z({1}) <@ <z({1}),
z({2}) <22 <7({2}),

z({1,2}) <142 <T({1,2}).




Problem Definition: Constraints

Flow

@ bounding functions:

wa: 2V = R, weld = {u: wS) <u(S) <u(S), vS C N}
@ capacity function: ¢: (S,S8’) — R defined for all S C N
O fij = uij — uj

° fssi= > Ly

1€S,7EN\S

e F = {qb: fss' <©¢(S,S8"), uel, foraIISCN}.




Preliminaries: Robust Control Invariance

Definition (RCI set)

A set R C X is a robust control invariant (RCI) set if for all z € R there
exists a flow ¢ € F such that x +¢ —d € R for all d € D.




Control Invariant Computation

@ Mapping Pre(:): Pre(X) is the set of states robustly controllable into X
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Control Invariant Computation
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Control Invariant Computation

@ Mapping Pre(:): Pre(X) is the set of states robustly controllable into X.

b EF P eF X

@ Repeat this until:

Pre(X_i) = Pre(X_iH)

@ Fixed point of Pre(-): Robust Control Invariant Set (RCI set).



Some Preliminaries... START



Minkowski sum and difference

Minkowski sum @ Pontryagin difference ©
_— ADB
1
1
0 — /%B
" / Z2 0 = /
A /
-1

A®B:={a+b:ac Abe B} AcB:={z:z2+be AVbe B}



Controllable Sets for Linear Systems

Consider constrained linear discrete—time system:
7 = Az + Bu+ Gw, (z,u,w) € X xUxW

Set of states controllable into the set V:

Pre(Y) := {x: Ju € U such that Az + Bu+ Gw € ), Yw € W}

= Az +BuecY S GW,
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Controllable Sets for Linear Systems

Consider constrained linear discrete—time system:

= Az + Bu+ Gw, (x,u,w) € X XU xW

Set of states controllable into the set V:

Pre(Y) := {x: Ju € U such that Az + Bu+ Gw € ), Yw € W}

= Az +BuecY S GW,
= for each z € Y © GW dz,u € U such that:
Az = 2+ (—Bu),
= Az e[ Yo GW]a@ (-BU) ,
= |Pre(Y) = {: Az € Yo GW| @ (-BU)}




Controllable Sets for Linear Systems

Computations for polyhedral constraints

Given polyhedra P; = {x: Hix < k;} and P2 = {x: Hox < ko }:
@ Pontryagin difference Py © Po:

ProPy={x:Hi(x+y) <kj, Vy € Py} =
= {X: H1X S l~{1},
where: /;:h- = kq1; — max hﬂ-y.
yeP2
@ Minkowski sum Py @ Po:

zZ=Yy1+Yy2
P1@® Py = Proj, ¢ (z,y1,y2): Hiy: <k,
Hoys < ko.



Some Preliminaries... END



Good and Bad News

Theorem sianchini 1998, Borrelli 2009, Gale—Hoffmann theorem (Gale, 1957)

@ maximal RCl set R, for a network of integrators given as:

Roo = i[X o(-D)] & (—J—“)}JmX

Prg(rX)

@ R non—empty iff:

DCF and X (=D) 0.

Worst Case Exponentially Complex



Numerical Example

Node i
‘ 1 2 3 4 5 6 7 8 9 10 11
w@ 1 1 25 15 35 1 4 1 25 1 5
di)[3 25 2 2 25 15 3 2 2 25 1
Z@)|5 5 5 5 5 5 5 5 5 5 §

NETWORK AND CONSTRAINTS

@ coupling constraints

1+ 23 +x6 <10, w0+ 24+ 25 < 10,

@ centralized control: set of admissible flows F defined by 360

(non-redundant) inequalities

T7 + x8 + 19 > 2




Decentralized Robust Control Invariance

Decision model

@ consider a network partition
A:={S} |, where N =L, S;
and §; are mutually disjoint

@ dynamics of the ith group of nodes:

+ _ — +
xSi =Ts; + us; — ¢Si + ¢Si - dsia



Decentralized Robust Control Invariance

Decision model

@ consider a network partition
A:={S} |, where N =L, S;
and §; are mutually disjoint

@ dynamics of the ith group of nodes:

+ — +
xSi =Ts; + us; — ¢Si + ¢Si - dsia

Decision model
At each time instance the controller for the ith group of nodes:

@ knows: the current local state vector zs,,

@ decides on: us; and ¢g

For the ith controller: ¢§i unknown and part of the disturbance
ds, == ds, — ¢3 .



Decentralized Robust Control Invariance

Decentralized RCI Set
An RCl set R? is a decentralized RCI set w.r.t. the network partition A if

(i) 4+ ¢(x) —d € RA for all d € D, and

(i) Invariance—inducing robust control law ¢(-) is composed of local

control laws s, (-) using only local information .
For each S; € A

¢§l(3§') t us; (z) = ¢§l (wsz) t+ us; (wsz)




Decentralized Robust Control Invariance

Decentralized RCI sets, not surprisingly, posses a special structure:

Proposition

If R® is a decentralized RCl set w.r.t. the network partition A = {S;}%_,,
then:

q
i=1




Decentralized Robust Control Invariance

Decentralized RCI sets, not surprisingly, posses a special structure:

Proposition

If R® is a decentralized RCl set w.r.t. the network partition A = {S;}%_,,
then:

q
i=1

Q: What can we say about the existence of decentralized RCI sets for
given constraints?




Decentralized RCI set: Parametrization

Main idea
© Parametrize a family of decentralized RCI sets in bounds that define

constraint sets X and F

© Solve a centralized problem computing a set of parameters for which
the global invariant is non-empty

© Use local parameter values to compute local robust invariants Ré_




Decentralized RCI set: Parametrization

Main idea
© Parametrize a family of decentralized RCI sets in bounds that define

constraint sets X and F

© Solve a centralized problem computing a set of parameters for which
the global invariant is non-empty

© Use local parameter values to compute local robust invariants Ré_

Main Results
@ Problem 2 is convex!
o [[Z, RS is a global robust invariant




Decentralized RCI set: Parametrization

@ dynamics of the ith subsystem:
+ _ y 7 -
g =xs, +¢s, —ds, ,i=1,...,q,

where $S~L =us;, — ¢§l and CZS‘i = dsi — ¢§Z



Decentralized RCI set: Parametrization

@ dynamics of the ith subsystem:
+ _ y 7 -
g =xs, +¢s, —ds, ,i=1,...,q,

where qggi = us, — ¢g, and CzSi =ds, — ¢j§i'
@ introduce a vector of parameters & comprising the bounds:
» 45 and ﬁs for u(S),
» 4° and w for z(S),
> m; and 75 for ug, (i,5) € €,



Decentralized RCI set: Parametrization

@ dynamics of the ith subsystem:

n - -
Tg, =T8T ¢s, — ds;

where &si = ugs,

— ¢35, and ds, = ds,

v i=1,...,q,

_ ¢j§z

@ introduce a vector of parameters & comprising the bounds:

» u° and E‘S for u(S),

> 1{1 andw for z(S),
> m;; and T for wj, (,

@ set of admissible parameters £ € C:

j) €E,

2(8) < 5 < ¥° <%(S)
C=1& w8 <ps<ps <uls), V§CS§;, VS, €A
Uk < T < Tk < Uik, (]a k) €&




Decentralized RCI set: Parametrization

Rewrite the feasible flow set as a function of the paramenters

Foe) = {0 e R9: o4(6) <0(8) <7s(6) VS S 8}

Note that g and T is linear in the parameters &.
Similarly for DSi(€) and X5 (¢).



Decentralized RCI set: Parametrization
Rewrite the feasible flow set as a function of the paramenters

FS(e) = {0 e RSI: 05(6) < 6(8) <Ts(6) ,vS € i}

Note that o and @ is linear in the parameters ¢.
Similarly for DS (&) and X% (¢).

