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Motivation

Batch Process Applications

The batch mode is used when:

Production volumes are low

Isolation is required

Materials are hard to handle

Flexible plants are desired near markets of consumption

This mode of operation is popular in the pharmaceutical and specialty
chemicals industry.
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Motivation

Batch Operation
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Motivation

Batch Process Characteristics

Inherently dynamic in nature

Nonlinear dynamics

Several batches run in the same equipment

Batch to batch variation in operating conditions

Optimization objective is product quality and quantity at the batch
end-point
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Motivation

Current Industrial Practice

Development of batch recipe (based on chemistry)

Open-loop implementation of recipe

One end-point measurement for quality
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Motivation

Potential for Improvement

Increased computational power at the factory shopfloor

Real-time measurements

Competition from the market
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Motivation

Traditional Optimization Approach

Procedure

Develop accurate mathematical model

Solve optimization problem off-line

Implement solution in “open-loop”

Drawbacks

Accurate models take too long to develop

Uncertainties due to differences in lab and industrial equipment

Model parameters not known accurately

Open-loop solution not optimal in the presence of uncertainties
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Problem Formulation

Real-Time Optimization Framework

Utilize an approximate model

Compute the optimal operating strategy

Take real-time measurements

Make periodic corrections to the optimal solution during batch
operation to account for uncertainty

Solution strategy should be simple enough that a plant operator can
implement it
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Problem Formulation

Process Plant Reality

I do not need your fancy-shmancy algorithm. I can control anything using
my “PLD” knob.

Anonymous plant operator
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Problem Formulation

Mathematical Formulation

min
u(t),tf

J = φ(x(tf )) Objective function (1)

subject to
ẋ = F (x , u) System Dynamics (2)

x(0) = x0 Initial Conditions (3)

S(x , u) ≤ 0 Path Constraints (4)

T (x(tf )) ≤ 0 End − point Constraints (5)
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Problem Formulation

Solution Strategies

• Sequential Approach

Parameterize the input vector using a finite number of decision
variables

Choose an initial guess for the decision variables

Integrate the system equations to the final time and compute the
performance index J and the constraints S and T

Use an optimization algorithm to update the values of the decision
variables

Repeat the last two steps until the objective function is minimized
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Problem Formulation

• Simultaneous Approach

Parameterize both the input vector as well as the state vector using a
finite number of decision variables

Discretize the dynamic equations. This results in a standard nonlinear
program (NLP)

Choose an initial guess for the decision variables

Iteratively solve for the optimal set of decision variables using an NLP
solver
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Problem Formulation

Direct Optimization Methods

• Advantages

Simple to setup and code

• Disadvantages

Quality of solution depends strongly on the parameterization of the
control profile
Abrupt changes in the input profile are not easily handled
May be slow to converge

U max

U

U min

State
Constraint

X max

X

X min

t

Interior of
constraints
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constraints

Input
Constraint
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Problem Formulation

PMP Formulation

Equivalent optimization problem:

min
u(t),tf

H = λTF (X , u) + µTS(x , u) (6)

subject to

ẋ = F (x , u) x(0) = x0

λ̇T = −∂H

∂x
λT (tf ) =

∂φ

∂x
|tf + νT ∂T

∂x
|tf

µTS = 0
νTT = 0

(7)

PMP formulation results in a two point boundary value problem that is
computationally difficult to solve
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PMP-based Solution Strategy

Analytical Solution Method

The solution of the dynamic optimization problem consists of several
intervals:

Solution in an input constraint

Solution on a state constraint

Solution in the interior of constraints
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PMP-based Solution Strategy

The time instants at which inputs switch from one interval to another
are called switching times
Within each interval, the inputs are continuous and differentiable
Analytical expressions for the optimal inputs can be computed in each
interval
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PMP-based Solution Strategy

PMP Formulation Revisited

min
u(t),tf

H(t) = λTF (x , u) + µTS(x , u) (8)

Hui = λTFui + µTSui = 0 (9)

d lHui

dt l
= λT ∆lFui − µ

T ∂S

∂x
∆l−1Fui = 0 (10)

where ∆ is the Lie Bracket operator
Since the inputs can be (and typically are) affine, Hui and several of its
time derivates are independent of ui .

