Pseudospectral Methods in Optimal Control

William W. Hager

University of Florida
October 27, 2010

Collaborators:

- Anil Rao + students:
- David Benson
- Chris Darby
- Divya Garg
- Geoffrey Huntington
- Michael Patterson

Research support by National Science Foundation and the Office of Naval Research

Software:

- GPOPS: General Pseudospectral OPtimal Control Software
- MATLAB software with interface to optimizer such as SNOPT
- Free (GNU license)
- Gauss, Radau, Lobatto

Model Control Problem

$$
\begin{gathered}
\min \Phi(\mathbf{x}(1)) \\
\text { subject to } \frac{d \mathbf{x}}{d t}=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \quad-1 \leq t \leq+1, \quad \mathbf{x}(-1)=\mathbf{x}_{0} \\
\mathbf{f}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, \quad \mathbf{x}_{0} \text { given. }
\end{gathered}
$$

Gauss Pseudospectral Scheme

- $\tau_{1}, \tau_{2}, \ldots, \tau_{N}=$ Gauss quadrature points
- $\tau_{0}=-1$ and $\tau_{N+1}=+1$.
- Lagrange interpolating polynomials:

$$
L_{i}(\tau)=\prod_{\substack{j=0 \\ j \neq i}}^{N} \frac{\tau-\tau_{j}}{\tau_{i}-\tau_{j}}, \quad(i=0, \ldots, N)
$$

- State approximation:

$$
x_{j}^{N}(\tau)=\sum_{i=0}^{N} x_{i j} L_{i}(\tau)
$$

- Derivative approximation:

$$
\dot{x}_{j}^{N}\left(\tau_{k}\right)=\sum_{i=0}^{N} x_{i j} \dot{L}_{i}\left(\tau_{k}\right)=\sum_{i=0}^{N} D_{k i} x_{i j}, \quad D_{k i}=\dot{L}_{i}\left(\tau_{k}\right)
$$

Gauss Pseudospectral Scheme (continued)

- Dynamics matrix:

$$
F_{i j}(\mathbf{X}, \mathbf{U})=f_{j}\left(\mathbf{X}_{i}, \mathbf{U}_{i}\right), \quad 1 \leq i \leq N, \quad 1 \leq j \leq n
$$

- Collocated dynamics:

$$
\mathbf{D X}=\mathbf{F}(\mathbf{X}, \mathrm{U})
$$

- State at end point:

$$
\mathbf{X}_{N+1, j}=x_{j}^{N}(1)=x_{j}^{N}(-1)+\int_{-1}^{+1} \dot{x}_{j}^{N}(\tau) d \tau
$$

- End state after quadrature ($w=$ quadrature weights):

$$
\mathbf{X}_{N+1}=\mathbf{X}_{0}+\mathbf{w}^{\top} \mathbf{D} \mathbf{X}=\mathbf{w}^{\top} \mathbf{F}(\mathbf{X}, \mathbf{U})
$$

The Gauss Pseudospectral Problem

$$
\begin{aligned}
\text { minimize } & \Phi\left(\mathbf{X}_{N+1}\right) \\
\text { subject to } \mathbf{D X} & =\mathbf{F}(\mathbf{X}, \mathbf{U}) \\
\mathbf{X}_{N+1} & =\mathbf{X}_{0}+\mathbf{w}^{\top} \mathbf{F}(\mathbf{X}, \mathbf{U}) \\
\mathbf{X}_{0} & =\mathbf{x}_{0}
\end{aligned}
$$

The Counterexample

$$
\begin{gathered}
\text { minimize } \quad \int_{0}^{1}(u(t)-1)^{2} d t \\
\text { subject to } \quad \frac{d \mathbf{x}}{d t}=\lambda x+u, \quad 0 \leq t \leq+1, \quad \mathbf{x}(0)=0 .
\end{gathered}
$$

Obvious solution: $u:=1, \quad x(t)=\left(e^{\lambda t}-1\right) / \lambda$.

The Pseudospectral approximation

$$
\begin{aligned}
& \operatorname{minimize} \quad \sum_{i=1}^{N} w_{i}\left(u_{i}-1\right)^{2} \\
& \text { subject to } \quad \overline{\mathbf{D}} \mathbf{X}=\lambda \mathbf{X}+\mathbf{U}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbf{X}=\left(x_{1}, x_{2}, \ldots, x_{N}\right)^{\top}, \quad x_{0}=0 \\
& \mathbf{U}=\left(u_{1}, u_{2}, \ldots, u_{N}\right)^{\top} \\
& \overline{\mathbf{D}} \text { is } N \text { by } N
\end{aligned}
$$

If λ is an eigenvalue of \mathbf{D}, then the linear system for \mathbf{X} is singular!

