The Application of PMP for End-Point Optimization

Srinivas Palanki

University of South Alabama

Outline

Motivation

- 2 Problem Formulation
- Operation Strategy
- 4 Real-Time Optimization

5 Conclusions

Batch Process Applications

The batch mode is used when:

- Production volumes are low
- Isolation is required
- Materials are hard to handle
- Flexible plants are desired near markets of consumption

This mode of operation is popular in the pharmaceutical and specialty chemicals industry.

Batch Operation

Batch Process Characteristics

- Inherently dynamic in nature
- Nonlinear dynamics
- Several batches run in the same equipment
- Batch to batch variation in operating conditions
- Optimization objective is product quality and quantity at the batch end-point

Current Industrial Practice

- Development of batch recipe (based on chemistry)
- Open-loop implementation of recipe
- One end-point measurement for quality

Potential for Improvement

- Increased computational power at the factory shopfloor
- Real-time measurements
- Competition from the market

Traditional Optimization Approach

Procedure

- Develop accurate mathematical model
- Solve optimization problem off-line
- Implement solution in "open-loop"

Drawbacks

- Accurate models take too long to develop
- Uncertainties due to differences in lab and industrial equipment
- Model parameters not known accurately
- Open-loop solution not optimal in the presence of uncertainties

Real-Time Optimization Framework

- Utilize an approximate model
- Compute the optimal operating strategy
- Take real-time measurements
- Make periodic corrections to the optimal solution during batch operation to account for uncertainty
- Solution strategy should be simple enough that a plant operator can implement it

Process Plant Reality

I do not need your fancy-shmancy algorithm. I can control anything using my "PLD" knob.

Anonymous plant operator

Mathematical Formulation

$$\min_{u(t),t_f} J = \phi(x(t_f)) \qquad Objective function \qquad (1)$$

subject to

$\dot{x} = F(x, u)$	System Dynamics	(2)
$x(0) = x_0$	Initial Conditions	(3)
$S(x, u) \leq 0$	Path Constraints	(4)
$T(x(t_f)) \leq 0$	End – point Constraints	(5)

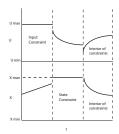
Solution Strategies

- Sequential Approach
 - Parameterize the input vector using a finite number of decision variables
 - Choose an initial guess for the decision variables
 - Integrate the system equations to the final time and compute the performance index J and the constraints S and T
 - Use an optimization algorithm to update the values of the decision variables
 - Repeat the last two steps until the objective function is minimized

- Simultaneous Approach
 - Parameterize both the input vector as well as the state vector using a finite number of decision variables
 - Discretize the dynamic equations. This results in a standard nonlinear program (NLP)
 - Choose an initial guess for the decision variables
 - Iteratively solve for the optimal set of decision variables using an NLP solver

Direct Optimization Methods

- Advantages
 - Simple to setup and code
- Disadvantages
 - Quality of solution depends strongly on the parameterization of the control profile
 - Abrupt changes in the input profile are not easily handled
 - May be slow to converge



PMP Formulation

Equivalent optimization problem:

$$\min_{u(t),t_f} H = \lambda^T F(X,u) + \mu^T S(x,u)$$
(6)

subject to

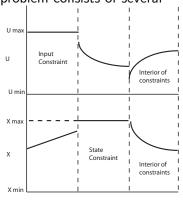
$$\dot{x} = F(x, u) \qquad x(0) = x_0 \dot{\lambda}^T = -\frac{\partial H}{\partial x} \qquad \lambda^T(t_f) = \frac{\partial \phi}{\partial x}|_{t_f} + \nu^T \frac{\partial T}{\partial x}|_{t_f}$$
(7)
$$\mu^T S = 0 \nu^T T = 0$$

PMP formulation results in a two point boundary value problem that is computationally difficult to solve

Analytical Solution Method

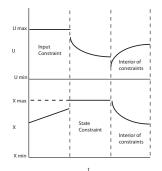
The solution of the dynamic optimization problem consists of several intervals:

- Solution in an input constraint
- Solution on a state constraint
- Solution in the interior of constraints



t

- The time instants at which inputs switch from one interval to another are called switching times
- Within each interval, the inputs are continuous and differentiable
- Analytical expressions for the optimal inputs can be computed in each interval



PMP Formulation Revisited

$$\min_{u(t),t_f} H(t) = \lambda^T F(x,u) + \mu^T S(x,u)$$
(8)

$$H_{u_i} = \lambda^T F_{u_i} + \mu^T S_{u_i} = 0$$
(9)

$$\frac{d^{\prime}H_{u_i}}{dt^{\prime}} = \lambda^{T}\Delta^{\prime}F_{u_i} - \mu^{T}\frac{\partial S}{\partial x}\Delta^{\prime-1}F_{u_i} = 0$$
(10)

where Δ is the Lie Bracket operator Since the inputs can be (and typically are) affine, H_{u_i} and several of its time derivates are independent of u_i .

