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Unconstrained nonlinear minimization problem

min
x ∈ R

n
f (x)

f : R
n → R is the objective function

we suppose f ∈ C2
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Line search methods in a nutshell

Iterations: xk+1 = xk + αkpk

Line search direction: pk = −Hk
−1∇f (xk)

Hk positive definite

=⇒ 1. ∇f (xk)T pk < 0, pk is a descent direction

2. f (xk + αpk) < f (xk) for α > 0 sufficiently small,

pk is a direction of decrease

Steplength: αk > 0
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Choices for Hk

Hk is chosen positive definite and symmetric

Steepest descent: Hk := I

Newton: Hk := ∇2f (xk) (generally not positive definite!)

‘Modified Newton’: Hk := λk I + ∇2f (xk)

Quasi-Newton (secant method in dim n = 1):

Quasi-Newton condition for Hk :

Hksk−1 = yk−1

where

sk−1 := xk − xk−1, yk−1 := ∇f (xk) −∇f (xk−1)

Example: the BFGS formula:

Hk := Hk−1 +
1

sT
k−1yk−1

yk−1y
T

k−1 −
1

sT
k−1zk−1

zk−1z
T

k−1

where zk−1 := Hk−1sk−1
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Conditions on αk for global convergence

Let m(α) := f (x(α)) where the curve x(α) := xk + αpk is a
straight line

The Wolfe conditions of sufficient decrease

m(αk) ≤ m(0) + η1αkm′(0)

η2m
′(0) ≤ m′(αk)

e.g., with parameters 0 < η1 = 10−4 < η2 = 0.9 < 1.

To avoid extra gradient evalutions the Goldstein and Price
conditions of sufficient decrease replace m′(αk) above by

m(αk) − m(0)

αk
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Justification of pk by a quadratic model?

pk = −Hk
−1∇f (xk) is the minimizer of the “quadratic model”

Qk(p) := f (xk) + ∇f (xk)T p +
1

2
pTHkp

of the nonlinear function f (xk + p)

Qk(p) ≈ f (xk + p) is valid for ‖p‖ small only! However ‖pk‖
is not small in general, unless xk is already close to a
stationary point (∇f (xk) ≈ 0)

αkpk is the minimizer of Qk(p/αk) which has no reason to be
a good model of f (xk + p)!

Hence, the choice of the search direction pk = −Hk
−1∇f (xk)

cannot be justified by Qk(p) being a good quadratic model. The
only possible justification is that of pk being a direction of decrease
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An interpretation of line search methods

The implicit Euler method applied to the (possibly stiff) gradient
system

d

dt
y = −∇f (y), y(0) = xk

with artificial time t and stepsize hk > 0 reads

yk+1 − (xk − hk∇f (yk+1)) = 0

One modified Newton iteration with initial guess y
(0)
k+1 := xk and

modified Jacobian Mk := I + hkBk ≈ I + hk∇2f (yk+1) leads to

y
(1)
k+1 = y

(0)
k+1 − Mk

−1hk∇f (y
(0)
k+1)

= xk − Mk
−1hk∇f (xk) = xk − Hk

−1∇f (xk)

where Hk := λk I + Bk and λk := 1/hk (λk = 0 corresponds to
hk = +∞!)
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An interpretation of line search methods (cont.)

Dense (continuous) output approximate solution passing through

xk and y
(1)
k+1

x(α) = xk − αHk
−1∇f (xk) = xk − αMk

−1hk∇f (xk) ≈ y(αhk)

The above interpretation gives a posteriori justifications

for certain search directions pk = −Hk
−1∇f (xk), in particular

for the ‘modified Newton’ method of nonlinear optimization

Hk := λk I + ∇2f (xk) instead of Hk := ∇2f (xk)

to ensure positive definiteness

for the initial matrix H0 := λ0I of quasi-Newton methods, the
choice of λ0 can be related to the choice of an initial stepsize
h0 through the relation λ0 = 1/h0
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Main motivation for numerical ODE methods

Consider the curve y(t) solution to the gradient system

d

dt
y = −∇f (y), y(0) = xk

Theorem

Let f ∈ C2 and ∇f (xk) 6= 0 =⇒ f (y(t)) < f (y(s)) for s < t.

