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f ( (d(x(t), t))′, x(t), t) = 0

Even though linearization represents such an important mathematical tool,
only few papers deal with the linearization of DAEs, e.g. Campbell (1993).
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f ( (d(x(t), t))′, x(t), t) = 0 (1)

with
f (y , x , t) ∈ Rm, d(x , t) ∈ Rn, y ∈ Rn, x ∈ Df ⊆ Rm, t ∈ If ⊆ R,
f , fy , fx , d , dx , dt are continuous, fy (y , x , t) and dx(x , t) singular,

im dx is a C1-subspace (dx(x , t) has constant rank r)

• DAEs (1) with a properly involved derivative (properly stated leading
term): ker fy is a C1-subspace (fy (y , x , t) has constant rank) such that

ker fy (y , x , t)⊕ im dx(x , t) = Rn, y ∈ Rn, x ∈ Df , t ∈ If

• DAEs (1) with a quasi-proper leading term (here fy (y , x , t) may change
its rank): there is a C1-subspace NA ⊆ ker fy such that

NA(y , x , t)⊕ im dx(x , t) = Rn, y ∈ Rn, x ∈ Df , t ∈ If
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Special cases:

DAEs arising from Modified Nodal Analysis in circuit simulation

A(d(x(t))′ + b(x(t)) = q(t),

conservative DAEs (including all semi-explicit DAEs)[
I
0

]
d(x(t))′ +

[
b1(x(t), t)
b2(x(t), t)

]
= 0,

standard form DAEs

f(x ′(t), x(t), t) = 0 ⇐⇒ f((Dx(t))′, x(t), t) = 0,

if there is a singular incidence or projector matrix D ∈ L(Rm) such
that f(x1, x , t) ≡ f(Dx1, x , t). Put NA = im D⊥.
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For each arbitrary sufficiently smooth function x∗ ∈ C(I∗, Rm), I∗ ⊆ If ,
with values x∗(t) ∈ Df , t ∈ I∗, we may consider the linear DAE

A∗(t)(D∗(t)x(t))′ + B∗(t)x(t) = q(t), t ∈ I∗, (2)

with continuous coefficients given by

A∗(t) := fy ((d(x∗(t), t))
′, x∗(t), t),

D∗(t) := dx(x∗(t), t),

B∗(t) := fx((d(x∗(t), t))
′, x∗(t), t), t ∈ I∗.

We stress, the reference function x∗ is not necessarily a DAE solution!

Definition

The linear DAE (2) is called linearization of the original DAE (1) along x∗.

The linear DAE (2) inherits from (1) the proper and quasi-proper leading
term, respectively. Does it inherit further properties? What about the
opposite direction?
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Example 1. The semi-explicit DAE (with properly involved derivative)

x ′1(t)− x3(t) = 0,

x2(t)(1− x2(t))−
1

4
+ t2 = 0,

x1(t)x2(t) + x3(t)(1− x2(t))− t = 0,

with m = 3, n = 1, d(x , t) = x1, and

f (y , x , t) =

1
0
0

 y +

 −x3

x2(1− x2)− 1
4 + t2

x1x2 + x3(1− x2)− t

 , y ∈ R, x ∈ R3, t ∈ R,

yields the linearizations1
0
0

 (
[
1 0 0

]
x(t))′ +

 0 0 −1
0 1− 2x∗2(t) 0

x∗2(t) x∗1(t)− x∗3(t) 1− x∗2(t)

 x(t) = q(t).
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Case x∗2(t) ≡ 0 =⇒ index-1 DAE:

x ′1(t)− x3(t) =q1(t),

x2(t) =q2(t),

(x∗1(t)− x∗3(t)) x2(t) + x3(t) =q3(t).

Case x∗2(t) ≡ 1
2 =⇒ irregular DAE:

x ′1(t)− x3(t) =q1(t),

0 =q2(t),

1

2
x1(t) + (x∗1(t)− x∗3(t)) x2(t) +

1

2
x3(t) =q3(t).

Case x∗2(t) ≡ 1 =⇒ index-2 DAE:

x ′1(t)− x3(t) =q1(t),

−x2(t) =q2(t),

x1(t) + (x∗1(t)− x∗3(t)) x2(t) =q3(t).
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Case x∗2(t) = 1
2 + t =⇒ index-1 DAE with singularities:

x ′1(t)− x3(t) =q1(t),

2t x2(t) =q2(t),

(
1

2
+ t)x1(t) + (x∗1(t)− x∗3(t)) x2(t) + (

1

2
− t)x3(t) =q3(t).

