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MATRIX commercial

The Matrix

The Matrix Reloaded

The Matrix Revolutions

The Matrix Stratifications

Coming soon to a PC near you!
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Dense and Structured Matrix Computations @ Umeå

THEORY – ALGORITHMS – SOFTWARE TOOLS

Theme 1: Matrix Pencil Computations in
Computer-Aided Control System Design

Ill-posed eigenvalue problems
Canonical forms (Jordan, Kronecker, staircase)
Generalized Schur forms (GUPTRI, QZ)
Subspaces: eigenvalue reordering
Matrix equations (Sylvester, Lyapunov, Riccati)
Functions of matrices
Perturbation theory, condition estimation and error
bounds
Periodic counterparts

Periodic Riccati differential equations

Theme 2: High Performance and Parallel
Computing
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Dense and Structured Matrix Computations @ Umeå

THEORY – ALGORITHMS – SOFTWARE TOOLS

Theme 2: High Performance and Parallel
Computing

Blocking for memory hierarchies (DM, SM, hybrid,
multicore, GPGPUs)

Explicit (multi level) blocking
Recursive blocking
Blocked hybrid data structures

Library software
Contributions to LAPACK, ScaLAPACK, SLICOT, ESSL
Matrix equations: RECSY and SCASY

Novel parallel QR algorithm
30 times faster than current ScaLAPACK
implementation!
Solved 100000× 100000 dense nonsymmetric
eigenvalue problems!
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Outline

Some motivation and background to stratification
of orbits and bundles:

Canonical forms and structure information
Matrix and pencil spaces
Graph representation of a closure hierarchy
Nilpotent matrix orbit stratification (7× 7)
Matrix bundle stratification (4× 4)

Controllability and observability matrix pairs
System pencils and equivalence orbits and bundles
Canonical forms of pairs (Kronecker and Brunovsky)
Closure and cover relations

Applications in control system design and analysis:
Mechanical system - uniform platform with 2 springs
Linearized Boeing 747 model

Stratification [Oxford advanced learner’s dictionary]

The division of something into different layers or groups
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Some motivation

Computation of canonical forms (e.g., Jordan,
Kronecker, Brunovsky) are ill-posed problems

small perturbation of input data may drastically
change the computed structure

Compute canonical structure information using so
called staircase algorithms (orthogonal
transformations)

Need to provide the user with more information:
What other structures are nearby?
Upper and lower bounds to other structures

Applications in, e.g., control system design
Controllability
Observability

Bo Kågström BIRS Workshop, Banff, Oct. 24-29, 2010

Leverage on the thery of matrix spaces

Objective: Make use of the geometry of matrix and
matrix pencil spaces to solve nearness problems
related to Jordan and Kronecker canonical forms

Tools: The theory of stratification of orbits and
bundles (and versal deformations)

Our program:

To understand qualitative and quantitative properties of
nearby Jordan and Kronecker structures

Deliverables: Interactive tools and algorithms that
make these complex theories easily available to
end users
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Matrix and matrix pencil spaces

An n× n matrix can be viewed as a point in n2–dim
space
Numerical computations – move from point to point
or manifold to manifold

Orbit of a matrix

O(A) =
¦
PAP−1 : detP 6= 0

©

Manifold of all matrices with Jordan Normal Form (JNF) of A

Orbit of a pencil

O(A− λB) =
�
P(A− λB)Q : detPdetQ 6= 0

	

Manifold of all m× n pencils in 2mn–dim space with the
Kronecker Canonical Form (KCF) of A− λB

Bundle: B(·) is the union of all orbits with the same
canonical form but with eigenvalues unspecified
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Dimensions and codimensions

m× n pencil case

orbit(A – λB)

nor(A – λB)

tan(A – λB)

A – λB

dim(O(A− λB)) ≡ dim(tan(O(A− λB))
codim(O(A− λB)) ≡ dim(nor(O(A− λB))
dim(O(A− λB))+ codim(O(A− λB)) = 2mn

codim(B(·)) = codim(O(·))− k,
k = number of unspecified eigenvalues
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Stratification of orbits – matrix case

Given a matrix and its orbit: What other structures
are found within its closure?