@ parametrized maximal RCI set for the ith subsystem:
R = Pre(X%(£)) N X% (¢)

@ parametrized RCI set for the whole network:

q
Re =R
i=1



Decentralized RCI set: Parametrization

Q: For which parameters £ € C is the set RgA non—empty?




Decentralized RCI set: Parametrization
Q: For which parameters £ € C is the set R? non—empty?

From conditions on non-emptiness of Rgl follows that R¢* = gle? is
non—empty for all £ from the set:

FSi(€) 2 DSi(¢), and
H:z{éEC: 5S, 6( BS (5))#®,VSZ-€A}




Decentralized RCI set: Parametrization

Q: For which parameters £ € C is the set R? non—empty?

From conditions on non-emptiness of Rgl follows that R¢* = gle? is
non—empty for all £ from the set:

FSi(€) 2 DSi(¢), and
H:z{éEC: )252,(5)6< BS (5))#®,VSZ-€A}

Theorem

Set II of parameters & for which the R? # () is a polyhedral set
(possibly empty).




Requirement for the proof: Farkas lemma

One formulation

In one of its variants Farkas lemma says:

An inequality valid for a polyhedron
P # ) can be expressed as a
non—negative combination of its
inequalities.

More formally:

Farkas lemma

Inequality aOTx < zp is valid for

x € P # () iff there exists A > O such
that:

H'X = ay and ATk < 2,




Farkas lemma

Requirement for the proof: Inclusion of polyhedra

@ Non—empty polyhedra P; and Po:
P1 C Py iff there exists A > O such that:

AH1 = H2 and Akl < k2

Pr = {x:Hox < ko}




Farkas lemma

Requirement for the proof: Inclusion of polyhedra

@ Non—empty polyhedra P; and Po:
P1 C P iff there exists A > O such that:

Pr = {x:Hox < ko }

AH1 = Hg and Ak1 S kg

@ In general linear parametric polyhedral inclusion is nonconvex

AH;(§) = Ha(§) and Aky(§) < ka(§)



Farkas lemma

Requirement for the proof: Inclusion of polyhedra

@ Non—empty polyhedra P; and Po:
P C Py iff there exists A > O such that:

Py = {x:Hox < ko}

AH1 = Hg and Ak1 S kg

@ In general linear parametric polyhedral inclusion is nonconvex

AH;(§) = Ha(§) and Aky(§) < ka(§)

@ Convex if Hy = Hs or

AH; = Hy(¢) and Ak; < k»(§)
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@ One can select a decentralized RCI set R? by selecting & € 11,
(one-time or repeated)
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Decentralized RCI set: Final Remarks

@ One can select a decentralized RCI set REA by selecting & € 11,
(one-time or repeated)

@ Selection of £ € II: optimization over a polyhedral set

@ For all S; much smaller than |N| decentralized robust invariance
might be more manageable than centralized
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» Multiple battery cells combined into a network
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levels (z({i}) =0, z({i}) = 1)

> u(i) passive discharging, @(i)=0

» Limited charge transfer ¢(S,S)
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An Example

Collaboration with Ford Motor Company

@ Battery blocks in electric vehicles
» Multiple battery cells combined into a network

» Safety critical constraints on local charge
levels (z({i}) =0, z({i}) = 1)

> u(i) passive discharging, @(i)=0

» Limited charge transfer ¢(S,S)

» Unknown but bounded charging and
discharging events d(S), d(S)

» Global constraints: balanced state—of—charge




Numerical Example

Node 4
‘ 1 2 3 4 5 6 7 8 9 10 11
wid@) |1 1 25 15 35 1 4 1 25 1 5
di) |3 25 2 2 25 15 3 2 2 25 1
T(i) [5 5 5 5 5 5 5 5 5 5 5