The inherent ODE reads

x ′1(t) = −1 + 2t

1− 2t
x1(t)+q1(t)+

2

1− 2t
q3(t)−

1

(1− 2t)t
q2(t)(x∗1(t)− x∗3(t)).
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Example 2. The DAE with quasi-proper leading term (NA = im D⊥)

x4(t)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

(


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

=:D

x(t))′ + x(t) = q(t)

yields linearizations (2) given by the coefficients D∗(t) = D and

A∗(t) =


x∗4(t) 0 0 0

0 x∗4(t) 0 0
0 0 x∗4(t) 0
0 0 0 0

 , B∗(t) =


1 0 0 x ′∗1(t)
0 1 0 x ′∗2(t)
0 0 1 x ′∗3(t)
0 0 0 1

 .

=⇒ If x∗4(t) has no zeros, the resulting linearized DAE has index 4. If
x∗4(t) vanishes identically, the resulting linearized DAE has index 1.
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Example 3. α(s) = s2 for s > 0, α(s) = 0 for s ≤ 0, ε is a constant. The
DAE with quasi-proper leading term

x ′1(t)− x2(t) = 0,

x ′2(t) + x1(t) = 0,

α(x1(t)) x ′4(t) + x3(t) = 0,

x4(t)− ε = 0,

yields the linearizations, with γ∗(t) := αs(x∗1(t))x
′
∗1(t),

1 0 0 0
0 1 0 0
0 0 0 α(x∗1(t))
0 0 0 0

 (


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 x(t))′ +


0 −1 0 0
1 0 0 0

γ∗(t) 0 1 0
0 0 0 1

 x(t) = q(t).
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The linearization reads in detail

x ′1(t)− x2(t) = q1(t),

x ′2(t) + x1(t) = q2(t),

α(x∗1(t)) x ′4(t) + αs(x∗1(t))x
′
∗1(t) x1(t) + x3(t) = q3(t),

x4(t) = q4(t).

Now we choose reference functions x∗ being solutions of the original DAE.

Case x∗(t) =


0
0
0
ε

 =⇒ The linearized DAE has index 1.

Case x∗(t) =


sint
cost
0
ε

 =⇒

The linearized DAE has in turn
index 2 and index 1
on the intervals (0, π), (π, 2π),
and so on.
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Observation: Linearizations show astonishing properties, for reference
functions being solutions of the given nonlinear DAE but also for arbitrary
reference functions.

They may show a singular flow caused by an inherent ODE with a
singularity,

They may show a lower or a higher index than the original DAE seems
to have.

They may have different index on different subintervals.

They may become irregular at all.

The so-called regularity regions allow to comprehend what is going on.
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A preliminary note. For the pair of m×m matrices {G ,B}, we construct
a sequence of matrices: Set G0 := G , B0 := B, choose Q0 to be a
projector matrix onto N0 := ker G0, P0 := I − Q0, and, for i ≥ 1,

Gi :=Gi−1 + Bi−1Qi−1, ri := rank Gi ,

Qi projector onto Ni := ker Gi , N0 + · · ·+ Ni−1 ⊆ ker Qi ,

Pi := I − Qi ,

Bi :=Bi−1Pi−1

Theorem (Griepentrog/März,1989)

> The pencil λG + B is regular with Kronecker-index µ ⇐⇒
the sequence is well defined, and r0 ≤ · · · ≤ rµ−1 < rµ = m.
> The numbers r0, . . . , rµ characterize the structure of the
Weierstraß-Kronecker canonical form.

The alternative use of nontrivial subspaces Ni ⊆ ker Gi yields also a
nonsingular Gκ, however then the values ri loose their structural meaning.
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Return to the DAE (1), introduce the basic matrix functions

A(x1, x , t) := fy (dx(x , t)x1 + dt(x , t), x , t),

B(x1, x , t) := fx(dx(x , t)x1 + dt(x , t), x , t), x1 ∈ Rm, x ∈ Df , t ∈ If ,

and form pointwise a sequence of continuous matrix functions by

G0 :=Adx , B0 := B,

Q0 projector function onto N0 := ker dx , P0 := I − Q0, Π0 := P0,

and, for i ≥ 1, as long as the expressions exist,

Gi :=Gi−1 + Bi−1Qi−1,

choose a nontrivial C-subspace Ni ⊆ ker Gi ,

Qi projector function onto Ni , N0 + · · ·+ Ni−1 ⊆ ker Qi ,

Pi := I − Qi , Πi := Πi−1Pi ,

Bi :=Bi−1Pi−1 − Gid
−
x (dxΠid

−
x )′dxΠi−1,
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d−x denotes a pointwise defined special generalized inverse of dx

G1 and d−x Π1dx depend on the arguments
(x , t) ∈ Df × If and the jet variable x1 ∈ Rm.

