Bo Kågström

Department of Computing Science and HPC2N Umeå University, Sweden

Based on joint work with
Alan Edelman, Erik Elmroth, Peder Johansson, and Stefan Johansson

Dense and Structured Matrix Computations @ Umeå

THEORY - ALGORITHMS - SOFTWARE TOOLS

- Theme 1: Matrix Pencil Computations in Computer-Aided Control System Design
- III-posed eigenvalue problems
- Canonical forms (Jordan, Kronecker, staircase)
- Generalized Schur forms (GUPTRI, QZ)
- Subspaces: eigenvalue reordering
- Matrix equations (Sylvester, Lyapunov, Riccati)
- Functions of matrices
- Perturbation theory, condition estimation and error bounds
- Periodic counterparts
- Periodic Riccati differential equations
- Theme 2: High Performance and Parallel Computing
- The Matrix
- The Matrix Reloaded
- The Matrix Revolutions
- The Matrix Stratifications

Coming soon to a PC near you!

Bo Kågström BIRS Workshop, Banff, Oct. 24-29, 2010
Dense and Structured Matrix Computations @ Umeå

THEORY - ALGORITHMS - SOFTWARE TOOLS

- Theme 2: High Performance and Parallel Computing
- Blocking for memory hierarchies (DM, SM, hybrid,
multicore, GPGPUs)
- Explicit (multi level) blocking
- Recursive blocking
- Blocked hybrid data structures
- Library software
- Contributions to LAPACK, ScaLAPACK, SLICOT, ESSL
- Matrix equations: RECSY and SCASY
- Novel parallel QR algorithm
- 30 times faster than current ScaLAPACK implementation!
- Solved 100000×100000 dense nonsymmetric eigenvalue problems!
- Some motivation and background to stratification of orbits and bundles:
- Canonical forms and structure information
- Matrix and pencil spaces
- Graph representation of a closure hierarchy
- Nilpotent matrix orbit stratification (7×7)
- Matrix bundle stratification (4×4)
- Controllability and observability matrix pairs
- System pencils and equivalence orbits and bundles
- Canonical forms of pairs (Kronecker and Brunovsky)
- Closure and cover relations
- Applications in control system design and analysis:
- Mechanical system - uniform platform with 2 springs
- Linearized Boeing 747 model

Stratification [Oxford advanced learner's dictionary]
The division of something into different layers or groups

- Computation of canonical forms (e.g., Jordan, Kronecker, Brunovsky) are ill-posed problems
- small perturbation of input data may drastically change the computed structure
- Compute canonical structure information using so called staircase algorithms (orthogonal transformations)
- Need to provide the user with more information:
- What other structures are nearby?
- Upper and lower bounds to other structures
- Applications in, e.g., control system design
- Controllability
- Observability

Bo Kågström \quad BIRS Workshop, Banff, Oct. 24-29, 2010
Leverage on the thery of matrix spaces

- Objective: Make use of the geometry of matrix and matrix pencil spaces to solve nearness problems related to Jordan and Kronecker canonical forms
- Tools: The theory of stratification of orbits and bundles (and versal deformations)

Our program:

To understand qualitative and quantitative properties of nearby Jordan and Kronecker structures

- Deliverables: Interactive tools and algorithms that make these complex theories easily available to end users
- An $n \times n$ matrix can be viewed as a point in n^{2}-dim space
- Numerical computations - move from point to point or manifold to manifold

Orbit of a matrix

$$
\mathcal{O}(A)=\left\{P A P^{-1}: \operatorname{det} P \neq 0\right\}
$$

Manifold of all matrices with Jordan Normal Form (JNF) of A

```
Orbit of a pencil
```

$$
\mathcal{O}(A-\lambda B)=\{P(A-\lambda B) Q: \operatorname{det} P \operatorname{det} Q \neq 0\}
$$

Manifold of all $m \times n$ pencils in $2 m n-\operatorname{dim}$ space with the Kronecker Canonical Form (KCF) of $A-\lambda B$

Bundle: $\mathcal{B}(\cdot)$ is the union of all orbits with the same canonical form but with eigenvalues unspecified
$m \times n$ pencil case