Srinivas Palanki (USA) The Application of PMP for End-Point Optimization 18 / 33



PMP-based Solution Strategy

Active Path Constraint

Let ζi be the first value of l for which λT ∆lFui 6= 0

A non-zero µ is required to satisfy:

d lHui

dt l
= λT ∆lFui − µ

T ∂S

∂x
∆l−1Fui = 0 (11)

This implies that at least one of the path constraints is active

Constraint tracking =⇒ regulation problem of relative degree rij = ζi
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PMP-based Solution Strategy

Solution Inside the Feasible Region

Let the order of singularity, σi , be the first value of l for which the
input ui appears explicitly and independently in λT ∆lFui

Let ρi be the dimension of the state space that can be reached by
manipulating ui

The optimal input depends on ρi − σi − 1 = ξi adjoint variables

An adjoint-free expression in the feasible region can be obtained from:

Mi =

[
Fui

...∆1Fui

...∆2Fui

... . . .
...∆ρi−1Fui

... . . .

]
(12)

where successive Lie brackets are found until the structural rank of Mi

is ρi

I ξi > 0 =⇒ Dynamic State Feedback
I ξi = 0 =⇒ Static State Feedback
I −∞ < ξi < 0 =⇒ System is constrained to a surface
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PMP-based Solution Strategy

Parsimonious Parameterization Approach

Choose an initial sequence of intervals

Use analytical expressions for the inputs in each interval

Determine numerically the optimal switching instants

Check the necessary conditions of optimality

If optimality conditions are not satisfied, change the sequence of
intervals and go to step 2
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PMP-based Solution Strategy

Illustrative Example 1

min J = −XV |tf (13)

d(XV )

dt
= µ(S)XV

d(SV )

dt
= −µ(S)XV

Y
+ sFu

dV

dt
= u

(14)

where

µ(S) =
µmS

K1 + S

K2

K2 + S

and
V − Vmax ≤ 0 (15)
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PMP-based Solution Strategy

It can be shown that ξ1 = −1 and so in the feasible region, the
system is constrained to the following surface:

S −
√

K1K2 = 0 (16)

Start in batch mode (u = 0, input at the lower bound) if
S(0) >

√
K1K2

When S =
√

K1K2 regulate system to this surface by manipulating u
till the volume is full or final time is reached
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PMP-based Solution Strategy

Illustrative Example 2

Reaction: A + B → C → D

Conditions: Non-isothermal semi-batch reactor

Objective: Maximize production of C

Manipulated inputs: Feed rate of B and reactor temperature

Constraints: Bounds on feed rate and reactor temperature,
constraint on the maximum heat that can be removed by the cooling
system, constraint on the maximum volume
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PMP-based Solution Strategy

Solution Characteristics

There is a compromise for the temperature between the production
and consumption of C

The feed rate of B is determined first by the heat removal constraint
and then by the volume constraint

Without any constraints, the optimal operation would consist of
adding all the available B at the initial time and follow the
temperature profile that expresses the compromise between the
production and consumption of C .
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PMP-based Solution Strategy

Optimal Solution

upath�V

� ((�DH1)k2
1cAcB(cA � cB) � (�DH2)k2(k1cAcB � k2cC))

(�DH1)k1cA(cBin � cB)

�
ṪV

RT2

((�DH1)E1k1cAcB � (�DH2)E2k2cC)

(�DH1)k1cA(cBin � cB)
: (81)

6.4.3.2. Analytical expression for Tsens. Tsens is obtained

from the combination of x , u , and T for which the rank

of MT/� [FT DFT D2FT
] drops:

F�
�k1cAcBV

�k2cCV

u

2
4

3
5; FT �

V

RT2

E1k1cAcB

E2k2cC

0

2
4

3
5;

DFT ��
V

RT2

0

k1k2cAcB(E1�E2)

0

2
4

3
5� ṪV

R2T4

�
E1k1cAcB(E1�2RT)

E2k2cC(E2�2RT)
0

2
4

3
5� E1u

RT 2
DFu:

The matrix MT has structural rank rT �/2 since the

third element of all involved vector fields is zero.

Intuitively, this is because the temperature cannot affect

the volume. Even though the structural rank is 2, the

rank depends on the states and inputs. The expression

for Tsens can be computed from the determinant of the

first two rows of FT , and DFT . Since FT is already a

function of T , the order of singularity is sT �/0. Since
jT �/1, Tsens corresponds to a dynamic feedback:

Ṫ sens��
RT 2k1cAcB

E2cC

�
RT2(cBin � cB)

cB(E1 � E2)

u

V
: (82)

The initial condition of Tsens as it enters the sensitivity-

seeking arc is a decision variable, but it can be verified
numerically that it is equal to Tmax. It is interesting to

note that upath depends on Ṫ ; and Ṫ sens depends on u .

Thus, if in a given interval u is determined by the path

constraint and T is sensitivity-seeking, then Eqs. (81)
and (82) have to be solved simultaneously.

