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VLSI circuit simulation

• Circuit simulation uses computational methods to simulate

and analyze the behavior of electronic circuits

• A circuit can be viewed as a network of electronic devices:

transistors, resistors, capacitors, inductors, . . .

• Today’s VLSI circuits can have O(109) transistors



Are we really just solving DAEs?

• Network topology is described by a graph:

Kirchhoff’s current laws

Kirchhoff’s voltage laws

• Equations that characterize the circuit devices:

f(i, v) = 0, g
(
i,

d

dt
v
)
= 0, . . .

• All these equations can be summarized as a system of DAEs:

F
(
x,

d

dt
x, t

)
= 0



The catch

• F : RN × RN × R 7→ RN where N is of the order of the number

of devices in the circuit

• For a state-of-the-art circuit: N = O(109)

• No way!

• We are always using today’s computers to design tomorrow’s

largest and more complicated machines



The VLSI circuit design process



A small piece of a chip cross section
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State-of-the-art VLSI circuits

• 45 nm feature size

• O(109) transistors

• O(10) km of ‘wires’

(the interconnect)

• Up to 15 layers



VLSI interconnect parasitics

• Wires are not ideal:

Resistance

Capacitance

Inductance

• Consequences:

Timing behavior

Noise

Energy consumption

Power distribution



Interconnect parasitics extraction

• Replace ‘pieces’ of the interconnect by RCL networks:



Need for model order reduction



RCL networks as directed graphs
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RCL network directed graph

• Network topology ⇐⇒ Graph incidence matrix A



RCL network equations

• Kirchhoff’s current laws: A iE = 0

• Kirchhoff’s voltage laws: ATv = vE

• Equations for R’s, C’s, and L’s:

LCR

iv L

              

R LC=Ci =C= R ivR vL d
d

d
d
t t



RCL networks as descriptor systems

• System of linear time-invariant DAEs of the form

C
d

dt
x(t) + Gx(t) = Bu(t)

y(t) = BTx(t)

where C, G ∈ RN×N and B ∈ RN×m

• x(t) ∈ RN is the unknown vector of state variables

• Large state-space dimension N

• m inputs, m outputs



Reduced-order models

• System of DAEs of the same form:

Cn
d

dt
z(t) + Gn z(t) = Bn u(t)

ỹ(t) = BT
n z(t)

• But now:

Cn, Gn ∈ R
n×n and Bn ∈ R

n×m

where n ≪ N



Transfer functions

• Original descriptor system:

H(s) = BT (sC + G)−1 B

• Reduced-order model:

Hn(s) = BT
n (sCn + Gn)

−1 Bn

• ‘Good’ reduced-order model

⇐⇒ ‘Good’ approximation Hn ≈ H



• Original dimension N ≈ 104−6

H(s) = BT BT
n




s C + G




−1

B

Bn

• Reduced dimension n ≪ N (n ≈ 100−2)

Hn(s) = BT
n


 s Cn + Gn




−1

Bn



Moment matching

• Choose a suitable expansion point s0 ∈ C and expand H(s)

about that point

H(s) = M0 + M1 (s − s0) + · · · + Mi (s − s0)
i + · · ·

• Determine reduced-order transfer function Hn(s) such that

Hn(s) = M0 + M1 (s − s0) + · · · + Mq−1 (s − s0)
q−1

+M̃q (s − s0)
q + M̃q+1 (s − s0)

q+1 + · · ·

= H(s) + O ((s − s0)
q)

for some q = q(n)



Padé and Padé-type approximation

• Padé approximation: Cn, Gn ∈ Rn×n, Bn ∈ Rn×m such that

Hn(s) = H(s) + O
(
(s − s0)

q(n)
)

and q(n) is maximal

• q(n) ≥ 2

⌊
n

m

⌋
with equality in the ‘generic’ case

• Padé-type approximation:

Hn(s) = H(s) + O
(
(s − s0)

q̃(n)
)

where q̃(n) is no longer maximal, e.g., q̃(n) =

⌊
n

m

⌋



Some history

• AWE (Pillage and Rohrer, ‘90):