- $\operatorname{dim}(\mathcal{O}(A-\lambda B)) \equiv \operatorname{dim}(\tan (\mathcal{O}(A-\lambda B))$
- $\operatorname{codim}(\mathcal{O}(A-\lambda B)) \equiv \operatorname{dim}(\operatorname{nor}(\mathcal{O}(A-\lambda B))$
- $\operatorname{dim}(\mathcal{O}(A-\lambda B))+\operatorname{codim}(\mathcal{O}(A-\lambda B))=2 m n$
- $\operatorname{codim}(\mathcal{B}(\cdot))=\operatorname{codim}(\mathcal{O}(\cdot))-k$,
$k=$ number of unspecified eigenvalues

Surface: 2D manifold excluding the two 1D curves and the point

Stratification of orbits - matrix case

- Given a matrix and its orbit: What other structures are found within its closure?

Stratification:

The closure hierarchy of all possible Jordan structures

We make use of:

- Graphs to illustrate stratifications
- Dominance orderings for integer partitions in proofs and derivations
- Dominance ordering of the integer $n=7$
- Deformations of stairs and
... versal deformations
- $A+Z(p)$ $\operatorname{span}(Z(p))=\operatorname{nor}(A)$

Bo Kågström BIRS Workshop, Banff, Oct. 24-29, 2010

Stratification of 4×4 matrix bundle

A (generalized) state-space system with the state-space model

$$
\begin{aligned}
E \dot{x}(t) & =A x(t)+B u(t), \\
y(t) & =C x(t)+D u(t),
\end{aligned}
$$

can be represented in the form of a system pencil

$$
\mathbf{S}(\lambda)=G-\lambda H=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]-\lambda\left[\begin{array}{ll}
E & 0 \\
0 & 0
\end{array}\right],
$$

with the corresponding general matrix pencil $G-\lambda H$
In short form, $\mathbf{S}(\lambda)$ is represented by a matrix quadruple $(A, B, C, D)(E=I)$

Matrix pairs

Consider the controllability pair (A, B) and the observability pair (A, C), associated with the particular systems:

$$
\dot{x}(t)=A x(t)+B u(t)
$$

and

$$
\begin{aligned}
\dot{x}(t) & =A x(t) \\
y(t) & =C x(t)
\end{aligned}
$$

System pencil representations:

$$
\mathbf{S}_{C}(\lambda)=\left[\begin{array}{ll}
A & B
\end{array}\right]-\lambda\left[\begin{array}{ll}
I_{n} & 0
\end{array}\right] \quad \text { and } \quad \mathbf{S}_{0}(\lambda)=\left[\begin{array}{l}
A \\
C
\end{array}\right]-\lambda\left[\begin{array}{c}
I_{n} \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t), \\
& y(t)=C x(t)+D u(t),
\end{aligned}
$$

Controllable system: There exists an input signal (vector) $u(t), t_{0} \leq t \leq t_{f}$ that takes every state variable from an initial state $x\left(t_{0}\right)$ to a desired final state x_{f} in finite time.

- Observable system: If it possible to find the initial state $x\left(t_{0}\right)$ from the input signal $u(t)$ and the output signal $y(t)$ measured over a finite interval $t_{0} \leq t \leq t_{f}$.

Matrix pairs

An orbit of a matrix pair

A manifold of equivalent matrix pairs:

$$
\mathcal{O}(A, B)=\left\{P(A, B)\left[\begin{array}{cc}
P^{-1} & 0 \\
R & Q^{-1}
\end{array}\right]: \operatorname{det} P \cdot \operatorname{det} Q \neq 0\right\}
$$

$$
\left(P A P^{-1}+P B R, P B Q^{-1}\right)
$$

A bundle of a matrix pair

The union of all orbits with the same canonical form but with unspecified eigenvalues

$$
\mathcal{B}(A, B)=\bigcup_{\mu_{i}} \mathcal{O}(A, B)
$$

Canonical forms

A canonical form is the simplest or most symmetrical form a matrix or matrix pencil can be reduced to