Moreover, if the set {y ∈ R
n | f (y) ≤ f (xk)} is compact =⇒

limt→+∞∇f (y(t)) = 0

The curve y(t) is a descent curve for f . It has clearly better
properties than the straight line

x(α) = xk + αpk = xk − αH−1
k

∇f (xk)
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Descent ODEs for f

More generally we can consider descent ODEs for f

d

dt
y = −Kk(t, y)∇f (y), y(0) = xk

with positive definite matrices Kk(t, y)

The flow for Kk(t, y) := (∇2f (y))−1 is called the Newton flow

Descent curves for f y(t) are more than decent!
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Numerical ODE methods in nonlinear optimization

Numerical ODE methods in nonlinear optimization have been
considered and rediscovered several times in the past

Paul T. Boggs (1971, 1977)

Charalambos-Apostolos Emmanuel Botsaris (1976, 1978)

Jean-Philippe Vial and Israel Zang (1977)

Jan A. Snyman (1982)

Michael C. Bartholomew-Biggs and A. A. Brown (1989)

Johannes Schropp (1995, 1997, 1999, 2001)

John A. Ford (1996, 2003)

William Behrmann (1998, PhD student of Walter Murray)

Desmond J. Higham (1999)

Neculai Andrei (2004)

Pierre-Antoine Absil (2006)

Tim Kelley et al. (2006, 2009)
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A quote from Des Higham (1999)

“. . . the possibility of combining optimization and ODE ideas forms

an attractive area for future work.”
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Numerical ODE methods in nonlinear optimization (cont.)

To my knowledge numerical ODE methods are not mentioned in
any nonlinear optimization (text)book.

They may be used only as a last resort when other methods
fail

Their clear advantage: robustness

Their apparent disadvantage: cost per iteration

What really matters? Efficiency



Line search methods Numerical ODE methods in unconstrained optimization

Personal conviction

By mixing numerical ODE techniques with nonlinear optimization
techniques more efficient methods can be obtained.
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New Quasi-Newton type condition

The quasi-Newton condition

Hk sk−1 = yk−1

where sk−1 := xk − xk−1, yk−1 := ∇f (xk) −∇f (xk−1) is originally
motivated by the relation

∇2f (xk)sk−1 = yk−1 + o(‖sk−1‖)

Since we are interested in matrices of the form

Hk = λk I + Bk ≈ λk I + ∇2f (xk)

it is natural to consider the new quasi-Newton type condition

Hksk−1 = λk sk−1 + yk−1

Theorem

sT
k−1yk−1 > 0, λk > 0, and Hk−1 s.p.d. =⇒ HBFGS

k
s.p.d.
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New Quasi-Newton type condition (cont.)

Similarly for matrices of the form

Mk = I + hkBk ≈ I + hk∇2f (xk)

it is natural to consider the new quasi-Newton type condition

Mksk−1 = sk−1 + hkyk−1

Theorem

sT
k−1yk−1 > 0, hk > 0, and Mk−1 s.p.d. =⇒ MBFGS

k
s.p.d.



Line search methods Numerical ODE methods in unconstrained optimization

Numerical results for the Rosenbrock problem

f (x) :=

n−1∑

i=1

(
(1 − xi )

2 + 100(xi+1 − x2
i )2
)

H0 = I and
m = 12 for limited
memory BFGS (L-BFGS)
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Numerical results for the Rosenbrock problem (cont.)
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Numerical results for the Zakharov problem

f (x) :=

n∑

i=1

x2
i +

1

4

(
n∑

i=1

i · xi

)2

+
1

16

(
n∑

i=1

i · xi

)4
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Numerical results for the Zakharov problem (cont.)
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2-stage IRK methods and dense output

The implicit Euler method is not the most efficient method for
ODEs. It is only of order 1. We can consider dense output curves
x(α) of 2-stage implicit Runge-Kutta (IRK) methods

Y1 = xk − hk (a11∇f (Y1) + a12∇f (Y2))

Y2 = xk − hk (a21∇f (Y1) + a22∇f (Y2))

x(α) = xk − hk (b1(α)∇f (Y1) + b2(α)∇f (Y2)) ≈ y(αhk)

with the following desirable properties:

stage order 2 (≡ simplifying assumption C (2) ≡ collocation)

dense output of order 2 (the collocation polynomial)

coefficient matrix A with real positive eigenvalues

stiffly accurate for α = 1, i.e., x(1) = Y2.