A Fix

- Dynamics: $\mathbf{X}=\lambda \overline{\mathbf{D}}^{-1} \mathbf{X}+\overline{\mathbf{D}}^{-1} \mathbf{U}$ where $\rho\left(\overline{\mathbf{D}}^{-1}\right) \leq 2 / 3$ for $N \geq 2$
- Scaling: If the time interval is scaled by h, then $\overline{\mathbf{D}}^{-1}$ scales by h.
- $h p$: If we partition time interval into subintervals of width h, and use a pseudospectral scheme on each subinterval, then $\lambda \overline{\mathbf{D}}^{-1}=O(h) \rightarrow \mathbf{0}$ as $h \rightarrow \mathbf{0}$. Hence, the linear system for \mathbf{X} is nonsingular when h is sufficiently small.
- Alternatively: Since $\rho\left(\mathbf{D}^{-1}\right)$ tends to zero as N tends to infinity, it follows that by taking N sufficiently large, $\lambda \rho\left(\overline{\mathbf{D}}^{-1}\right)$ tends to zero as $N \rightarrow \infty$ and the linear system for \mathbf{X} becomes invertible.
- Note: Gaussian elimination with partial pivots should not work since the error could grow like 2^{n} in worst case; nonetheless, Gaussian elimination is routinely used to solve $\mathrm{Ax}=\mathrm{b}$.

Euler Discrete Control Problem

$$
\begin{gathered}
\min \Phi\left(\mathbf{x}_{N}\right) \\
\text { subject to } \quad \mathbf{x}_{k+1}=\mathbf{x}_{k}+h \mathbf{f}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right), \quad 0 \leq k \leq N-1 .
\end{gathered}
$$

$h=2 / N=$ mesh spacing
Convergence Theory:

- $\mathrm{x}_{k}^{*}-\mathrm{x}^{*}\left(t_{k}\right)=O(h)=\mathbf{u}_{k}^{*}-\mathbf{u}^{*}\left(t_{k}\right)$
- theory developed in papers of Dontchev, Hager, Malanowski, Veliov
- Need $N \approx 1,000,000$ for error $\approx 10^{-6}$.

Pseudospectral Approach

- Approximate x by a polynomial
- Use collocation for system dynamics
- The hope: for $N=10$ the error $\approx 10^{-6}$.
- Lobatto collocation: Fahroo, Kang, Ross, and Pietz
- Radau collocation: Larry Biegler and Shiva Kameswaran, Fahroo and Ross, Benson, Darby, Francilon, Garg, Hager, Huntington, Patterson, Rao
- Gauss collocation: Benson, Garg, Hager, Huntington, Patterson, Rao

Continuous Optimality Conditions (Pontryagin Minimum Principle)

$$
\begin{aligned}
\lambda(-1) & =\mu \\
\lambda(1) & =\nabla \Phi(\mathrm{x}(1)) \\
\lambda^{\prime}(t) & =-\nabla_{x}\langle\boldsymbol{\lambda}(t), \mathbf{f}(\mathrm{x}(t), \mathbf{u}(t))\rangle \\
\mathbf{0} & =\nabla_{u}\langle\boldsymbol{\lambda}(t), \mathbf{f}(\mathrm{x}(t), \mathbf{u}(t))\rangle
\end{aligned}
$$

KKT Conditions

- Lagrangian:

$$
\langle\mathbf{A}, \mathbf{B}\rangle=\sum_{i} \sum_{j} A_{i j} B_{i j}
$$

$$
\begin{gathered}
\mathcal{L}\left(\boldsymbol{\Lambda}, \boldsymbol{\Lambda}_{N+1}, \boldsymbol{\mu}, \mathbf{X}, \mathbf{X}_{N+1}, \mathbf{U}\right)=\Phi\left(\mathbf{X}_{N+1}\right)+\langle\boldsymbol{\Lambda}, \mathbf{F}(\mathbf{X}, \mathbf{U})-\mathbf{D} \mathbf{X}\rangle \\
+\left\langle\boldsymbol{\Lambda}_{N+1}, \mathbf{w}^{\top} \mathbf{F}(\mathbf{X}, \mathbf{U})+\mathbf{X}_{0}-\mathbf{X}_{N+1}\right\rangle+\left\langle\boldsymbol{\mu}, \mathbf{x}_{0}-\mathbf{X}_{0}\right\rangle
\end{gathered}
$$