Stratification:

The closure hierarchy of all possible Jordan structures

We make use of:

Graphs to illustrate stratifications

Dominance orderings for integer partitions in proofs
and derivations
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Closure hierarchy – graph representation

Surface: 2D
manifold excluding
the two 1D curves
and the point

The 3D space
covers the
surface

The two curves
are in the
closure of the
surface, which is
in the closure of
the 3D space

3D space

surface

curve 1 curve 2
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Closure hierarchy – graph representation

Surface: 2D
manifold excluding
the two 1D curves
and the point

Most generic

Least generic
(most
degenerate)

3D space

surface

curve 1 curve 2

point
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Staircase form of nilpotent 7× 7 matrix

QH(A+ E)Q =

Weyr: (3,2,2)

Q unitary

J3(0)⊕ J3(0)⊕ J1(0)

Segre: (3,3,1)
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Nilpotent orbit stratification of 7× 7 matrix

Dominance
ordering of the
integer n = 7

Deformations of
stairs and ....

... versal
deformations
A+Z(p)

span(Z(p)) = nor(A)
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Stratification of 4× 4 matrix bundle
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Swallowtail – bundles of coalescing eigenvalues
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Pencil representation

A (generalized) state-space system with the
state-space model

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

can be represented in the form of a system pencil

S(λ) = G − λH =

�
A B

C D

�
− λ
�
E 0
0 0

�
,

with the corresponding general matrix pencil G − λH

In short form, S(λ) is represented by a matrix

quadruple (A,B,C,D) (E = I)
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Controllable and observable systems

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

Controllable system: There exists an input signal
(vector) u(t), t0 ≤ t ≤ tf that takes every state
variable from an initial state x(t0) to a desired final
state xf in finite time.

Observable system: If it possible to find the initial
state x(t0) from the input signal u(t) and the output
signal y(t) measured over a finite interval t0 ≤ t ≤ tf .
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Matrix pairs

Consider the controllability pair (A,B) and the
observability pair (A,C), associated with the particular
systems:

ẋ(t) = Ax(t) +Bu(t)

and

ẋ(t) = Ax(t)

y(t) = Cx(t)

System pencil representations:

SC(λ) =
�
A B
�
− λ
�
In 0
�

and SO(λ) =

�
A

C

�
− λ
�
In
0

�
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Matrix pairs

An orbit of a matrix pair

A manifold of equivalent matrix pairs:

O(A,B) =

�
P(A,B)

�
P−1 0
R Q−1

�
: detP · detQ 6= 0

�

(PAP−1 + PBR,PBQ−1)

A bundle of a matrix pair

The union of all orbits with the same canonical form but
with unspecified eigenvalues

B(A,B) =
⋃

μi

O(A,B)
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Canonical forms

A canonical form is the simplest or most symmetrical form a
matrix or matrix pencil can be reduced to

Matrices – Jordan canonical form

Matrix pencils – Kronecker canonical form

System pencils – (generalized) Brunovsky canonical form

A canonical form reveals the canonical structure information
from which the system characteristics are deduced

All matrix pairs in the same orbit has the same canonical
form
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Kronecker canonical form

Any matrix pencil G − λH or system pencil S(λ) can be
transformed into Kronecker canonical form (KCF) using
equivalence transformations (U and V non-singular):

U−1(S(λ))V =

diag(Lε1 , . . . ,Lεp , J(μ1), . . . , J(μt),Ns1 , . . . ,Nsk ,L
T
η1
, . . . ,LT

ηq
)

Singular part:

Lε1 , . . . ,Lεp – Right singular blocks

LT
η1
, . . . ,LT

ηq
– Left singular blocks
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Lk =




−λ 1
...