(. . .)′ indicates the total derivative in jet variables.
Gi and d−x Πidx depend on the arguments

(x , t) ∈ Df × If and the jet variables x1, . . . , x i ∈ Rm.
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Definition

The DAE (1) with proper leading term is said to be regular on the
open connected set G ⊆ Df × If , if there is a number µ ∈ N, such
that a matrix function sequence can be formed on G up to level µ with
Ni = ker Gi , i = 0, . . . , µ− 1, and r0 ≤ · · · ≤ rµ−1 < rµ = m.

The DAE (1) with quasi-proper leading term is said to be regular on
the open connected set G ⊆ Df × If , if it has there a proper
reformulationon which is regular.

The open connected set G is then named a regularity region.

The number µ is named tractability index, and the ranks r0, . . . , rµ
are said to be characteristic values of the DAE on G.

A point (x̄ , t̄) ∈ Df × If is a regular point, if there is a neighborhood
being a regularity region, and a critical point otherwise.
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• If G is a regularity region of the DAE (1), with characteristics
r0 ≤ . . . ≤ rµ−1 < rµ = m, then each open subset G̃ ⊂ G is a regularity
region, too, and it has the same characteristics.

• A regularity region consists of regular points with uniform characteristics.
• The union of intersecting regularity regions is again a regularity region.
• To define regularity, neither the existence of solutions nor any knowledge
concerning the constraints are presupposed.
• Regularity regions, regular and critical points are unchanged, if one turns
from the original DAE (1) to its perturbed version

f ( (d(x(t), t))′ , x(t), t) = q(t). (3)

• Regularity, in particular the characteristics r0 ≤ · · · ≤ rµ−1 < rµ = m,
are invariant with respect to coordinate changes, to refactorizations of the
leading term as well as to the special choice of the admissible projector
functions Qi .
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Definition

The DAE (1) with quasi-proper leading term is said to be quasi-regular on
the open connected set G ⊆ Df × If , if there is a number κ ∈ N, such
that a matrix function sequence can be formed on G up to level κ, and Gκ

is nonsingular.
The open connected set G is then called a quasi-regularity region.
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A particular class of regular DAEs.
Hessenberg form DAEs are semi-explicit systems of
m1 + . . . + mr−1 + mr = m equations, with the special structure

Im1

. . .

Imr−1

0

 (

 x1(t)
...

xr−1(t)

)′ + b(x1(t), . . . , xr (t), t) = 0. (4)

The partial derivative

bx =


B11 . . . B1,r−1 B1r

B21
. . .

... 0
. . . Br−1,r−1

Br ,r−1 0


}m1

}m2

}mr−1

}mr

with Bij := bi ,xj
, shows Hessenberg structure the name comes from.
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Theorem

The system (4) is on the open set G ⊆ Db × Ib regular with
characteristics r0 = · · · = rµ−1 < rµ = m, µ = r ⇐⇒
the matrix function product Br ,r−1 · · ·B21B1r remains nonsingular on G.

In general, we do not expect a DAE to be regular on its entire definition
domain. It is rather natural that the definition domain decomposes in
several maximal regularity regions G1, G2, . . . the borders of which consist
of critical points. Solutions may cross the borders of these regularity
regions, and, in particular, undergo bifurcations.
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Example 1. The semi-explicit DAE (with properly involved derivative)

x ′1(t)− x3(t) = 0,

x2(t)(1− x2(t))−
1

4
+ t2 = 0,

x1(t)x2(t) + x3(t)(1− x2(t))− t = 0,

yields det G1(x , t) = (1− 2x2)(1− x2) , which has the zeros x2 = 1
2 and

x2 = 1. This splits the definition domain Df × If = R3 × R into the three
regularity regions

G1 :=
{

(x , t) ∈ R3 × R : x2 <
1

2

}
,

G2 :=
{

(x , t) ∈ R3 × R :
1

2
< x2 < 1

}
,

G3 := {(x , t) ∈ R3 × R : 1 < x2},

The DAE is regular with tractability index one on each region G`,
` = 1, 2, 3.
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The border points indicate a critical flow behavior in fact. The pictures
show two solutions starting at (1, 1