L-stable for α = 1
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2-stage IRK methods and dense output (cont.)

We obtain a one-parameter family of order 2 methods with

c1 ∈]0, 3 − 2
√

2] ∪ [3 + 2
√

2,+∞[≈]0, 0.17157] ∪ [5.8284,+∞[

Methods for c1 ∈]0, 3 − 2
√

2] and c̃1 ∈ [3 + 2
√

2,+∞[ are in
fact equivalent! The latter corresponds to c̃1 = 1/c1,
Ỹ1 = Y2, Ỹ2 = Y1, and stepsize h̃k = c1hk .

For c1 := 1/8 = 0.125 we obtain

c1 a11 a12

c2 a21 a22

b1(α) b2(α)

=

1/8 15/112 −1/112
1 4/7 3/7

(16α − 8α2)/14 (−α + 4α2)/7

µ1(A) ≈ 0.15240, µ2(A) ≈ 0.41009

The 2-stage Radau IIA IRK method has c1 = 1/3 = 0.3
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2-stage IRK methods and dense output (cont.)

A 2-stage IRK method enables the construction of an error
estimator of order 1 for stepsize selection; error estimation for
the implicit Euler method is more difficult!

We use the IRK framework for approximately solving the
gradient system, but not at the cost of solving accurately
large systems of equations at each step. Only one modified
Newton iteration per step can be made which requires 2
evaluations of ∇f that can be done in parallel

Initial guesses for Y
(0)
1 and Y

(0)
2 can be obtained by using a

dense output approximation from the previous step or from a
starting algorithm



Line search methods Numerical ODE methods in unconstrained optimization

Curve search

The points Y
(1)
1 and Y

(1)
2 are directly available and are of

great interest as trial points. The monotonicity conditions

f (xk) > f (Y
(1)
1 ) > f (Y

(1)
2 )

can be tested

The dense output curve x(α) can be considered for any α ≥ 0
not just for α ∈ [0, 1]

We can do a curve search instead of a line search still based
on the same Wolfe or Goldstein and Price conditions of
sufficient decrease with m(α) := f (x(α)).
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Quasi-Newton type formulas for 2-stage IRK methods

For the 2 modified Jacobians

M1,k+1 ≈ I + µ1hk+1∇2f (xk), M2,k+1 ≈ I + µ2hk+1∇2f (xk)

at least 2 quasi-Newton type conditions per step are possible, not
just 1, based on

M1,k+1s1k = s1k + µ1hk+1y1k , M1,k+1s2k = s2k + µ1hk+1y2k

M2,k+1s1k = s1k + µ2hk+1y1k , M2,k+1s2k = s2k + µ2hk+1y2k

where

s1k := Y
(0)
1 − xk , y1k := ∇f (Y

(0)
1 ) −∇f (xk)

s2k := Y
(0)
2 − Y

(0)
1 , y2k := ∇f (Y

(0)
2 ) −∇f (Y

(0)
1 )

provided that
sT
1ky1k > 0, sT

2ky2k > 0.
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Numerical results for the Rosenbrock problem

f (x) :=
n−1∑

i=1

(
(1 − xi )

2 + 100(xi+1 − x2
i )2
)
, n = 10

H0 = I and
m = 12 for limited
memory BFGS (L-BFGS)

0 100 200 300 400 500 600 700
−40

−30

−20

−10

0

10

20

30

iterations

lo
g(

f(
x)

)

 

 

lbfgs

hybrid



Line search methods Numerical ODE methods in unconstrained optimization

Fnal remarks and future work

Search directions can be justified by a gradient ODE system,
not by a quadratic model unless the gradient is small

New quasi-Newton type conditions are promising

Order two IRK type methods may be more efficient

Good predictors for Y
(0)
i

are important

Curve search strategy is also important (avoid gradients?)

Preconditioned 2-stage Radau IIA IRK method?

Extension to nonlinear optimization problems with equality
contraints → Numerical DAE methods.
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