.. .
−λ 1




Kronecker canonical form

Any matrix pencil G − λH or system pencil S(λ) can be
transformed into Kronecker canonical form (KCF) using
equivalence transformations (U and V non-singular):

U−1(S(λ))V =

diag(Lε1 , . . . ,Lεp , J(μ1), . . . , J(μt),Ns1 , . . . ,Nsk ,L
T
η1
, . . . ,LT

ηq
)

Singular part:

Lε1 , . . . ,Lεp – Right singular blocks

LT
η1
, . . . ,LT

ηq
– Left singular blocks

Regular part:

J(μ1), . . . , J(μt) – Each J(μi) is block-diagonal with Jordan blocks
corresponding to the finite eigenvalue μi

Ns1 , . . . ,Nsk – Jordan blocks corresponding to the infinite
eigenvalue
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Jk(μi) =




μi−λ 1
...

.. .

. . . 1
μi−λ




Kronecker canonical form – Matrix pairs

SC(λ) =
�
A B
�
− λ
�
In 0
�
has full row rank ⇒

KCF of SC(λ) can only have finite eigenvalues
(uncontrollable modes) and Lk blocks:

U−1SC(λ)V = diag(Lε1 , . . . ,Lεp , J(μ1), . . . , J(μt))

SO(λ) =

�
A

C

�
− λ
�
In
0

�
has full column rank ⇒

KCF of SO(λ) can only have finite eigenvalues
(unobservable modes) and LT

k
blocks:

U−1SO(λ)V = diag(J(μ1), . . . , J(μt),LTη1
, . . . ,LT

ηp
)
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Brunovsky canonical form

Given a matrix pair (A,B) or (A,C), there exists a feedback
equivalent matrix pair in Brunovsky canonical form (BCF),
such that

P
�
A− λIn B
��P−1 0

R Q−1

�
=

�
Aε 0 Bε
0 Aμ 0

�

or

�
P S
0 T

��
A− λIn

C

�
P−1 =




Aη 0
0 Aμ
Cη 0




respectively, where

(Aε,Bε) – controllable and corresponds to the L blocks

(Aη,Cη) – observable and corresponds to the LT blocks

Aμ – block diagonal with Jordan blocks and corresponds
to the uncontrollable and unobservable eigenvalues,
respectively
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Canonical structure indices

R = (r0, r1, . . .) where ri = #Lk blocks with k ≥ i

L = (l0, l1, . . .) where li = #LT
k
blocks with k ≥ i

J μi = (j1, j2, . . .) where ji = #Jk(μi) blocks with k ≥ i.
J μi is known as the Weyr characteristics of the
finite eigenvalue μi

N = (n1,n2, . . .) where ni = #Nk with k ≥ i. N is
known as the Weyr characteristics of the infinite
eigenvalue
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Integer partitions

A partition ν of an integer K is defined as ν = (ν1, ν2, . . .)
where ν1 ≥ ν2 ≥ · · · ≥ 0 and K = ν1 + ν2 + . . ..

Minimum rightward coin move: rightward one column or
downward one row (keep partition monotonic)

Minimum leftward coin move: leftward one column or
upward one row (keep partition monotonic)

Creates nearest neighbours in the dominance ordering of K

[Edelman, Elmroth & Kågström; 1999]
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Covering relations for (A,B) orbits

Find: canonical structures that are nearest neighbours

Theorem

Given the structure integer partitions R and J μi of (A,B), one

of the following if-and-only-if rules finds (eA, eB) such that:

O(A,B) covers O(eA, eB)
1 Minimum rightward coin

move in R

2 If the rightmost column in

R is one single coin, move

that coin to a new

rightmost column of some

J μi (which may be empty

initially)