- Matrices - Jordan canonical form
- Matrix pencils - Kronecker canonical form
- System pencils - (generalized) Brunovsky canonical form

A canonical form reveals the canonical structure information from which the system characteristics are deduced

All matrix pairs in the same orbit has the same canonical form

Kronecker canonical form

Any matrix pencil $G-\lambda H$ or system pencil $\mathbf{S}(\lambda)$ can be transformed into Kronecker canonical form (KCF) using equivalence transformations (U and V non-singular):

$$
\begin{aligned}
& U^{-1}(\mathbf{S}(\lambda)) V= \\
& \operatorname{diag}\left(L_{\epsilon_{1}}, \ldots, L_{\epsilon_{p}}, J\left(\mu_{1}\right), \ldots, J\left(\mu_{t}\right), N_{s_{1}}, \ldots, N_{s_{k}}, L_{\eta_{1}}^{T}, \ldots, L_{\eta_{q}}^{T}\right)
\end{aligned}
$$

Singular part:

- $L_{\epsilon_{1}}, \ldots, L_{\epsilon_{p}}$ - Right singular blocks
- $L_{\eta_{1}}^{T}, \ldots, L_{\eta_{q}}^{T}$ - Left singular blocks

$$
L_{k}=\left[\begin{array}{cccc}
-\lambda & 1 & & \\
& \ddots & \ddots & \\
& & -\lambda & 1
\end{array}\right]
$$

Kronecker canonical form - Matrix pairs

- $\mathbf{S}_{C}(\lambda)=\left[\begin{array}{ll}A & B\end{array}\right]-\lambda\left[\begin{array}{ll}I_{n} & 0\end{array}\right]$ has full row rank \Rightarrow KCF of $\mathbf{S}_{C}(\lambda)$ can only have finite eigenvalues (uncontrollable modes) and L_{k} blocks:

$$
U^{-1} \mathbf{S}_{\mathrm{C}}(\lambda) V=\operatorname{diag}\left(L_{\epsilon_{1}}, \ldots, L_{\epsilon_{p}} J\left(\mu_{1}\right), \ldots, J\left(\mu_{t}\right)\right)
$$

- $\mathbf{S}_{\mathrm{O}}(\lambda)=\left[\begin{array}{l}A \\ C\end{array}\right]-\lambda\left[\begin{array}{c}I_{n} \\ 0\end{array}\right]$ has full column rank \Rightarrow KCF of $\mathbf{S}_{\mathrm{O}}(\lambda)$ can only have finite eigenvalues (unobservable modes) and L_{k}^{T} blocks:

$$
U^{-1} \mathbf{S}_{\mathrm{O}}(\lambda) V=\operatorname{diag}\left(J\left(\mu_{1}\right), \ldots, J\left(\mu_{t}\right), L_{\eta_{1}}^{T}, \ldots, L_{\eta_{p}}^{T}\right)
$$

Given a matrix pair (A, B) or (A, C), there exists a feedback equivalent matrix pair in Brunovsky canonical form (BCF), such that

$$
P\left[\begin{array}{ll}
A-\lambda I_{n} & B
\end{array}\right]\left[\begin{array}{cc}
P^{-1} & 0 \\
R & Q^{-1}
\end{array}\right]=\left[\begin{array}{cc:c}
A_{\epsilon} & 0 & B_{\epsilon} \\
0 & A_{\mu} & 0
\end{array}\right]
$$

or

$$
\left[\begin{array}{ll}
P & S \\
0 & T
\end{array}\right]\left[\begin{array}{c}
A-\lambda I_{n} \\
C
\end{array}\right] P^{-1}=\left[\begin{array}{cc}
A_{\eta} & 0 \\
0 & A_{\mu} \\
\hdashline C_{\eta}^{-} & 0
\end{array}\right]
$$

respectively, where

- $\left(A_{\epsilon}, B_{\epsilon}\right)$ - controllable and corresponds to the L blocks
- $\left(A_{\eta}, C_{\eta}\right)$ - observable and corresponds to the L^{T} blocks
- A_{μ} - block diagonal with Jordan blocks and corresponds to the uncontrollable and unobservable eigenvalues, respectively

Bo Kågström BIRS Workshop, Banff, Oct. 24-29, 2010

Integer partitions

A partition ν of an integer K is defined as $\nu=\left(\nu_{1}, \nu_{2}, \ldots\right)$ where $\nu_{1} \geq \nu_{2} \geq \cdots \geq 0$ and $K=\nu_{1}+\nu_{2}+\ldots$.

