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Introduction

Introduction

We consider the system

Ex = Ax+ Biw+ Bou, x(to) =x°,
= Gx+ Duw + Dipu,
y = Gx+ Dyw+ Dypu,

E,AeR™", Bi e R"™, C; € RP"" and Dj € RP»™, i, j=1,2.
e E may be singular, rank(E) =r
@ AE — A regular, i.e. det(AE — A) does not vanish identically

@ x descriptor variable, w disturbance, u input, z controlled output,
y measured output
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Introduction

The optimal H,, control problem

Determine a dynamic controller

w z
—_— —
u P y
EX = Ax+ By,
= f__)?—i—b%
K -

with E,Ae RVN, B e RV-r2, C e R™N, D € R™P2 such that the
closed-loop system, formed by the given system combined with the
controller, is internally stable and the closed-loop transfer function
Tow(s) from w to z is minimized in the H., norm.
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Introduction

Previous Work

The Ho, control problem for descriptor systems has been studied using
@ linear matrix inequalities [Rehm /Allgower]

@ generalized Riccati equations [Takaba/Morihira/Katayamal]
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Introduction

Previous Work

The Ho, control problem for descriptor systems has been studied using
@ linear matrix inequalities [Rehm /Allgower]
@ generalized Riccati equations [Takaba/Morihira/Katayamal]
Since
@ LMIls are non practical for large scale systems
@ GREs are facing severe numerical difficulties

we are proposing a matrix pencil approach wich relies on the structure
preserving computation of deflating subspaces of even matrix pencils,
generalizing the results from [Benner/Byers/Mehrmann/Xu '04].
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Introduction

Previous Work

The Ho, control problem for descriptor systems has been studied using
@ linear matrix inequalities [Rehm /Allgower]
@ generalized Riccati equations [Takaba/Morihira/Katayamal]
Since
@ LMIls are non practical for large scale systems
@ GREs are facing severe numerical difficulties

we are proposing a matrix pencil approach wich relies on the structure
preserving computation of deflating subspaces of even matrix pencils,
generalizing the results from [Benner/Byers/Mehrmann/Xu '04].

Additionally we would like to use only original system data as long as
possible to prevent numerical errors.
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Introduction

Two Subproblems

The modified optimal H., control problem

For the descriptor system let I' be the set of positive real numbers ~y for
which there exists an internally stabilizing dynamic controller such that
the transfer function T, (s) of the closed loop system satisfies

| Towlloo <

In the modified optimal H, control problem we want to determine
Ymo = inf [

The suboptimal H., control problem

For a descriptor system and v € ' with v > 7, determine an internally
stabilizing dynamic controller such that the closed loop transfer function
satisfies || Tow|loo < 7-
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Introduction

Modified optimal H,, Control

The modified optimal H., control problem

For the descriptor system let I' be the set of positive real numbers ~y for
which there exists an internally stabilizing dynamic controller such that
the transfer function T,,(s) of the closed loop system satisfies

| Towlloo <

In the modified optimal H, control problem we want to determine
Ymo = inf [
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Modified Optimal H oo Control

Preliminary Assumptions

Al. The triple (E, A, By) is strongly stabilizable and the triple (E, A, (;)
is strongly detectable.

(E, A, By) is called strongly stabilizable, if it is both finite dynamics
stabilizable i.e. rank[\E — A, By] = n and impulse controllable i.e.
rank[E, ASs, By] = n.

(E, A, &) is called strongly detectable, if it is both finite dynamics
detectable i.e. rank[AET — AT CJ] = n and impulse observable i.e.
rank[ET, AT T, GJ] = n.
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Modified Optimal H oo Control

Preliminary Assumptions

Al.

A2.

A3.

A4.

The triple (E, A, By) is strongly stabilizable and the triple (E, A, ;)
is strongly detectable.

rank [A —C:wE 5122} =n-+my for all w € R.
rank [A 7C;wE 5211} =n+ p, for all w € R.