3 Minimum leftward coin

move in any J μi

O(A,B) is covered by O(eA, eB)
1 Minimum leftward coin

move in R

2 If the rightmost column in

some J μi consists of one

coin only, move that coin to

a new rightmost column in

R

3 Minimum rightward coin

move in any J μi

Rules 1 and 2: Coin moves that affect r0 = #Lk-blocks are not
allowed
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Covering relations for (A,B) bundles

Theorem

Given the structure integer partitions R and J μi of (A,B), one

of the following if-and-only-if rules finds (eA, eB) such that:

B(A,B) covers B(eA, eB)
1 Minimum rightward coin

move in R

2 If the rightmost column in

R is one single coin, move

that coin to the first column

of J μi for a new eigenvalue

μi

3 Minimum leftward coin

move in any J μi

4 Let any pair of eigenvalues

coalesce, i.e., take the

union of their sets of coins

B(A,B) is covered by B(eA, eB)
1 Minimum leftward coin

move in R, without

affecting r0

2 If some J μi consists of one

coin only, move that coin to

a new rightmost column in

R

3 Minimum rightward coin

move in any J μi

4 For any J μi , divide the set

of coins into two new sets

so that their union is J μi
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Example 1 – Mechanical system

F

φ

z
k2d2

d1k1

∆l

A uniform platform with mass m and length 2l,
supported in both ends by springs

The control parameter of the system is the force F

applied at distance ∆l from the center of the platform
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Mechanical system – State-space model

By linearizing the equations of motion near the
equilibrium the system can be expressed by the linear
state-space model ẋ = Ax(τ) +Bu(τ) [A. Mailybaev ’03]:



ωż/ l

ωϕ̇

ω2z̈/ l

ω2ϕ̈


 =




0 0 1 0
0 0 0 1
−c1 −c2 −f1 −f2
−3c2 −3c1 −3f2 −3f1







z/ l
ϕ

ωż/ l

ωϕ̇


+




0
0
1
−3∆



ω2

ml
F

where

c1 =
(k1 + k2)ω

2

m
, c2 =

(k1 − k2)ω2

m
,

f1 =
(d1 + d2)ω

m
, f2 =

(d1 − d2)ω
m

,

and τ = t/ω where ω is a time scale coefficient
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Fixed elements!

Mechanical system – Canonical forms

With the parameters d1 = 4, d2 = 4, k1 = 6, k2 = 6,
m = 3, l = 1, ω = 0.01, and ∆ = 0, the resulting
controllability system pencil SC(λ) =

�
A B
�
− λ
�
I 0
�
is




0 0 1 0 0
0 0 0 1 0
−0.0004 0 −0.027 0 1
0 −0.0012 0 −0.08 0




− λ




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0



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F

φ

z
k2d2

d1k1

∆l



Mechanical system – Canonical forms

With the parameters d1 = 4, d2 = 4, k1 = 6, k2 = 6,
m = 3, l = 1, ω = 0.01, and ∆ = 0, the resulting
controllability system pencil SC(λ) =

�
A B
�
− λ
�
I 0
�
is

U




0 0 1 0 0
0 0 0 1 0
−0.0004 0 −0.027 0 1
0 −0.0012 0 −0.08 0




− λ




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


V
−1
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Mechanical system – Canonical forms

With the parameters d1 = 4, d2 = 4, k1 = 6, k2 = 6,
m = 3, l = 1, ω = 0.01, and ∆ = 0, the resulting
controllability system pencil SC(λ) =

�
A B
�
− λ
�
I 0
�
is




0 1 0 0 0
0 0 1 0 0
0 0 0 −0.02 0
0 0 0 0 −0.06




− λ




1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1


 = L2 ⊕ J1(−0.02)⊕ J1(−0.06)

Kronecker canonical form
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Mechanical system – Canonical forms

With the parameters d1 = 4, d2 = 4, k1 = 6, k2 = 6,
m = 3, l = 1, ω = 0.01, and ∆ = 0, the resulting
controllability system pencil SC(λ) =

