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The Focus of this Talk

Accurate and Reliable Software for Investigating
Mathematical Models described by Systems of ODEs

“Investigating” and not only “Approximating the Solution”.

“ODEs” includes IVPs, BVPs, DDEs, DAEs and VIDEs.
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An Effective ODE Solver
Minimum Requirements:

An Accurate Discrete Approximation is not Enough
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An Accurate Continuous Extension is Necessary
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A Reliable Error-Control and Stepsize-Selection Strategy
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Outline of Talk
Current Scientific Computing Paradigm and its implications:

Acceptability of an approximate solution

Continuous RK Methods provide dense output for ODEs

Defect Error Control for CRK Methods

Measuring the Reliability of a CRK Method

Classes of ODE problems that can be Investigated by CRK-based
Methods (IVPs, BVPs, DDEs, DAEs, and VIDEs)

Useful Software Tools for Investigating and quantifying Important
Properties of the Mathematical Model and its Approximate Solution.
(sensitivity analysis, global error estimation, parameter fitting and
condition number estimation.)

Some Numerical Examples

Implementations and implications for DAEs
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Scientific Computing Paradigm

Mathematical Modelling in a Problem Solving Environment:

Formulate the mathematical model of the system being
investigated. (The model may involve parameters.)

Approximate the exact solution of this model relative to a
specified accuracy parameter, TOL.

Visualize the approximate solution.

Verify the approximate solution’s consistency with the
mathematical model (may involve parameter
determination).

Verify that mathematical model is well-posed and
approximate solution is stable (may involve sensitivity
analysis).
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Implications for ODE Solvers

What is an acceptable approximate solution?

The approximate solution must be easy to represent,
display and manipulate.

The accuracy (or quality) of the approximate solution
must be easy to measure and interpret.

What are the implications for an ODE solver?

It should use a generic calling sequence so it is easy to
adopt in a PSE.

Solver should be easy to invoke –(only need to specify
those parameters necessary to define the problem).

A discrete solution is not enough (as it is difficult to
display and its accuracy difficult to interpret).
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Continuous Runge-Kutta Methods

Consider an IVP defined by the system

y′ = f(x, y), y(a) = y0, on [a, b].

A numerical method will introduce a partitioning
a = x0 < x1 < · · · < xN = b and corresponding discrete
approximations y0, y1 · · · yN . The yi’s are usually determined
sequentially.

On step i let zi(x) be the solution of the local IVP:

z′i = f(x, zi(x)), zi(xi−1) = yi−1, on [xi−1, xi].
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CRK methods (cont)

A classical pth-order, s-stage, discrete RK formula determines

yi = yi−1 + hi

s∑
j=1

ωjkj ,

where hi = xi − xi−1 and the jth stage is defined by,

kj = f(xi−1 + hicj , yi−1 + hi

s∑
r=1

ajrkr).

A Continuous extension (CRK) is determined by introducing (s̃ − s)

additional stages to obtain an order p approximation for any x ∈ (xi−1, xi)

ui(x) = yi−1 + hi

s̃∑
j=1

bj(
x − xi−1

hi

)kj ,

where bj(τ) is a polynomial of degree at least p and τ = x−xi−1

hi
.
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CRK methods (cont)

We will consider O(hp) extensions, satisfying:

ui(x) = yi−1 + hi

s̃∑
j=1

bj(τ)kj = zi(x) + O(hp+1
i ).

The [ui(x)]Ni=1 define a piecewise polynomial U(x) for x ∈ [x0, xF ].
This is the approximate solution generated by the CRK method.

U(x) ∈ C0[x0, xF ] and will interpolate the underlying discrete RK
values, yi, if bj(1) = ωj for j = 1, 2 · · · s and
bs+1(1) = bs+2(1) = · · · bs̃(1) = 0.

Similarly a simple set of constraints on the d
d τ

(bj(τ)), including
ks+1 = f(xi, yi), will ensure U ′(x) interpolates f(xi, yi) and therefore
U(x) ∈ C1[x0, xF ].
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Defect Error Control for CRKs

U(x), the approximate solution, has an associated defect or residual,

δ(x) ≡ f(x, U(x)) − U ′(x) ≡ f(x, ui(x)) − u′

i(x), for x ∈ [xi−1, xi].

It can be shown that,

δ(x) = G(τ)hp
i + O(hp+1

i ),

G(τ) = q̃1(τ)F1 + q̃2(τ)F2 + · · · + q̃k(τ)Fk,

where the q̃j are polynomials in τ that depend only on the CRK formula
while the Fj are constants (the elementary differentials) that depend only
on the problem.

Methods can be implemented to adjust hi in an attempt to ensure that the

maximum magnitude of δ(x) is bounded by TOL on each step.
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Defect Error Control (cont)

δ(x) = G(τ)hp
i + O(hp+1

i ),

G(τ) = q̃1(τ)F1 + q̃2(τ)F2 + · · · + q̃k(τ)Fk.

As hi → 0 the defect will then look like a linear combination of the
known polynomials q̃j(τ) over [xi−1, xi].