Minimum rightward coin move: rightward one column or downward one row (keep partition monotonic)

Minimum leftward coin move: leftward one column or upward one row (keep partition monotonic)

Creates nearest neighbours in the dominance ordering of K [Edelman, Elmroth \& Kågström; 1999]

Theorem
Given the structure integer partitions \mathcal{R} and $\mathcal{J}_{\mu_{i}}$ of (A, B), one of the following if-and-only-if rules finds $(\widetilde{A}, \widetilde{B})$ such that:

$\mathcal{B}(A, B)$ covers $\mathcal{B}(\widetilde{A}, \widetilde{B})$

Minimum rightward coin move in \mathcal{R}(2) If the rightmost column in \mathcal{R} is one single coin, move that coin to the first column of $\mathcal{J}_{\mu_{i}}$ for a new eigenvalue μ_{i}Minimum leftward coin move in any $\mathcal{J}_{\mu_{i}}$
(4) Let any pair of eigenvalues coalesce, i.e., take the union of their sets of coins
$\mathcal{B}(A, B)$ is covered by $\mathcal{B}(\widetilde{A}, \widetilde{B})$
(1) Minimum leftward coin move in \mathcal{R}, without affecting r_{0}
(2) If some $\mathcal{J} \mu_{i}$ consists of one coin only, move that coin to a new rightmost column in \mathcal{R}
(3) Minimum rightward coin move in any $\mathcal{J}_{\mu_{i}}$
(4) For any $\mathcal{J}_{\mu_{i}}$, divide the set of coins into two new sets so that their union is $\mathcal{J} \mu_{i}$

Mechanical system - State-space model

By linearizing the equations of motion near the equilibrium the system can be expressed by the linear state-space model $\dot{x}=A x(\tau)+B u(\tau)$ [A. Mailybaev '03]:

$$
\left[\begin{array}{c}
\omega \dot{z} / l \\
\omega \dot{\phi} \\
\omega^{2} \ddot{z} / l \\
\omega^{2} \ddot{\phi}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-c_{1} & -c_{2} & -f_{1} & -f_{2} \\
-3 c_{2} & -3 c_{1} & -3 f_{2} & -3 f_{1}
\end{array}\right]\left[\begin{array}{c}
z / l \\
\phi \\
\omega \dot{z} / l \\
\omega \dot{\phi}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
1 \\
-3 \Delta
\end{array}\right] \frac{\omega^{2}}{m l} F
$$

where
Fixed elements!

$$
\begin{aligned}
& c_{1}=\frac{\left(k_{1}+k_{2}\right) \omega^{2}}{m}, c_{2}=\frac{\left(k_{1}-k_{2}\right) \omega^{2}}{m}, \\
& f_{1}=\frac{\left(d_{1}+d_{2}\right) \omega}{m}, \quad f_{2}=\frac{\left(d_{1}-d_{2}\right) \omega}{m},
\end{aligned}
$$

and $\tau=t / \omega$ where ω is a time scale coefficient

A uniform platform with mass m and length 21 , supported in both ends by springs

The control parameter of the system is the force F applied at distance $\Delta /$ from the center of the platform

Mechanical system - Canonical forms

With the parameters $d_{1}=4, d_{2}=4, k_{1}=6, k_{2}=6$, $m=3, I=1, \omega=0.01$, and $\Delta=0$, the resulting controllability system pencil $\mathbf{S}_{C}(\lambda)=\left[\begin{array}{ll}A & B\end{array}\right]-\lambda\left[\begin{array}{ll}I & 0\end{array}\right]$ is
$\left[\begin{array}{cc}0 & 0 \\ 0 & 0 \\ -0.0004 & 0 \\ 0 & -0.0012\end{array}\right.$
1
0
-0.027
0