�
A B
�
− λ
�
I 0
�
is

Prow




0 1 0 0 0
0 0 1 0 0
0 0 0 −0.02 0
0 0 0 0 −0.06




− λ




1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1


Pcol
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Mechanical system – Canonical forms

With the parameters d1 = 4, d2 = 4, k1 = 6, k2 = 6,
m = 3, l = 1, ω = 0.01, and ∆ = 0, the resulting
controllability system pencil SC(λ) =

�
A B
�
− λ
�
I 0
�
is




0 1 0 0 0
0 0 0 0 1
0 0 − 0.02 0 0
0 0 0 − 0.06 0




− λ




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




Brunovsky canonical form
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Uncontrollable
eigenvalues (modes)



Mechanical system – Illustrating the bundle stratification
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The software tool
StratiGraph is used for
computing and
visualizing the
stratification

[Elmroth, P. Johansson &
Kågström; 2001]

[P. Johansson; PhD Thesis
2006]
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Mechanical system – Illustrating the bundle stratification
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Each node represents a
bundle (or orbit) of a
canonical structure
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Mechanical system – Illustrating the bundle stratification
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Each edge represents a
cover relation

It is always possible to go
from any canonical
structure (node) to
another higher up in the
graph by a small
perturbation
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Mechanical system – Illustrating the bundle stratification

0

1

1

1

2

1

3

1

3

2

4

1

4

2

5

1

5

2

5

3

6

1

6

2

6

3

7

1

7

2

7

3

8

1

8

2

9

1

10

1

11

1

11

2

12

1

13

1

19

1

Each edge represents a
cover relation

A cover relation is
determined by the
combinatorial rules
acting on the integer
sequences representing
the canonical structure
information
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Mechanical system – Illustrating the bundle stratification
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Bundles of most interest
for the example

Least generic bundle

Let all free elements in
the system matrices be
zero ⇒ The least generic
bundle of interest has the
KCF L2 ⊕ J2(μ)




ωż/ l

ωϕ̇

ω2z̈/ l

ω2ϕ̈


 =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0







z/ l

ϕ

ωż/ l

ωϕ̇


+




0
0
1
0



ω2

ml
F
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L2⊕ J2(μ)

Mechanical system – Illustrating the bundle stratification
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L2⊕ R:

J1(−0.02)⊕ J −0.02:

J1(−0.06) J −0.06:
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Rule 1: Minimum leftward coin
move in R, without affecting r0

Mechanical system – Illustrating the bundle stratification
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L3⊕ R:

J1(β) J β:

L2⊕ R:

J1(−0.02)⊕ J −0.02:

J1(−0.06) J −0.06:
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⇑

Rule 2: If some J μi consists of one
coin only, move that coin to a new
rightmost column in R

Mechanical system – Illustrating the bundle stratification
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L3⊕
J1(β)

L2⊕ R:

J1(−0.02)⊕ J −0.02:

J1(−0.06) J −0.06:
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Rule 3: Minimum rightward coin
move in any J μi



Mechanical system – Illustrating the bundle stratification
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L3⊕
J1(β)

L2⊕ R:

J1(−0.02)⊕ J −0.02:

J1(−0.06) J −0.06:
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Rule 4: For any J μi , divide the set
of coins into two new sets so that
their union is J μi

Mechanical system – Illustrating the bundle stratification
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L4 (most generic)

L3⊕
J1(β)

L2⊕
J1(−0.02)⊕
J1(−0.06)

L2 ⊕ J2(α)
(least generic)
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Example 2 – Boeing 747

A Boeing 747 under straight-and-level flight at altitude
600 m with speed 92.6 m/s, flap setting at 20◦, and
landing gears up. The aircraft has mass = 317,000 kg

and the center of gravity coordinates are Xcg = 25%,
Ycg = 0, and Zcg = 0
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Boeing 747 – State-space model

A linearized nominal longitudinal model with 5 states and
5 inputs [A. Varga ’07]:

ẋ =




−0.4861 0.000317 −0.5588 0 −2.04 · 10−6
0 −0.0199 3.0796 −9.8048 8.98 · 10−5

1.0053 −0.0021 −0.5211 0 9.30 · 10−6
1 0 0 0 0
0 0 −92.6 92.6 0



x(t)+




−0.291 −0.2988 −1.286 0.0026 0.007
0 0 −0.3122 0.3998 0.3998

−0.0142 −0.0148 −0.0676 −0.0008 −0.0008
0 0 0 0 0
0 0 0 0 0



u(t)

x =




δq
δVTAS
δα
δθ
δhe







pitch rate (rad/s)
true airspeed (m/s)
angle of attack (rad)
pitch angle (rad)

altitude (m)



, u=




δei
δeo
δih

δEPR1,4
δEPR2,3







total inner elevator (rad)
total outer elevator (rad)
stabilizer trim angle (rad)

total thrust engine #1 and #4 (rad)
total thrust engine #2 and #3 (rad)



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Boeing 747 – State-space model

Goal

Find all possible closest uncontrollable systems which
can be reached by a perturbation of the system
matrices, and distance bounds to uncontrollability

Means:

1 Identify all the controllable and the nearest
uncontrollable systems in the orbit stratification

2 Determine the orbits of interest by considering the
structural restrictions of the system matrices
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Boeing 747 – Illustrating the orbit stratification
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Complete orbit stratification:

74 nodes and 133 edges

Ranges from codimension 0 to 50

⇒ Identify only the nodes of interest!

Node corresponding to the orbit of
the system under investigation with
KCF 2L2 ⊕ L1 ⊕ 2L0

Nodes corresponding to all
controllable systems
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Boeing 747 – Illustrating the orbit stratification
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Complete orbit stratification:

74 nodes and 133 edges

Ranges from codimension 0 to 50

⇒ Identify only the nodes of interest!

Node corresponding to the orbit of
the system under investigation with
KCF 2L2 ⊕ L1 ⊕ 2L0

Nodes corresponding to the nearest
uncontrollable systems (J1-block)
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Boeing 747 – Illustrating the orbit stratification

0

1

1

1

4

1

6

1

8

1

9

1

11

1

12

1

13

1

16

1

18

1

5L1

L2 ⊕ 3L1 ⊕ L0

Most generic orbit

#L0 blocks = #inputs −rank(B), i.e.,
the most generic orbit must have at
least 2 (= 5− 3) L0 blocks
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N
O
T
 P
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S
IB

L
E
!

A=




−0.4861 0.000317 −0.5588 0 −2.04 · 10−6
0 −0.0199 3.0796 −9.8048 8.98 · 10−5

1.0053 −0.0021 −0.5211 0 9.30 · 10−6
1 0 0 0 0
0 0 −92.6 92.6 0




B=




−0.291 −0.2988 −1.286 0.0026 0.007
0 0 −0.3122 0.3998 0.3998

−0.0142 −0.0148 −0.0676 −0.0008 −0.0008
0 0 0 0 0
0 0 0 0 0






Boeing 747 – Illustrating the orbit stratification
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Orbits of interest!
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Boeing 747 – Controllable orbits
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4: 2L2 ⊕ L1 ⊕ 2L0
eu1 controls ex1, ex2; eu2 controls ex3, ex4;
eu3 controls ex5

6: L3 ⊕ 2L1 ⊕ 2L0
eu1 controls ex1, ex2, ex3; eu2 controls ex4;
eu3 controls ex5

9:L3 ⊕ L2 ⊕ 3L0
eu1 controls ex1, ex2, ex3; eu2 controls ex4, ex5;

11:L4 ⊕ L1 ⊕ 3L0
eu1 controls ex1, ex2, ex3, ex4; eu2 controls ex5;

16:L5 ⊕ 4L0
eu1 controls ex1, ex2, ex3, ex4, ex5;
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Distance to nearby structures – upper bounds