For matrices Too, Soo With Im So, = ker E and Im T, = ker E7 the
rank conditions

T T

S SR
TIAS., TIB;

rank { CoSee Doy n—+ p1 —rankE
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Modified Optimal H oo Control

Matrix Pencils

Matrix pencils we will use:

ANy + MH(’)/) =
o —E"]0 0 0 0o -AT 0 0 -c/
E 0 |0 0 0 —A 0 B —B 0
A|70 0 [0 0 0 |+ 0 —B [ =471 0 —DJ;
0 0 0 0 0 o -8B/ 0 0 -Dj,
0 0 0O 0 O -G 0 —Dn —Dn2 -1
and
AN + My(y) =
0 —E|0 0 O 0 —A 0 0 —B
ET 0 |0 0 0 AT o0 | -¢ - o
AT 0 0 [0 0 0 |-+ 0 —C | =% 0 —Dn
0 0 |0 0 0O 0 -G 0 0 —Dn
0 0o |0 0 o0 -B] o0 | -D} -DJ, -1

only contain data from the original system.
Even Pencils: P(—\)" = P(\).
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Modified Optimal H oo Control

Deflating Subspaces

Deflating Subspaces

Let X € R™¥ with full column rank, then Im X is called deflating
subspace for the pencil AE — A if there exists matrices Y € R™,
R, U € R¥* such that

(AE — A)X = Y(AR — U).

A deflating subspace is called stable (semi-stable) if all finite eigenvalues
of AR — U are in the open (closed) left half plane.
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Modified Optimal H oo Control

Deflating Subspaces

Lagrangian Subspaces

0o I,
Letj_[_ln 0 ]

o A subspace £ is called isotropic if x” 7y =0 for all x, y € L.
@ An isotropic subspace with dim£ = n is called Lagrangian.
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Preliminaries
Modified Optimal H oo Control Main Result

Example

Main Result

Theorem

Consider a regular descriptor system of arbitrary index and the even
pencils ANy + My(~y) and AN, + M,(~y). Suppose that assumptions
A1-A4 hold.

Then there exists an internally stabilizing controller such that the transfer
function from w to z satisfies || T, ||co < 7y if and only if 7 is such that
the conditions C1-C4 hold.
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Preliminaries
Modified Optimal H oo Control Main Result
Example

Conditions for the General Case

C1. The index of both pencils ANy + Mpy(y) and AN, + M,(7y) is at most one.
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Preliminaries
Modified Optimal H oo Control Main Result
Example

Conditions for the General Case

C2. There exists a matrix Xu(7y) such that

C2.a) im Xu(7) is a semi-stable deflating subspace of ANy + My;
C2.b) im { EXii.1(7)

Xn,2(7)
C2.c) rank(EXui(7y)) =r.

] is a r-dimensional isotropic subspace of R*";
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Preliminaries
Modified Optimal H oo Control Main Result
Example

Conditions for the General Case

C2. There exists a matrix Xu(7y) such that
C2.a) im Xu(7) is a semi-stable deflating subspace of ANy + My;

C2.b) im{ 2:”21((77))
C2.c) rank(EXui(7y)) =r.

C3. There exists a matrix X,(v) such that

C3.a) im X,(y) is a semi-stable deflating subspace of AN, + My;
) E"X51(%)
C3.b ’
) lm{ Xu2(7)
C3.c) rank(E"X;1(y)) = r.

] is a r-dimensional isotropic subspace of R*";

} is a r-dimensional isotropic subspace of R?";
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Preliminaries
Modified Optimal H oo Control Main Result
Example

Conditions for the General Case

C4. The matrix

[ Xdo(NEXua(r) X (V) EXs2(7)

YOV= | XL(E Xua(1) AXIa(E Xoa() |-

is positive semidefinite and satisfies rank)(v) = ky + kj.
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Preliminaries
Modified Optimal H oo Control Main Result
Example

Conditions for the General Case

C1. The index of both pencils ANy + Mpy(y) and AN, + M,(7y) is at most one.
C2. There exists a matrix Xu(7y) such that
C2.a) im Xu(7) is a semi-stable deflating subspace of ANy + My;

C2.b) im{ 2:”21((77))
C2.c) rank(EXuwi(7)) =r.

C3. There exists a matrix X,(v) such that
C3.a) im X,(y) is a semi-stable deflating subspace of AN, + My;

C3.b) im{ Exj,(:’(ly(;)

C3.c) rank(E"X;1(y)) = r.
C4. The matrix

V(y) = { VX2 (NEXna(y)  Xia(7)EXs2(7)
XME ™ Xn2(7)  AXL(ME™X01(7) |-

] is a r-dimensional isotropic subspace of R*";

} is a r-dimensional isotropic subspace of R?";

is positive semidefinite and satisfies rank)(y) = ky + kj.