2 ,−1) (solid line), and two solutions
starting at (1

3 , 1
2 ,−1

3) (dashed line):
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Example 2. The DAE with quasi-proper leading term (NA = im D⊥,
almost proper: ker fy (y , x , t)D = ker D, everywhere, except for x4 6= 0).

x4(t)(


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

=:D

x(t))′ + x(t) = q(t)

has the two regularity regions

G+ := {(x , t) ∈ R4 × R : x4 > 0},
G− := {(x , t) ∈ R4 × R : x4 < 0},

The DAE is regular with tractability index 4 and
r0 = r1 = r2 = r3 = 3, r4 = 4 on both regions G+and G−.
The DAE is quasi-regular on R4 × R, e.g. with κ = 4, the critical points
are harmless.
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has the two regularity regions

G+ := {(x , t) ∈ R4 × R : x4 > 0},
G− := {(x , t) ∈ R4 × R : x4 < 0},

The DAE is regular with tractability index 4 and
r0 = r1 = r2 = r3 = 3, r4 = 4 on both regions G+and G−.

The DAE is quasi-regular on R4 × R, e.g. with κ = 4, the critical points
are harmless.
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Example 3. α(s) = s2 for s > 0, α(s) = 0 for s ≤ 0. The DAE
(quasi-proper leading term)

x ′1(t)− x2(t) = 0,

x ′2(t) + x1(t) = 0,

α(x1(t)) x ′4(t) + x3(t) = 0,

x4(t)− ε = 0,

has the two regularity regions

G+ := {(x , t) ∈ R4 × R : x1 > 0},
G− := {(x , t) ∈ R4 × R : x1 < 0},

The DAE is regular with tractability index 2 and r0 = r1 = 3, r3 = 4 on G+

and regular with index 1, r0 = 2, r1 = 4 on G−.
The DAE is quasi-regular on R4 × R, e.g. with κ = 2, the critical points
are harmless.
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We throw a glance at linear DAEs.

A(t)(D(t)x(t))′ + B(t)x(t) = q(t), t ∈ I. (5)

and their adjoints

− D(t)∗(A(t)∗x(t))′ + B(t)∗x(t) = p(t), t ∈ I. (6)

Theorem

The DAE (5) is regular on I with r0 ≤ · · · ≤ rµ−1 < rµ = m.
⇐⇒ The DAE (6) is regular on I with r0 ≤ · · · ≤ rµ−1 < rµ = m.
⇐⇒ The DAE (5) is regular on each subinterval Ĩ ⊆ I with the same
characteristics r0 ≤ · · · ≤ rµ−1 < rµ = m.
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In consequence, a regular DAE (5) possesses the properties:

1 The dynamical degree of freedom d = m −
∑µ

i=0(m − ri ) is
maintained when turning to a subinterval Ĩ ⊆ I.

2 The set of admissible excitations associated to the DAE on the closed
subinterval Ĩ consists of the restrictions on Ĩ of the admissible
excitations of (5).

In contrast, a quasi-regular DAE (5) possesses the first property, but the
second property is no longer given. This has consequences for rigorous
solvability relations and the sensitivity analysis, in particular, for the
transfer of discontinuities.
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2 Linearization along trajectories of functions

3 Regularity regions and their characteristics

4 Regularity regions and linearization

5 Conclusions
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Theorem (Main Linearization Theorem)

The following three assertions are equivalent:

1 The open connected set G is a regularity region of the DAE (1).

2 Each linearization of the DAE (1) along a sufficiently smooth function
x∗ with values in G is a regular linear DAE.

3 The linearization of the DAE (1) along a sufficiently smooth function
x∗ with values in G is regular with uniform characteristics.

Theorem

Let the DAE (1) be quasi-regular on the open connected set G.
=⇒ Then each linearization of the DAE (1) along a sufficiently smooth
function x∗ with values in G is also a quasi-regular linear DAE.
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F A nonlinear DAE is regular with index µ and characteristics r0, . . . , rµ,
exactly if all its linearizations are so.

F The definition domain Df × If of a DAE decomposes into several
regularity regions bordered by critical points. Solutions and other
reference functions may cross or touch the borders and also stay there. A
critical point belonging to a quasi-regularity region is harmless, otherwise
the DAE shows a singular flow.

F One can benefit from the constant rank conditions supporting the
regularity notion to detect the critical points and to mark the regularity
regions.
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• Lamour/März/Tischendorf: Projector based DAE analysis.
... still in preparation...

Thank you for your attention!
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