In the special case where k = 1 the shape of the defect will be the
same (as hi → 0) for all problems and all steps. That is, the defect will
almost always ’converge’ to a multiple of q̃1(τ), in which case the
maximum should occur (as hi → 0) at τ = τ∗ where τ∗ is the location
of the local extremum of q̃1(τ). In this case we will refer to the defect
control strategy as Strict Defect Control (SDC).
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Typical Shape of SDC Defects
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Plot of scaled defect vs τ (ie. δ(τ)/δ(τ ∗) vs τ ) for each
step required to solve a typical problem with SDC CRK6 and
TOL = 10−6.
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Defect Control (cont)

pth − order discrete RK : yi = yi−1 + hi

s∑
j=1

ωjkj ,

SDC : ũi(x) = yi−1 + hi

s̃∑
j=1

b̃j(τ)kj = zi(x) + O(hp+1
i ).

Formula p s s̃

CRK4 4 4 8

CRK5 5 6 12

CRK6 6 7 15

CRK7 7 9 20

CRK8 8 13 27

Table 1: Cost per step of some SDC-CRK formulas
(Note that s̃ ≈ 2 s.)
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Strict Defect Control

SDC CRKs are not unique (for a given discrete RK formula).
Each SDC-CRK satisfies,

δ(x) = q̃1(τ)F1h
p
i + (q̂1(τ)F̂1 + q̂2(τ)F̂2 + · · · · · · q̂

k̂
(τ)F̂

k̂
)hp+1

i + O(hp+2
i )

Potential Difficulties:

q̃1(τ) may have a large maximum (q̃1(0) = q̃1(1) = 0 and its ‘average’
value must be one).

The q̂j(τ) may be large in magnitude relative to q̃1(τ) (and therefore hi

would have to be small before the estimate is justified). (That is, before
|hiq̂j(τ)| << |q̃1(τ)| .)

|F1| may be zero (or very small) on isolated steps.

For each p we have identified a particular SDC-CRK that minimizes these

difficulties.

Effective Tools for Investigating ODE Systems – p.15/29



Optimal SDC CRK6
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Figure 1: Plots of q̃1 and q̂2 · · · q̂7 for SDC CRK6. q̃1 is represented

by the solid line and has the highest magnitude.
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Optimal SDC CRK8
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Figure 2: Plots of q̃1 and q̂2 · · · q̂9 for SDC CRK8. q̃1 is represented

by the solid line and has the highest magnitude.
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Quantifying Reliability

Consider two measures of reliability of a CRK method:
How well does the Method control the maximum magnitude of the
defect? We can measure the ratio of the max defect to TOL on each
step and the fraction of steps where this ratio is greater than 1 ?

How well does the Estimate of the max defect reflect its true value?
We can measure both the ratio of the true maximum defect (on a
successful step) to its estimated value and the fraction of attempted
steps where the estimated maximum is within one percent of the true
maximum.
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Reliability of SDC Methods

We have implemented SDC versions of CRK5, CRK6 and CRK8.

We have run these three methods on the 25 IVP test problems of
DETEST (all non-stiff), at 9 tolerances from 10−1 to 10−9.

We report summaries only. We report two measures of cost: NSTP
and NFCN, two measures of the reliability of the method : DMAX and
Frac-D (max defect and fraction of steps where this exceeded TOL),
and two measures of the reliability of the estimate: R-Max and Frac-G
( maximum ratio of the true maximum defect to the estimate and the
fraction of steps where this was bounded by 1.01).
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Numerical Results for SDC CRKs

Results on the 25 DETEST Problems for SDC5, SDC6 and SDC8

TOL CRK NSTP NFCN DMAX Frac-D R-Max Frac-G

SDC5 625 11709 0.97 .000 1.05 .67

10−2 SDC6 549 12300 1.00 .000 1.43 .71

SDC8 333 12793 1.01 .003 1.65 .35

SDC5 1065 19033 1.01 .001 1.12 .78

10−4 SDC6 931 19819 1.00 .001 1.08 .87

SDC8 465 17319 1.05 .004 1.47 .45

SDC5 2099 35703 1.01 .002 1.08 .86

10−6 SDC6 1748 35073 1.01 .001 1.08 .96

SDC8 712 26253 1.02 .001 1.34 .59

SDC5 4566 66937 1.01 .001 1.07 .95

10−8 SDC6 3547 65148 1.01 .001 1.07 .98

SDC8 1081 38251 1.12 .007 2.60 .62
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SDC-CRK based methods developed for

IVPs:

y′ = f(x, y), y(a) = y0, x ∈ [a, b],

where y, y0 ∈ <n and f : < × <n → <n.

BVPs:

y′ = f(x, y), x ∈ [a, b],

with

g(y(a), y(b)) = 0, g : <n × <n → <n.

DAEs (with low index):

F (x, y, y′) = 0, y(x) ∈ <n, y(a) = y0,

for x ∈ [a, b]. With ∂F
∂y′

singular but of constant rank in some
neighborhood of y(x).
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Classes of ODEs (cont)
DDEs (both retarded and neutral problems):

y′ = f(x, y(x), y(x − σ1) · · · y(x − σk), y′(x − σk+1),

· · · y′(x − σk+`)), for x ∈ [a, b],

where y(x) ∈ <n and,
y(x) = φ(x), y′(x) = φ′(x), for x ≤ a,

σi ≡ σi(x, y(x)) ≥ 0 for i = 1, 2 · · · k + `.