6.4.4. Interpretation of the optimal solution

6.4.4.1. Meeting path objectives. The three arcs of this

solution need to be addressed separately:

. In the first arc, both inputs are on path constraints,

i.e. h̄�fupath; Tmaxg; and h̃�fg:/
. In the second arc, only the path constraint regarding

the heat production rate is active, for which two

inputs are available. The gain matrix GS : [u , Ṫ ]/0/

qrx,max is given by:

(�DH1)k1cA(cBin�cB)½
(�DH1)E1k1cAcBV � (�DH2)E2k2cCV

RT 2
�

. So, the singular value decomposition of the gain

matrix can be used to compute h̄ and h̃ (see Section

5.2):

h̄�u (�DH1)k1cA(cBin�cB)

�Ṫ
(�DH1)E1k1cAcBV � (�DH2)E2k2cCV

RT2
;

h̃�u
(�DH1)E1k1cAcBV � (�DH2)E2k2cCV

RT2

�Ṫ (�DH1)k1cA(cBin�cB):

. In the third arc, only the input bound for the feed rate

is active. So, h̄�umin; and h̃�Tsens:/

6.4.4.2. Meeting terminal objectives. The two switching

times tT and tu parameterize the solution completely.

Since there is only one active terminal constraint,

V (tf)�/Vmax, a combination of the two switching times
is constraint-seeking. The gain matrix, in the neighbor-

hood of the optimum, GT : p0/V (tf)�/Vmax, with p�
[tT tu]T; is given by GT � [�0:365 0:268]: The con-

Fig. 4. Optimal feed rate and temperature profiles for Example 4.
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The optimal inputs consist of two arcs, upath and umin for the feed
rate and Tmax and Tsens for temperature
The arc upath is obtained by differentiating the path constraint
regarding the heat production rate
The arc Tsens is a dynamic state feedback law
When the temperature goes inside the feasible region, there is a
discontinuity in the feed rate due to the coupling between the two
inputs
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Real-Time Optimization

Presence of Uncertainty

Model Mismatch
I Available models often do not correspond to industrial reality

F Neglected effects, non-ideal behavior
F Inaccurate parameter values

Disturbances
I Run-to-run variations in initial conditions
I Run-to-run variations in process environment
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Real-Time Optimization

Reference Tracking

Determine structure of optimal solution from nominal model

Batch-to-batch update of switching times

Within the batch regulation of active constraints

Tracking sensitivities to nominal trajectories

Real-time optimization problem is reduced to a control problem
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Real-Time Optimization

Illustrative Example 3

Reaction:
A + B → C rate constant k1

2B → D rate constant k2

Conditions: Semi-batch reactor (feed B), isothermal reactor

Objective: Maximize production of C

Manipulated inputs: Feed rate of B and jacket temperature Tc

Path Constraint: Heat removal limitation (Tc ≥ Tc,min)

Terminal Constraint: Number of moles of D at tf (nDf ≤ nDf ,max)

Uncertainty in k1
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Real-Time Optimization

Effect of Uncertainty

The real value of k1 = 0.75 but this is not known to the optimizer.
The model can assume values of k1 between 0.4 and 1.2

Solution consists of the flow rate on the upper constraint, switch to a
flow rate in the interior of the constraints, and then a switch to the
lower constraint

The uncertainty in k1 modifies the values of the switching times, and
the flow rate of B but not the sequence of intervals

Case I: No measurements are used and an open-loop solution is
implemented

Case II: A measurement of D is made at the end of the batch and the
switching time t2 is adjusted in the subsequent batches

Case III: The temperature, Tc , is measured and the switching time t1
and the flow rate of B is adjusted to satisfy the path constraint
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Real-Time Optimization

Results

k1 unknown, 5% measurement noise

Optimization Terminal Path Cost Loss
Scenario Constraint Constraint (mol of C) (%)

nD(tf ) < 5 Tc(t) > 10

Case I 2.71 12.87 498.8 20

Case II 4.75 11.62 582.6 3

Case III 4.75 11.25 590.9 1.5
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Conclusions

Conclusions

The nominal solution to the dynamic optimization problem can be
parameterized efficiently using a PMP formulation

This solution can be utilized in a real-time optimization framework to
account for uncertainty

Future Work

Model structures for which optimal solution is always on path
constraints (e.g. linear systems, feedback linearizable systems, flat
systems)

Parameter estimation for batch-to-batch update

Stability results for finite-time processes
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Conclusions

..... you control your process using the PLD knob.
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