ORIGINAL NETWORK AND CONSTRAINTS

@ coupling constraints

r1+23+26 <10, 20474+ 25<10, 27+ 28+ T9 > 2

@ only the parameters

m;;,Tij (bounds on transfers u;;) optimized by
minimizing the cost:

Z |51 + 1751,
(i,)€€

with constraints: —2 < Mi; < Tij < 2




Numerical Example

Edges (i,7)
(13) (21) (36) (38) (52) (54 (61
U 0 0 0 0 0 0 0
Uij 1 1 0.5 1 1.5 0.5 2
Edges (4,7)
69) (7.5) (87) (98) (9.10) (1L6) (1L10)
w; 05 2 2
Uij 2 1 1 1 2 2 2

OPTIMIZED FLOW CAPACITIES FOR WHICH R4 #0

@ centralized control: set of admissible flows F defined by 360

(non—redundant) inequalities

o decentralized control: sets FS! (&%), FS2(£%), Fo(£*) and F4(£*)
for the selected parameter vector £* € II defined with 14,12,12 and 6

inequalities respectively




Numerical Example

Resulting sets

L6

{1.3.6} .
R Proj36(Ro) Projy;s(Reo)

Projrgg(Reo)




Examples

Networked of UV
— Local: Input actuators, bank angles, flight envelop
— Network: collision avoidance, max communication range

Lithium-lon Batteries. Node: Cells
Local: min and max charge level
Network: charging and discharging capacity

Paper Machine. Node: Actuators

Local: min and max position
Network: max relative distance between neighbors \



Important Issues in
Model Predictive Control

1. Feasibility and Stability
Optimization problem may be infeasible at some future time step

Even assuming perfect model, no disturbances:

predicted open-loop trajectories
—+
closed-loop trajectories

2. Performance +H+N-1
What is achieved by repeatedly minimizing Z (zx,ur)
k=t

3. Computation
Can we guarantee real-time implementation on embedded
platforms



Important Issues in
Model Predictive Control

3. Computation
Can we guarantee real-time implementation on embedded
platforms

Computation



Control Hardware Platforms
for Real-Time Implementation

Automotive Micro Robotics
50Mhz, 2 Mbytes 16 Mhz, 128Kbytes

______
FEREYIQYTRAEER

Hi-End PC
4Ghz, 1 Terabyte

eFcic [ 4

eFcio [ 5 3 ED1

cceaT [0 s bg6400 31| LEDEN
] 30

Zone Controller Battery Management
12 Mhz, 512 KByte 8 Mhz, 60 KByte



PieceWise Affine (Hybrid) MPC

N-1
mm ),
o

k=D

|zl + lleselly

/

Tpr1 = Az + B”:uk.—l— ct
if [zr, ug| € X*

subj. to |

\

T © X, ur €U
X', X, U polyhedra

rr € R x {0,1}") up € R™ x {0,1}", U = {ug, uy,..

Borrelli from 1999 to today

x-space

LUN—1}, p=1,2,00

e Understanding solution structures and properties

e Solution computational methods and tools



PieceWise Affine (Hybrid) MPC

Borrelli from 1999 to today

N-1

min ) llzall + sl o
k=0

’

subj. to |

Tr1 = A'zg + Blug + ¢

T € .;\:', ur €U
\ X* X, U polyhedra

if [z, ug] € X*

¥

subj. to Ge <w+ Fzxq

min, € H.e+ el Hyzo+ fre+ flzg

$

On line solution of a

Mixed-Integer Linear/Quadratic Program



PieceWise Affine (Hybrid) MPC
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\

T © X, ur €U
X', X, U polyhedra

rr € R x {0,1}") up € R™ x {0,1}", U = {ug, uy,..

Borrelli from 1999 to today

x-space

LUN—1}, p=1,2,00

e Understanding solution structures and properties

e Solution computational methods and tools



Characterization of the Solution (p=1,2,00)

Borrelli et al, ACC, 2000
Borrelli et al, TAC, 2003
Borrelli et al, AUTOMATICA, 2005

The solution to the optimal control problem is a time varying
PWA state feedback control law of the form
) Fklzck + G}Cf if xp € CR%
ug(zg) = 4 P

Fftz, 4+ GE if zp € CRYY

{CRL}L | is a partition of the set of feasible states X.