- Partial with respect to \mathbf{X}_{N+1} :

$$
\boldsymbol{\Lambda}_{N+1}=\nabla_{X} \Phi\left(\mathbf{X}_{N+1}\right)
$$

- Partial with respect to \mathbf{X}_{j} :

$$
\sum_{i=1}^{N} D_{i j} \boldsymbol{\Lambda}_{i}=\nabla_{X}\left\langle\boldsymbol{\Lambda}_{j}, \mathbf{f}\left(\mathbf{X}_{j}, \mathbf{U}_{j}\right)\right\rangle+w_{j} \nabla_{X}\left\langle\boldsymbol{\Lambda}_{N+1}, \mathbf{f}\left(\mathbf{X}_{j}, \mathbf{U}_{j}\right)\right\rangle, \quad 1 \leq j \leq N
$$

- Partial with respect to \mathbf{X}_{0} :

$$
\boldsymbol{\mu}=\boldsymbol{\Lambda}_{N+1}-\mathbf{D}_{0}^{\top} \boldsymbol{\Lambda},
$$

- Partial with respect to U_{j} :

$$
\nabla_{U}\left\langle\boldsymbol{\Lambda}_{j}, \mathbf{f}\left(\mathbf{X}_{j}, \mathbf{U}_{j}\right)\right\rangle+w_{j} \nabla_{U}\left\langle\boldsymbol{\Lambda}_{N+1}, \mathbf{f}\left(\mathbf{X}_{j}, \mathbf{U}_{j}\right\rangle=0, \quad 1 \leq j \leq N\right.
$$

Transformed Adjoint and Differentiation Matrix

$$
\begin{aligned}
\boldsymbol{\lambda}_{i} & =\boldsymbol{\Lambda}_{i} / w_{i}+\boldsymbol{\Lambda}_{N+1}, \quad 1 \leq i \leq N \\
\boldsymbol{\lambda}_{N+1} & =\boldsymbol{\Lambda}_{N+1} \\
\boldsymbol{\lambda}_{0} & =\boldsymbol{\Lambda}_{N+1}-\mathbf{D}_{0}^{\top} \boldsymbol{\Lambda} \\
D_{i j}^{\dagger} & =-\frac{w_{j}}{w_{i}} D_{j i}, \quad(i, j)=1, \ldots, N, \\
D_{i, N+1}^{\dagger} & =-\sum_{j=1}^{N} D_{i j}^{\dagger}, \quad i=1, \ldots, N
\end{aligned}
$$

Transformed Adjoint Optimality Conditions

$$
\begin{aligned}
\lambda_{0} & =\mu \\
\lambda_{N+1} & =\nabla_{X} \Phi\left(\mathbf{X}_{N+1}\right) \\
\mathrm{D}_{1: N}^{\dagger} \boldsymbol{\lambda}+\mathrm{D}_{N+1}^{\dagger} \boldsymbol{\lambda}_{N+1} & =-\nabla_{X}\langle\boldsymbol{\lambda}, \mathbf{F}(\mathbf{X}, \mathrm{U})\rangle \\
\lambda_{0} & =\boldsymbol{\lambda}_{N+1}+\sum_{j=1}^{N} w_{j} \nabla_{X}\left\langle\boldsymbol{\lambda}_{j}, \mathbf{f}\left(\mathbf{X}_{j}, \mathbf{U}_{j}\right)\right\rangle \\
0 & =\nabla_{U}\langle\boldsymbol{\lambda}, \mathbf{F}(\mathbf{X}, \mathrm{U})\rangle
\end{aligned}
$$

Properties of D and D^{\dagger}

1. D and D^{\dagger} are both differentiation matrices
2. D operates on polynomial values $p_{i}=p\left(\tau_{i}\right), 0 \leq i \leq N$:

$$
(\mathrm{Dp})_{i}=p^{\prime}\left(\tau_{i}\right), \quad 1 \leq i \leq N
$$

3. D^{\dagger} operates on polynomial values $q_{i}=q\left(\tau_{i}\right), 1 \leq i \leq N+1$:

$$
\left(\mathbf{D}^{\dagger} \mathbf{q}\right)_{i}=q^{\prime}\left(\tau_{i}\right), \quad 1 \leq i \leq N
$$