Given: m× n pencil G− λH

Find: upper and lower bounds on the distance to the
closest pencil (say K − λL) with a specified KCF

Upper bound:

Find perturbations (δG, δH) such that
(G+ δG)− λ(H+ δH) has the KCF of K − λL
(δG, δH) computed by a staircase algorithm that
imposes the specified canonical structure (iGUPTRI)

‖(δG, δH)‖F gives the upper bound
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Distance to nearby structures – lower bounds

Lower bound:

Use characterization of tangent space tan(G− λH) of the
orbit:

(XG−GY)− λ(XH−HY), ∀X,Y

Now, tan(G− λH) =range(T), where

T ≡
�
GT ⊗ Im −In ⊗G
HT ⊗ Im −In ⊗H

�

and nor(G− λH) =kernel(TH)
Given c = cod (G− λH), a lower bound to a pencil
(G+ δG)− λ(H+ δH) with codimension c+ d is

‖(δG, δH)‖F ≥
1

p
m+ n

(
2mn∑

i=2mn−c−d+1
σi(T)

2)1/2

where σi(T) ≥ σi+1(T)
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Lower bounds for matrix pairs

Similar characterizations give lower bounds for matrix
pairs with tangent space represented as

T(A,B) =

�
AT ⊗ In − In ⊗ A In ⊗ B 0

BT ⊗ In 0 Im ⊗ B

�
and

T(A,C) =

�
AT ⊗ In − In ⊗ A CT ⊗ In 0
−In ⊗ C 0 CT ⊗ Ip

�

Matrix case: TA = In ⊕ A− AT ⊕ In
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Boeing 747 – Illustrating the orbit stratification
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Distance to uncontrollability

τ(A,B) =min
n
‖
�
∆A ∆B
�
‖ :

(A+∆A,B+∆B) is uncontrollable
o

where ‖ · ‖ denotes the 2-norm or
Frobenius norm
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Boeing 747 – Illustrating the orbit stratification
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Computed distance to
uncontrollability
[Gu et al., 2006]: 3.03e−2

Lower bound: 4.33e−4
Upper bound: 1.0

Lower bound: 1.09e−3
Upper bound: 2.48e−1

Lower bound: 1.33e−3
Upper bound: 1.79e−1

Lower bound: 7.57e−2
Upper bound: 5.56e−1
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Polynomial matrices – work in progress

Consider dynamical systems described by sets of
differential equations:

Pdx
(d)(t) + · · ·+ P1x

(1)(t) + P0x(t) = f (t), Pi is m× n
Taking the Laplace transform yields the algebraic
equation

P(s)x̂(s) = f̂ (s) with P(s) := Pds
d + · · ·+ P1s+ P0

We study linearizations of
P(s) with full normal rank (r =m or r = n)

P(s)x̂(s) = f̂ (s) when P(s) is monic, i.e., P(s) is square
with Pd ≡ In×n
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Polynomial matrices – work in progress

Consider dynamical systems described by sets of
differential equations:

Pdx
(d)(t) + · · ·+ P1x

(1)(t) + P0x(t) = f (t), Pi is m× n
Taking the Laplace transform yields the algebraic
equation

P(s)x̂(s) = f̂ (s) with P(s) := Pds
d + · · ·+ P1s+ P0

We study linearizations of
P(s) with full normal rank (r =m or r = n)

P(s)x̂(s) = f̂ (s) when P(s) is monic, i.e., P(s) is square
with Pd ≡ In×n

Goal:

Derive stratification rules for full rank polynomial

matrices P(s) and P(s)x̂(s) = f̂ (s) where P(s) is monic
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Matrix Stratification Epilogue

While stratigraphy is the key to
understanding the geological evolution of the
world, StratiGraph is the entry to
understanding the "geometrical evolution" of
orbits and bundles in the "world" of matrices
and matrix pencils.

But remember these worlds grow exponentially
with matrix size!

Thanks!
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