losse@math.tu-berlin.de H oo Control for Descriptor Systems



Preliminaries

Modified Optimal H oo Control Main Result
Example

Sketch of proof

The proof is mainly based on
@ Existence of a preliminary index reducing feedback
[Bunse-Gerstner/Byers/Mehrmann /Nichols '99]
@ WeierstraB canonical form [Gantmacher '59]
@ Pencil based approach for standard systems
[Benner/Byers/Mehrmann/Xu '04]
Neither the computation of the index reducing feedback nor of the
WeierstraBB canonical form is necessary.
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Preliminaries
Modified Optimal H oo Control Main Result
Example

Computation

Procedure 1: (Classification of )
Input: Data of system, value v > 0.
Output: Decision whether v < ymo OF ¥ > Vo

1. Form the pencils ANy + My(7) and AN, + M,y(7).

2. Compute the deflating subspace matrices Xy and X/ associated with
the eigenvalues in the closed left half plane.

3. IF the dimension of one/both of these subspaces is less than r, then

Y < Ymo»
ELSE
IF the rank of EXy1 and/or ET X1 is less than r, then v < ymo,
ELSE
FornA1 the matrix ;)AJ
IF Y is not symmetric positive semi-definite and/or
rank)Ai < lAq., + l’;J, then v < Ymo,
ELSE v 2 Ymo.
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Preliminaries
Modified Optimal H oo Control Main Result
Example

Computation

@ The main part of the algorithm is the computation of the deflating
subspaces

@ These subspaces could be computed with the QZ-Algorithm, that
however does not take advantage of the special structure of the
matrix pencils or its eigensymmetry.
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Preliminaries

Modified Optimal H oo Control Main Result
Example

Spectral Properties

Hamiltonian eigensymmetry

Even pencils exhibit the Hamiltonian eigensymmetry:
if \ is a finite eigenvalue of H — AS, then A\, —\, —\ are eigenvalues of
H — AS, too.

Typical Hamiltonian spectrum:
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Preliminaries
Modified Optimal H oo Control Main Result
Example

Computation

@ Therefore we recommend a structure preserving algorithm to
compute the eigenvalues and deflating subspaces of the even matrix
pencils as has been introduced by [Benner/Byers/Mehrmann/Xu ‘99]
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Preliminaries
Modified Optimal H oo Control Main Result
Example

sH/H Schur Form

Structured real skew-Hamiltonian/Hamiltonian Schur Form  [Mehl '99]

Let H — AS be a regular real skew-Hamiltonian/Hamiltonian pencil.
Under certain conditions on the purely imaginary and infinite eigenvalues
there exists an (orthogonal) J-congruence

H. H Su S

T 7T (1 _ 11 2| 11 912

IV T " (H=AS)Y [ 0 _HlTl} )\[0 5171],

where Hy; is quasi-upper triangular, Sy1 is upper triangular, Hy; is
symmetric, and Sy, is skew-symmetric.
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Modified Optimal H oo Control Main Result
Example

sH/H Schur Form

Structured real skew-Hamiltonian/Hamiltonian Schur Form  [Mehl '99]

Let H — AS be a regular real skew-Hamiltonian/Hamiltonian pencil.
Under certain conditions on the purely imaginary and infinite eigenvalues
there exists an (orthogonal) J-congruence

T 4T | Hu  Ho Si1 S
e it S BN i 3

where Hy; is quasi-upper triangular, Sy1 is upper triangular, Hy; is
symmetric, and Sy, is skew-symmetric.

o Not every skew-Hamiltonian/Hamiltonian pencil has such a
structured Schur form.

@ Embedding in an extended pencil of double size resolves existence
problem. [Benner/Byers/Mehrmann/Xu '99]
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Modified Optimal H oo Control

Generalized Symplectic URV-Decomposition

Let H — AS be a real regular skew-Hamiltonian/Hamiltonian pencil,
then there exist orthogonal matrices Q;, Q, such that

T [ Hu Hio
Ql HQ2 - i 0 H22 :|7
Q570,77 = | %% 2| csh,,
L O 511
JolgTse, = | ™ T2 | ep,,
o T

where Hiy, S11, T11 are upper triangular and Hy, is quasi-upper triangular.

The eigenvalues of H — AS are given by +A(S; Hiy Tyt HDG)?.
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Modified Optimal H oo Control

Embedding in Extended sH/H-Pencil (I)

Consider a skew-Hamiltonian/Hamiltonian pencil of the form

F G A B
H_ASZ{H —FT}_)‘{C AT}

where B and C are skew-symmetric and G and H are symmetric.
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Consider a skew-Hamiltonian/Hamiltonian pencil of the form

LIRSS

where B and C are skew-symmetric and G and H are symmetric.