* p=1, p=o0:
. CR, ={zr : M}z <K}}
o p:2:

CR, ={z : 2'L.(j)x+ M} (j)z < K:.(j)}

0.5
X,(0)

Very useful result for MPC implementation



Characterization of the Solution (p=1,2,0)
via Multiparametric Programming

Consider the mixed-integer mathematical program

min, €l H.e+ el Hoxo + fge + fgﬂ;o
subj. to Ge < w+ Fxy

e Is the optimization variable, x, a parameter that affects the solution &”

Compute £*(X,) for x, € &

Non-Linear Parametric Optimization, Properties of point-to-set mappings

Borrelli, B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer,
Klatte, Sontag, Dua, Pistikopoluous, Bemporad, Morari, .....




PieceWise Affine (Hybrid) MPC

N-1
mm ),
o

k=D

|zl + lleselly

/

Tpr1 = Az + B”:uk.—l— ct
if [zr, ug| € X*

subj. to |

\

T © X, ur €U
X', X, U polyhedra

rr € R x {0,1}") up € R™ x {0,1}", U = {ug, uy,..

Borrelli from 1999 to today

x-space

LUN—1}, p=1,2,00

e Understanding solution structures and properties

 Solution computational methods and tools



Computational Flow

Borrelli et al, JOTA, 2003
Borrelli et al, AUTOMATICA, 2006
Baotic, Borrelli et al, SICON, 2007

Problem Setup + Invariant set computation
-mmmmmn e R ,
| |
: Reachability Analysis <—: Polyhedral set manipulation
| |
Dynamic : 1 |

Programming | 1 | Local parametric problems [« Multiparametric LP/QP
| |
| |
. 1 .
I . . |
I Solution postprocessing <1 LMI and polyhedral set
|

Imanipulation

*— Google: MPT toolbox
U*=fppa(X) o
Google: Borrelli control book




Summary: Explicit vs Online

F1£U+ Gl if Hl.’,v é K1
u(z) = : :
Fyrx+Gny if Hyz < Ky

X ) = = U (¥

Online Solution of a (mixed-integer)
Linear/Quadratic Program

 Explicit solution is ALWAY' S faster than an active set solver
o Algorithms HAVE to be compared in Memory-CPU plane
o Alternative Algorithms exists with different trade-off

F. Borrelli, J. Pekar, M. Baotic, G. Stewart On The Computation Of Model
Predictive Control Laws. Automatica 2010




Online vs Explicit

moi_n sU'HU + g(z)'U
subj. to GU < b(x)
G e R™*" b(x) e R™, g(x) € R", b(x) =b" + B*x and g(z) = F'x

Offline ] [ Active Set ] [ Optimality
Data Selection Certificate
min TU'HU + g(z)'U
subj. to G4U = b(x)
HU +g(z) + G'4A =0 H G U | | —g(z) U* = —Lg(z) + Thy(x)
GAU = by(x). Gg O Al ] balx) No==T'g(x) + Sba(x)

L=H'-H'GWGAH 'G)) 'G,H™!
T=H'1G(G4aH G
S=—(GaH Gy



Online vs Explicit

* = —T,g(r) 4 T'b
= TG T Shale

Dual Feasibility

d* = min;eqq,.. | AAAL
If 4 < 0 theG@AT2 A\ A(p)