VIDEs (with a time dependent delay):

y′(x) = f(x, y(x)) +

∫ x

x−σ(x)

K(x, s, y(s), y′(s))ds,(1)

for x ∈ [a, b], f : <× <n → <n and K : <× <×<n ×<n → <n and
y(x) = φ(x) for x ≤ a.
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Effective Tools for Investigating ODEs

For each Class of ODEs we are implementing effective tools for:

Estimating the Global Error

Detecting, Locating and Coping with Discontinuous Problems

Estimating the Conditioning of the Problem

Sensitivity analysis of the Problem (eg., ∂yi(x)
∂pj

)

Solving Problems which depend on parameters (parameter
continuation and/or parameter fitting – an inverse problem)
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Implementation for DDEs

In his PhD thesis, Hossein Zivaripiran [University of Toronto, 2009] began
the implementation of a PSE (DDEM) for the investigation of DDEs. (see
http://www.cs.utoronto.ca/˜hzp).
DDEM includes modules for:

1. Accurate location of all significant discontinuities.

2. Reliable simulation and visualization of a problem.

3. Efficient solution of the discrete approximations when delay is small or
the underlying discrete RK formula is implicit.

4. Reliable approximation of first order sensitivities. (No other method we
know of can do this.)

5. Parameter fitting from noisy data (using a “nonsmooth Newton”
approach to achieve superlinear convergence.
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Example: Parameter Fitting for DDEs
Consider the Kermack-McKendrick model of an infectious disease with
periodic outbreaks:

y′

1 = −y1(x)y2(x − σ) + y2(x − ρ),

y′

2 = y1(x)y2(x − σ) − y2(x),

y′

3 = y2(x) − y2(x − ρ),

with x ∈ [0, 55], and y1(x) = 5.0, y2(x) = 0.1, y3(x) = 1.0, for x ≤ 0.

The exact solution to this problem is unknown. Each delay introduces a C2

discontinuity in the objective function whenever it is evaluated at a multi-

ple of σ or ρ. We generate the data to be "fit" by computing an accurate

solution with parameter values, σ∗ = 1 and ρ∗ = 10. We perturb these

values by up to a 10% random perturbation to determine our initial guess

for each parameter and we use 10 equally spaced sample points to define

the prescribed data to be fit.
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Parameter Fitting Results

Newton Jac FCN ITER TIME OBJ

DivDiff 783092 393.2 54.9 7.4·10
−13

SenJac 37344 13.8 2.3 1.3·10
−9

ConSenJac 5293 2.1 0.31 1.3·10−9

We report the total number of derivative evaluations FCN, The number of Newton iterations

ITER, and the CPU time TIME (each averaged over 10 runs) for solving this problem with

standard divided differences used to approximate the Newton Jacobian (DivDiff); with the

Newton Jacobian approximated using an accurate Sensitivity Analysis (SenJac); and with

the Newton Jacobian approximated using a constrained Newton step (ConSenJac). We also

report the value of the objective function OBJ at the computed optimum point.
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Implementation for DAEs

Consider the case where the algebraic constraints can be
explicitly identified and the problem decoupled,
y(x) = [y1(x), y2(x)]T , and written in the semi-explicit form,

y′1(x) = f(x, y1(x), y2(x)),

0 = g(x, y1(x), y2(x)).

When one considers defect-based error control for DAEs,
two questions arise:

1. How does one define a suitable continuous extension,
[ui(x), vi(x)]T ≈ [y1(x), y2(x)]T for x ∈ [xi−1, xi].

2. What measure of the size of the associated defect
should be monitored and controlled?
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Defect Error Control for DAEs

Let u(x) and v(x) be the vector of piecewise polynomials
associated with the ui(x), vi(x). The approximate solution,
defined by [u(x), v(x)]T satisfies,

δ1(x) = u′(x) − f(x, u(x), v(x)),

δ2(x) = g(x, u(x)v(x)).

The global errors in the approximate solution, ‖y1(x) − u(x)‖

and ‖y2(x) − v(x)‖, will be bounded by a suitable multiple
of TOL, provided ‖δ1(x)‖, ‖δ2(x)‖, ‖δ′

2
(x)‖ are each suitably

bounded. The bounds that each must satisfy are com-
putable and a effective DAE solver will adjust hi in an attempt
to satisfy them on each step.
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The Next Steps for DAEs

To develop a similar PSE for DAEs will require the
development of modules for the following key components
(of this PSE):

Accurate location of all significant discontinuities.

Efficient solution of the discrete approximations
corresponding to the underlying implicit discrete RK
formula.

Reliable simulation and visualization of a problem.

Reliable approximation of first order sensitivities.

Parameter fitting from noisy data (using a “nonsmooth
Newton” approach to achieve superlinear convergence.
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