0	0
1	0
0	1
-0.08	0

$-\lambda\left[\begin{array}{llll:l}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$

With the parameters $d_{1}=4, d_{2}=4, k_{1}=6, k_{2}=6$, $m=3, I=1, \omega=0.01$, and $\Delta=0$, the resulting controllability system pencil $\mathbf{S}_{C}(\lambda)=\left[\begin{array}{ll}A & B\end{array}\right]-\lambda\left[\begin{array}{ll}I & 0\end{array}\right]$ is
$\mathbf{U}\left[\begin{array}{cccc:c}0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -0.0004 & 0 & -0.027 & 0 & 1 \\ 0 & -0.0012 & 0 & -0.08 & 0\end{array}\right]$
$-\lambda\left[\begin{array}{llll:l}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right] \mathbf{v}^{-1}$

Mechanical system - Canonical forms

With the parameters $d_{1}=4, d_{2}=4, k_{1}=6, k_{2}=6$, $m=3, I=1, \omega=0.01$, and $\Delta=0$, the resulting controllability system pencil $\mathbf{S}_{C}(\lambda)=\left[\begin{array}{ll}A & B\end{array}\right]-\lambda\left[\begin{array}{ll}I & 0\end{array}\right]$ is

Kronecker canonical form

Mechanical system - Canonical forms

With the parameters $d_{1}=4, d_{2}=4, k_{1}=6, k_{2}=6$, $m=3, I=1, \omega=0.01$, and $\Delta=0$, the resulting controllability system pencil $\mathbf{S}_{\mathrm{C}}(\lambda)=\left[\begin{array}{ll}A & B\end{array}\right]-\lambda\left[\begin{array}{ll}I & 0\end{array}\right]$ is

Bo Kågström BIRS Workshop, Banff, Oct. 24-29, 2010

Mechanical system - Canonical forms

With the parameters $d_{1}=4, d_{2}=4, k_{1}=6, k_{2}=6$, $m=3, I=1, \omega=0.01$, and $\Delta=0$, the resulting controllability system pencil $\mathbf{S}_{C}(\lambda)=\left[\begin{array}{ll}A & B\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0\end{array}\right]$ is
$\left[\begin{array}{ccccc:c}0 & & 1 & 0 & 0 & 0 \\ 0 & & 0 & 0 & 0 & 1 \\ 0 & & 0 & -0.02 & 0 & 0 \\ 0 & & 0 & 0 & -0.06 & 0\end{array}\right.$
$-\lambda\left[\begin{array}{llll:l}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$

Brunovsky canonical form

The software tool StratiGraph is used for computing and visualizing the stratification
[Elmroth, P. Johansson \& Kågström; 2001]
[P. Johansson; PhD Thesis 2006]

Bo Kågström BIRS Workshop, Banff, Oct. 24-29, 2010

Rule 2: If some $\mathcal{J} \mu_{i}$ consists of one coin only, move that coin to a new rightmost column in \mathcal{R}

Rule 4: For any $\mathcal{J} \mu_{i}$, divide the set of coins into two new sets so that their union is $\mathcal{J}_{\mu_{i}}$

Example 2 - Boeing 747

A Boeing 747 under straight-and-level flight at altitude 600 m with speed $92.6 \mathrm{~m} / \mathrm{s}$, flap setting at 20°, and landing gears up. The aircraft has mass $=317,000 \mathrm{~kg}$ and the center of gravity coordinates are $X_{c g}=25 \%$, $Y_{c g}=0$, and $Z_{c g}=0$

entication

Boeing 747 - State-space model

A linearized nominal longitudinal model with 5 states and 5 inputs [A. Varga '07]:

Goal

Find all possible closest uncontrollable systems which can be reached by a perturbation of the system matrices, and distance bounds to uncontrollability

Means:

(1) Identify all the controllable and the nearest uncontrollable systems in the orbit stratification
(2) Determine the orbits of interest by considering the structural restrictions of the system matrices

Complete orbit stratification:

- 74 nodes and 133 edges
- Ranges from codimension 0 to 50 \Rightarrow Identify only the nodes of interest!