where p is the argmin

Primal Feasibility

fr= miniGI\A@ — Gi@
If f*<0 then A =AUp
where p is the argmin

U*r = (TBi—LF’)x—I—TbT = F x4+ cy
N = (SBY —T'F')z + Sb"y = Fx + %

Po={o: Gral"(®) < bral@))
Hyx < K,}

Pi={x: I(z)>0}
Hd.SU S Kd}

Dual Feasibility

d* = min; i+ (K@

If d* < 0to neighbouring region p>
where p is the argmin

Primal Feasibility

If f* <0 goto neignbouring region p
where p is the argmin




memory

Trading off CPU Time and Memory
in MPC

o explicit MPC

Store P, and P, for all
optimal active
constraints

@ MPC via active-set QP

Computation of L, T, S requires matrix
manipulation and inversion

number of operations per fixed active cons’traints



memory

Trading off CPU Time and Memory

in MPC
[Borrelli, Baotic, Pekar, Stewart, ECC09]
A
o explicit MPC
O
O
Other algorithms
O

o MPC via active-set QP

number of operations per fixed active cons’traints



Spice this up below with Videos
and reach computation of NSF\(Put
equations)

who driver is the bounded
disturbance....



Automotive Cyber-Physical System

Vehicle
Actuators

=

Vehicle and Tire

Sensor Data

Intelligence

Driver
Model/Intent

S

=

Safety Comfort Efficiency



Control Hardware Platforms
for Real-Time Implementation

Micro Robotics
16 Mhz, 128Kbytes

Automotive

1111111
FEREYIQYTRAEER

Hi-End PC
4Ghz, 1 Terabyte

]
EFCID 7] 5 a2 LED1
CCRAT [ & qudoo 31 ] LEDEN
PACK [T 7 30

Zone Controller Battery Management
12 Mhz, 512 KByte 8 Mhz, 60 KByte



CPS Main Issues

 Complexity/Compositionality
 No Guarantees/Heuristic Tunings
 Human Motion/perception/cognition ignored




F.[N]

2D Example

States: Y:¥
Inputs: M
Disturbance: 9
Assume constant: x,V,

1500

i 1= B L Original Pacejka Functi'on
1000 — PWA Approximation

500~

¢ [rad]

(=]

500/ .
0.5 =

-1000 ] o ol

0

~1509 s e ' |

dy/dt [rad/s) o dy/dt [m/s]



2D Example — Robust Set Computation




Simple Autonomy Concept

WA

At time j W%/i\/

* Driver intent w;

Wo Wi W, g

* Among all possible actuations @; choose the one that
solves

Miny; ||u; — w;|| subj.to. xj41 € X4

e

Adaptive and Predictive Autonomy

www.mpc.berkeley.edu



From 2-D to 12-D Example
Experimental results @ 72 Kph on Ice

FORD
RESEARCH LABORATORY

SRRy LT

rrrrr

LabVIEW

3
caole
Controller
b
il
n

Braking




Experimental results @ 72 Kph on Ice

dSPACE "'3
7 NAS

OR

'L APATCK :

LAPAZCK
L-AFP-A-CK
LAPATCHK
L-APACHK

ﬂj},f,w,y},}",)(

CAN Controller #1

Laptop
" dSPACE g
SYSTEM AFS

------ - | o
LabVIEW M ' kS 5

. /

b

b '

1 1
]

CAN

Nonlinear MPC not real-time feasible in standard
prototyping hardware, experiments only up to 25kph

Explicit Solution exceeds Hardware Memory.

o
[
R i1

Enabler for Real-Time Implementation: Modified LTV Predictive Control



Conclusions/ Research Activities

Model Predictive Control

Invariant Computation for Switched Linear systems and
Linear Large Scale systems

Real-time Computation

Enhancing the safety of Autonomous Systems

www.mpc.berkeley.edu



Hybrid Predictive Control
Real Time Implementation

(MI) Linear/Quadratic Explicit Solution
Program : :

Online evaluation of a
Online solution of an look-up table

optimization problem ‘ -

 Easy to Implement/verify
 Difficulty to verify

« Source code might be

* Number of regions can

explode
required

Value of Predictions
Explicit MPC Enabler for

Real-Time Implementation on “Small&Fast” Processes
Hierarchical and Distributed MPC