Explicit computation and matching of moments

• PVL, MPVL (Feldmann and F., ‘94 and ‘95):

Avoids numerical issues of AWE by computing Padé reduced-

order models via the Lanczos process

• Arnoldi-based reduction (Silveira et al, ‘96):

Padé-type reduced-order models via the Arnoldi process



An RCL network
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Padé may produce unstable poles
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Some more history

• PRIMA (Odabasioglu, Celik, and Pileggi, ’97):

Passive reduced-order models via explicit projection onto Krylov

subspaces

• SPRIM (F., ’04, ’09, and ’11)

Structure-Preserving Reduced Interconnect Macromodeling



Projection-based order reduction

• Choose an N × n matrix

Vn = with RankVn = n

and explicitly project the data matrices of

C
d

dt
x(t) + Gx(t) = Bu(t)

y(t) = BTx(t)

onto the subspace spanned by the columns of Vn



Projection-based order reduction

• Resulting reduced-order model:

Cn
d

dt
z(t) + Gn z(t) = Bn u(t)

ỹ(t) = BT
n z(t)

where

Cn := VT
n CVn, Gn := VT

n GVn, Bn := VT
n B

• Preserves passivity:

C � 0, G + GT � 0 ⇒ Cn � 0, Gn + GT
n � 0



Choice of projection matrix

• Choose expansion point s0 ∈ C for transfer function and rewrite:

H(s) = BT (sC + G)−1 B = BT
(
I − (s − s0)A

)−1
R

where

A := − (s0 C + G)−1 C and R := (s0 C + G)−1 B

• n̂-th block Krylov subspace:

Kn̂(A,R) := colspann̂

[
R AR A2R · · ·

]



Krylov + Projection = Padé-type

• n̂-th block Krylov subspace:

Kn̂(A,R) := colspann̂

[
R AR A2R · · ·

]

• Choose the projection matrix Vn such that

Kn̂(A, R) ⊆ RangeVn

• Krylov subspace + Projection = Padé-type approximant:

Hn(s) = H(s) + O
(
(s − s0)

q̃
)

, where q̃ ≥ ⌊n̂/m⌋

• PRIMA and SPRIM are methods of this type
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Preservation of RCL structure



General RCL network equations

• System of linear time-invariant DAEs of the form

C
d

dt
x(t) + Gx(t) = Bu(t)

y(t) = BTx(t)

where

C =




C1 0 0

0 C2 0

0 0 0


 , G =




G1 G2 G3

−GT
2 0 0

−GT
3 0 0


 , B =




B1 0

0 0

0 B2




• Passivity:

C � 0 and G + GT � 0



PRIMA does not preserve structure

• PRIMA = projection onto n-th block Krylov subspace:

RangeVn = Kn(A, R)

• Block structure of the data matrices:

C =




C1 0 0

0 C2 0

0 0 0


 , G =




G1 G2 G3

−GT
2 0 0

−GT
3 0 0


 , B =




B1 0

0 0

0 B2




• PRIMA reduced-order matrices:

Cn =

[ ]
, Gn =

[ ]
, Bn =

[ ]



SPRIM does preserve block structure

• Structure of SPRIM reduced-order matrices:

Cn =




C̃1 0 0

0 C̃2 0

0 0 0


 , Gn =




G̃1 G̃2 G̃3

−G̃T
2 0 0

−G̃T
3 0 0


 , Bn =




B̃1 0

0 0

0 B̃2




• Projection onto Krylov subspaces guarantees a Padé-type

property:

Hn(s) = H(s) + O
(
(s − s0)

q̃
)

with q̃ the same integer as for PRIMA

• For SPRIM, we actually observe higher accuracy



An RCL network with mostly C’s and L’s
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SPRIM

• Let V̂n̂ be any matrix such that

Range V̂n̂ = Kn̂(A, R)

• Recall:

C =




C1 0 0

0 C2 0

0 0 0


 , G =




G1 G2 G3

−GT
2 0 0

−GT
3 0 0


 , B =




B1 0

0 0

0 B2






SPRIM, continued

• Partition V̂n̂ accordingly:

V̂n̂ =




V
(1)
n̂

V
(2)
n̂

V
(3)
n̂




• For l = 1,2,3:

If RankV
(i)
n̂ < n̂, replace V

(i)
n̂ by matrix of full column rank



SPRIM, continued

• Set

Vn =




V
(1)
n 0 0

0 V
(2)
n 0

0 0 V
(3)
n




• Block structure is preserved:

Cn =




C̃1 0 0

0 C̃2 0

0 0 0


 , Gn =




G̃1 G̃2 G̃3

−G̃T
2 0 0

−G̃T
3 0 0


 , Bn =




B̃1 0

0 0

0 B̃2




• Kn̂(A,R) = RangeVn̂ ⊆ RangeVn ⇒ Padé-type property!



An RCL network with mostly C’s and L’s
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An RCL network with mostly C’s and L’s
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A package example
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A package example
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Padé-type property of SPRIM

• General theory of projection onto block Krylov subspaces:

PRIMA and SPRIM produce Padé-type models with

Hn(s) = H(s) + O
(
(s − s0)

q̃
)

, where q̃ ≥ ⌊n̂/m⌋

• Theorem (F., ’08)

The n-th SPRIM model satisfies

Hn(s) = H(s) + O
(
(s − s0)

q̃
)

, where q̃ ≥ 2 ⌊n̂/m⌋

• Twice as accurate as PRIMA!

• This is a consequence of structure preservation!
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Need for restarts

• To obtain a Padé-type property, projection matrix Vn with

Kn̂(A, R) ⊆ RangeVn

• Need to first generate V̂n̂ such that

Kn̂(A, R) = Range V̂n̂

• Use suitable (band) variant of the Arnoldi process

• But: prohibitive for large n̂

• Remedy: (thick) restarts



Using restarts

• Motivated by recent work by Eiermann et al.

• Restart after each cycle of r Arnoldi steps

• Extract ‘good’ eigenvector information Y from the last batch

of r Arnoldi vectors

• Use the columns of Y as the first vectors in the next cycle

• Repeat

• Project with

Vn =
[
V(1) V(2) · · · V(l)

]



‘Good’ eigenvector information

• Recall:

H(s) = BT
(
I − (s − s0)A

)−1
R

• Poles of H are of the form

s = s0 +
1

λ
, λ ∈ σ(A)

• ‘Good’ eigenvector information:

Good approximate eigenvectors corresponding to poles close

to the frequency range of interest



Without restarts
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Obtaining ‘good’ eigenvector information
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Obtaining ‘good’ eigenvector information
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Obtaining ‘good’ eigenvector information
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Changing expansion points

• Extract ‘good’ eigenvector information Y from the last batch

of r Arnoldi vectors

• At each restart allow for changing expansion point:

A(s0) = − (s0 C + G)−1 C =⇒ A(s̃0) = − (s̃0 C + G)−1 C

• ‘Converged’ eigenvectors v do not change:

A(s0)v = λv ⇐⇒ A(s̃0)v = λ̃v

where
1

λ
−

1

λ̃
= s̃0 − s0



Multiple expansion points

• Due to changing expansion points

s
(1)
0 , s

(2)
0 , . . . , s

(l)
0 ,

the resulting reduced-order model is characterized by a

multi-point Padé-type property:

Hn(s) = H(s) + O

((
s − s

(j)
0

)qj
)

, j = 1,2, . . . , l

• Except for s
(1)
0 , the other expansion points are complex



Single vs. multiple expansion points
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Single vs. multiple expansion points
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Open problems

• SPRIM preserves the block structures of RCL networks

• Preservation of the fine structure of the blocks?

• Optimal structure-preserving Padé-type reduction?

• Automated selection of changing expansion points to make

thick restarts practical?

• We still cannot handle RCL descriptor systems as large as

we would need to

• Meaningful reduced-order models for very inaccurate system

data?