Node corresponding to the orbit of the system under investigation with KCF $2 L_{2} \oplus L_{1} \oplus 2 L_{0}$

Nodes corresponding to all controllable systems

Bo Kågström BIRS Workshop, Banff, Oct. 24-29, 2010
Boeing 747 - Illustrating the orbit stratification
Complete orbit stratification:

- 74 nodes and 133 edges
- Ranges from codimension 0 to 50
\Rightarrow Identify only the nodes of interest!

Node corresponding to the orbit of the system under investigation with KCF $2 L_{2} \oplus L_{1} \oplus 2 L_{0}$

Nodes corresponding to the nearest uncontrollable systems (1_{1}-block)

Orbits of interest!


```
4: 2L L2\oplus + L }\oplus\oplus2\mp@subsup{L}{0}{
\mp@subsup{\tilde{u}}{1}{}\mathrm{ controls }\mp@subsup{\tilde{x}}{1}{},\mp@subsup{\tilde{x}}{2}{};\quad\mp@subsup{\tilde{u}}{2}{}\mathrm{ controls }\mp@subsup{\tilde{x}}{3}{},\mp@subsup{\tilde{x}}{4}{};
\tilde{u}}3\mathrm{ controls }\mp@subsup{\tilde{x}}{5}{
```


6: $L_{3} \oplus 2 L_{1} \oplus 2 L_{0}$

\tilde{u}_{1} controls $\tilde{x}_{1}, \tilde{x}_{2}, \widetilde{x}_{3} ; \quad \tilde{u}_{2}$ controls $\tilde{x}_{4} ;$ \tilde{u}_{3} controls \widetilde{x}_{5}

9: $L_{3} \oplus L_{2} \oplus 3 L_{0}$

\tilde{u}_{1} controls $\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3} ; \quad \tilde{u}_{2}$ controls $\tilde{x}_{4}, \tilde{x}_{5} ;$

$11: L_{4} \oplus L_{1} \oplus 3 L_{0}$

\tilde{u}_{1} controls $\widetilde{x}_{1}, \widetilde{x}_{2}, \widetilde{x}_{3}, \widetilde{x}_{4} ; \quad \tilde{u}_{2}$ controls \widetilde{x}_{5};
16:LL $\oplus 4 L_{0}$
\tilde{u}_{1} controls $\tilde{x}_{1}, \widetilde{x}_{2}, \widetilde{x}_{3}, \widetilde{x}_{4}, \widetilde{x}_{5} ;$

Distance to nearby structures - lower bounds

Lower bound:

- Use characterization of tangent space $\tan (G-\lambda H)$ of the orbit:

$$
(X G-G Y)-\lambda(X H-H Y), \quad \forall X, Y
$$

- Now, $\tan (G-\lambda H)=\operatorname{range}(T)$, where

$$
T \equiv\left[\begin{array}{ll}
G^{T} \otimes I_{m} & -I_{n} \otimes G \\
H^{T} \otimes I_{m} & -I_{n} \otimes H
\end{array}\right]
$$

and $\operatorname{nor}(G-\lambda H)=\operatorname{kernel}\left(T^{H}\right)$

- Given $c=\operatorname{cod}(G-\lambda H)$, a lower bound to a pencil $(G+\delta G)-\lambda(H+\delta H)$ with codimension $c+d$ is

$$
\|(\delta G, \delta H)\|_{F} \geq \frac{1}{\sqrt{m+n}}\left(\sum_{i=2 m n-c-d+1}^{2 m n} \sigma_{i}(T)^{2}\right)^{1 / 2}
$$

$$
\text { where } \sigma_{i}(T) \geq \sigma_{i+1}(T)
$$

Similar characterizations give lower bounds for matrix pairs with tangent space represented as

$$
\begin{aligned}
& T_{(A, B)}=\left[\begin{array}{ccc}
A^{T} \otimes I_{n}-I_{n} \otimes A & I_{n} \otimes B & 0 \\
B^{T} \otimes I_{n} & 0 & I_{m} \otimes B
\end{array}\right] \text { and } \\
& T_{(A, C)}=\left[\begin{array}{ccc}
A^{T} \otimes I_{n}-I_{n} \otimes A & C^{T} \otimes I_{n} & 0 \\
-I_{n} \otimes C & 0 & C^{T} \otimes I_{p}
\end{array}\right]
\end{aligned}
$$