4. $\mathrm{D}_{1: N}$ and $\mathrm{D}_{1: N}^{\dagger}$ are both invertible
5. $\mathbf{D}_{1: N}^{-1} \mathbf{D}_{0}=-1=\left(\mathbf{D}_{1: N}^{\dagger}\right)^{-1} \mathbf{D}_{N+1}^{\dagger}$

Inverses of $\mathrm{D}_{1: N}$ and $\mathrm{D}_{1: N}^{\dagger}$

$$
\begin{aligned}
{\left[\mathbf{D}_{1: N}^{-1}\right]_{i j} } & =\int_{-1}^{\tau_{i}} L_{j}^{\dagger}(\tau) d \tau \\
{\left[\left(\mathbf{D}_{1: N}^{\dagger}\right)^{-1}\right]_{i j} } & =\int_{+1}^{\tau_{i}} L_{j}^{\dagger}(\tau) d \tau \\
L_{j}^{\dagger}(\tau) & =\prod_{\substack{i=1 \\
i \neq j}}^{N} \frac{\tau-\tau_{i}}{\tau_{j}-\tau_{i}}
\end{aligned}
$$

Compact Transformed Optimality Conditions

$$
\begin{array}{rlrl}
\mathbf{X}_{i} & =\mathbf{X}_{0}+\mathbf{A}_{i} \mathbf{F}(\mathbf{X}, \mathbf{U}), & & 1 \leq i \leq N+1 \\
\boldsymbol{\lambda}_{i} & =\boldsymbol{\lambda}_{N+1}-\mathbf{B}_{i} \nabla_{X}\langle\boldsymbol{\lambda}, \mathbf{F}(\mathbf{X}, \mathbf{U})\rangle, & & 0 \leq i \leq N \\
\boldsymbol{\lambda}_{N+1} & =\nabla_{X} \Phi\left(\mathbf{X}_{N+1}\right) & & \\
\mathbf{0} & =\nabla_{U}\langle\boldsymbol{\lambda}, \mathbf{F}(\mathbf{X}, \mathbf{U})\rangle & & \\
\mathbf{A}_{1: N} & =\mathbf{D}_{1: N}^{-1}, \quad \mathbf{A}_{N+1}=\mathbf{w}^{\top} & & \\
\mathbf{B}_{1: N} & =\left(\mathbf{D}_{1: N}^{\dagger}\right)^{-1}, \quad \mathbf{B}_{0}=-\mathbf{w}^{\top} &
\end{array}
$$

Continuous Optimality Conditions (Pontryagin Minimum Principle)

$$
\begin{aligned}
\mathbf{x}^{\prime}(t) & =\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) \\
\boldsymbol{\lambda}^{\prime}(t) & =-\nabla_{x}\langle\boldsymbol{\lambda}(t), \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))\rangle \\
\boldsymbol{\lambda}(1) & =\nabla \Phi(\mathbf{x}(1)) \\
0 & =\nabla_{u}\langle\boldsymbol{\lambda}(t), \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))\rangle
\end{aligned}
$$

Comment and Question

- If some given $\mathbf{U}, \boldsymbol{\lambda}$ and \mathbf{X} satisfy the state and costate equations, then $\nabla_{U}\langle\boldsymbol{\lambda}, \mathbf{F}(\mathbf{X}, \mathbf{U})\rangle$ is the gradient of objective function with respect to the control.
- What are the eigenvalues of $\mathbf{D}_{1: N}$?
- Suppose $\mathbf{f}(\mathbf{x}, \mathbf{u})=\gamma \mathbf{x}+\mathbf{g}(\mathbf{u})$:

$$
\mathbf{D}_{1: N} \mathbf{X}_{1: N}=\gamma \mathbf{X}_{1: N}-\mathbf{D}_{0} \mathbf{X}_{0}+\mathbf{G}(\mathbf{U})
$$

When γ is an eigenvalue of $\mathbf{D}_{1: N}$, cannot solve for $\mathbf{X}_{1: N}$ as a function of U .

Example

$$
\min -y(5) \quad \text { subject to } \quad y^{\prime}=-y+y u-u^{2}, \quad y(0)=1 .
$$

Solution:

$$
\begin{aligned}
y^{*}(t) & =4 /(1+3 \exp (t)) \\
u^{*}(t) & =y^{*}(t) / 2 \\
\lambda_{y}^{*}(t) & =-\exp (2 \ln (1+3 \exp (t))-t) /(\exp (-5)+6+9 \exp (5)) .
\end{aligned}
$$

Journal articles at

http://www.math.ufl.edu/~hager/papers/Control