Now let
H O S 0
and
l, 0 0 O
y,:@ bo bn] p_ [0 0 O
2 _I2n I2n 0 In O 0
0 0o I,
Then

y,TBHy,:[H 0 } Y/ BsYr = Bs.
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Modified Optimal H oo Control
Exar

Embedding in Extended sH/H-Pencil (I1)

Set
By, —\Bs = PV (By— \Bs)V, P
0 F| o G A 0| B 0
B F 0| G 0 | |0 Alo B
- 0 H| 0 —FT C 0|AT 0
H o0|—-FT 0 0 C| o0 AT
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With @ = PT diag(JQ1J 7, Q2)P, where Q1, Q5 are as in generalized
SURYV, we obtain

0 Hu 0 Hio _ 3
ST oTpr A —Hy, 0 Hyb 0 | Hu Ho
JQ I By = 0 0 0 Ho | | 0o —AL |’
| 0 0 | -HL, o
[ Su 0 S12 0
AT 2 Tar A 0 Tu| 0 T | [Si S
) 0 0 T4

Re-ordering the structured Schur decomposition =

Hu  Hiz || Su Sw
0 —H 0 Sh |’

where A(H,S)NC~ C A(Hi1,S11).
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Modified Optimal H oo Control
Exa

Structured Schur Form of Embedded sH/H-pencil

Let H — AS be a skew-Hamiltonian/Hamiltonian pencil and consider the
extended matrices By = diag(H, —H), Bs = diag(S, S).

a) There exist unitary W,V such that

W By = [ s
WTBSV — |: S(])_l

where Hi1, S11 € R?™2" and
N(Bs,By)NC™

/\(5117 H11) N /\(BS, BH) NC*

losse@math.tu-berlin.de
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S12
S |’

C  A(S11,Hi1),
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Modified Optimal H oo Control

Exa

Structured Schur Form of Embedded sH/H-pencil

Let H — AS be a skew-Hamiltonian/Hamiltonian pencil and consider the
extended matrices By, = diag(H, —H), Bs = diag(S, S).

a) There exist unitary W,V such that

T _ | Hu Ha
W' BrVY = [ 0 Ha ] ;
T _ | Su Sw
W'BsY = [ 0 Sy ] .

b) Let | i | € R*27 = V(;,1:2n), then

Def_(H,S) C range V4, Def,(H,S) C range V5.

Equality holds if A eigenvalues 0, co.
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Modified Optimal H oo Control Main Result
Example

Computation

Computation of deflating subspaces

Compute generalized symplectic URV of original pencils

Embed pencils

°
°
@ Compute structured Schur forms
@ Reorder the eigenvalues

°

Extract deflating subspaces from transformation matrices

Our experimental code for a v-lteration relying on this algorithm shows
promising results.
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Modified Optimal H oo Control )
Example

Example

We consider the following example [Takaba/Morihira/Katayama, 94],
[Rehm/Allgdwer, 98].

1 0 0 -1 0 1 0 1
E=|lo10|. A=l 0 o0 1|.B=|1].B=]0
0 0 O 0 -1 0 1 1
1 1 0 0
C1_|:O 1 1],C2_[1 0 1],D12—{1}7D211

@ (E,A)is of index 2.

@ goal: find the minimum value 7 that satisfies the conditions C1 —
C4.

@ 7opt Is calculated as v* = 0.7678 which is smaller than the
calculated values using the LMI approach or the Riccati approach.
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Suboptimal H,, Control

The suboptimal H., control problem

For a descriptor system and v € " with v > 7, determine an internally
stabilizing dynamic controller such that the closed loop transfer function
satisfies || Tow|loo < 7-
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Suboptimal H,, Control

Theorem

Consider a regular descriptor system of arbitrary index. Suppose that
assumptions A1-A4 hold, 7 > Vo and &(D11) < 7. Then the
sub-optimal H, control problem has an internally stabilizing controller
such that the H ., norm of the closed loop is less than v given by:

(-XE+A) = XJO\)Xy
B = X/Bn
C = CaXu
b = bn
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Suboptimal H,, Control

N(\), Mg, MA¢, Mp are matrices containing original system data and a
my X pp feedback matrix F such that (E, A+ B>F(,) is of index one.

@ Computation of index reducing feedback necessary

@ We also have formulas for the parametrized controller

@ Then computation of kernel and cokernel of E is also necessary
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Conclusions

Conclusions

o Existence conditions for H., controllers in terms of the original
system data

@ Structure preserving Algorithm for the computation of the deflating
subspaces

e Controller formulas in terms of the original system (plus Index
reducing Feedback)
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