Matrix case: $T_{A}=I_{n} \oplus A-A^{T} \oplus I_{n}$

Distance to uncontrollability

$$
\tau(A, B)=\min \left\{\left\|\left[\begin{array}{ll}
\Delta A & \Delta B
\end{array}\right]\right\|:\right.
$$

$(A+\Delta A, B+\Delta B)$ is uncontrollable $\}$
where $\|\cdot\|$ denotes the 2 -norm or Frobenius norm

Polynomial matrices - work in progress

Consider dynamical systems described by sets of differential equations:

$$
P_{d} X^{(d)}(t)+\cdots+P_{1} X^{(1)}(t)+P_{0} X(t)=f(t), \quad P_{i} \text { is } m \times n
$$

Taking the Laplace transform yields the algebraic equation

$$
P(s) \hat{x}(s)=\hat{f}(s) \quad \text { with } \quad P(s):=P_{d} s^{d}+\cdots+P_{1} s+P_{0}
$$

We study linearizations of

- $P(s)$ with full normal rank ($r=m$ or $r=n$)
- $P(s) \hat{x}(s)=\hat{f}(s)$ when $P(s)$ is monic, i.e., $P(s)$ is square with $P_{d} \equiv I_{n \times n}$

Polynomial matrices - work in progress

Consider dynamical systems described by sets of differential equations:

$$
P_{d} X^{(d)}(t)+\cdots+P_{1} x^{(1)}(t)+P_{0} x(t)=f(t), \quad P_{i} \text { is } m \times n
$$

Taking the Laplace transform yields the algebraic equation

$$
P(s) \hat{x}(s)=\hat{f}(s) \quad \text { with } \quad P(s):=P_{d} s^{d}+\cdots+P_{1} s+P_{0}
$$

We study linearizations of

- $P(s)$ with full normal rank ($r=m$ or $r=n$)
- $P(s) \hat{x}(s)=\hat{f}(s)$ when $P(s)$ is monic, i.e., $P(s)$ is square with $P_{d} \equiv I_{n \times n}$

Goal:

Derive stratification rules for full rank polynomial matrices $P(s)$ and $P(s) \hat{x}(s)=\hat{f}(s)$ where $P(s)$ is monic

References - only some of our work

Papers

- E. Elmroth, S. Johansson, and B. Kågström

Stratification of Controllability and Observability Pairs - Theory and Use in Applications. SIAM J. Matrix Analysis and Applications, Vol. 31, No. 2, 2009

- S. Johansson Reviewing the Closure Hierarchy of Orbits and Bundles of System Pencils and Their Canonical Forms. Report UMINF-09.02, Umeã University, 2009
- E. Elmroth, P. Johansson, and B. Kågström Bounds for the Distance Between Nearby Jordan and Kronecker Structures in a Closure Hierarchy. Journal of Mathematical Sciences, Vol. 114, No. 6, 2003
- A. Edelman, E. Elmroth, and B. Kågström A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Applications, Vol. 20, No. 3, 1999
- A. Edelman, E. Elmroth, and B. Kågström A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations. SIAM J. Matrix Analysis and Applications, Vol. 18, No. 3, 1997 (awarded SIAM/SIAG Linear Agebra Prize 2000)
PhD Theses
S. Johansson Tools for Control System Design - Stratification of Matrix Pairs and Periodic Riccat Differential Equation Solvers. Department of Computing Science, Umeå University, 2009
- P. Johansson

Software Tools for Matrix Canonical Computations and Web-Based Software Library Environments. Department of Computing Science, Umeå University, 2006

Matrix Stratification Epilogue

- While stratigraphy is the key to understanding the geological evolution of the world, StratiGraph is the entry to understanding the "geometrical evolution" of orbits and bundles in the "world" of matrices and matrix pencils.
- But remember these worlds grow exponentially with matrix size!
- Thanks!