Active Path Constraint

- Let ζ_i be the first value of I for which $\lambda^T \Delta^I F_{u_i} \neq 0$
- A non-zero μ is required to satisfy:

$$\frac{d^{\prime}H_{u_i}}{dt^{\prime}} = \lambda^{T}\Delta^{\prime}F_{u_i} - \mu^{T}\frac{\partial S}{\partial x}\Delta^{\prime-1}F_{u_i} = 0$$
(11)

- This implies that at least one of the path constraints is active
- Constraint tracking \implies regulation problem of relative degree $r_{ij} = \zeta_i$

Solution Inside the Feasible Region

- Let the order of singularity, σ_i , be the first value of I for which the input u_i appears explicitly and independently in $\lambda^T \Delta^I F_{u_i}$
- Let ρ_i be the dimension of the state space that can be reached by manipulating u_i
- The optimal input depends on $\rho_i \sigma_i 1 = \xi_i$ adjoint variables
- An adjoint-free expression in the feasible region can be obtained from:

$$M_{i} = \left[F_{u_{i}} \Delta^{1} F_{u_{i}} \Delta^{2} F_{u_{i}} \cdots \Delta^{\rho_{i}-1} F_{u_{i}} \cdots\right]$$
(12)

where successive Lie brackets are found until the structural rank of M_i is ρ_i

•
$$\xi_i > 0 \Longrightarrow$$
 Dynamic State Feedback
• $\xi_i = 0 \Longrightarrow$ Static State Feedback

• $-\infty < \xi_i < 0 \implies$ System is constrained to a surface

Parsimonious Parameterization Approach

- Choose an initial sequence of intervals
- Use analytical expressions for the inputs in each interval
- Determine numerically the optimal switching instants
- Check the necessary conditions of optimality
- If optimality conditions are not satisfied, change the sequence of intervals and go to step 2

Illustrative Example 1

$$\min J = -XV|_{t_f} \tag{13}$$

$$\frac{d(XV)}{dt} = \mu(S)XV$$
$$\frac{d(SV)}{dt} = -\frac{\mu(S)XV}{Y} + s_F u$$
$$\frac{dV}{dt} = u$$

where

$$\mu(S) = \frac{\mu_m S}{K_1 + S} \frac{K_2}{K_2 + S}$$

and

$$V - V_{max} \le 0 \tag{15}$$

(14)

• It can be shown that $\xi_1 = -1$ and so in the feasible region, the system is constrained to the following surface:

$$S - \sqrt{K_1 K_2} = 0 \tag{16}$$

- Start in batch mode (u=0, input at the lower bound) if $S(0)>\sqrt{K_1K_2}$
- When $S = \sqrt{K_1 K_2}$ regulate system to this surface by manipulating *u* till the volume is full or final time is reached

Illustrative Example 2

- **Reaction**: $A + B \rightarrow C \rightarrow D$
- Conditions: Non-isothermal semi-batch reactor
- **Objective**: Maximize production of *C*
- Manipulated inputs: Feed rate of B and reactor temperature
- **Constraints**: Bounds on feed rate and reactor temperature, constraint on the maximum heat that can be removed by the cooling system, constraint on the maximum volume

Solution Characteristics

- There is a compromise for the temperature between the production and consumption of *C*
- The feed rate of *B* is determined first by the heat removal constraint and then by the volume constraint
- Without any constraints, the optimal operation would consist of adding all the available *B* at the initial time and follow the temperature profile that expresses the compromise between the production and consumption of *C*.

Optimal Solution

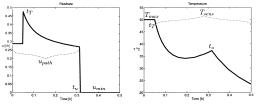


Fig. 4. Optimal feed rate and temperature profiles for Example 4.

- The optimal inputs consist of two arcs, u_{path} and u_{min} for the feed rate and T_{max} and T_{sens} for temperature
- The arc *u_{path}* is obtained by differentiating the path constraint regarding the heat production rate
- The arc *T_{sens}* is a dynamic state feedback law
- When the temperature goes inside the feasible region, there is a discontinuity in the feed rate due to the coupling between the two inputs

Srinivas Palanki (USA)

Presence of Uncertainty

- Model Mismatch
 - Available models often do not correspond to industrial reality
 - * Neglected effects, non-ideal behavior
 - ★ Inaccurate parameter values
- Disturbances
 - Run-to-run variations in initial conditions
 - Run-to-run variations in process environment

Reference Tracking

- Determine structure of optimal solution from nominal model
- Batch-to-batch update of switching times
- Within the batch regulation of active constraints
- Tracking sensitivities to nominal trajectories

Real-time optimization problem is reduced to a control problem

Illustrative Example 3

Reaction:

 $egin{array}{ccc} A+B
ightarrow C & rate \ constant \ k_1 \ 2B
ightarrow D & rate \ constant \ k_2 \end{array}$

Conditions: Semi-batch reactor (feed B), isothermal reactor

• **Objective**: Maximize production of C

- Manipulated inputs: Feed rate of B and jacket temperature T_c
- Path Constraint: Heat removal limitation ($T_c \ge T_{c,min}$)
- Terminal Constraint: Number of moles of D at t_f $(n_{Df} \le n_{Df,max})$

Uncertainty in k_1

Effect of Uncertainty

- The real value of $k_1 = 0.75$ but this is not known to the optimizer. The model can assume values of k_1 between 0.4 and 1.2
- Solution consists of the flow rate on the upper constraint, switch to a flow rate in the interior of the constraints, and then a switch to the lower constraint
- The uncertainty in k₁ modifies the values of the switching times, and the flow rate of B but not the sequence of intervals
- Case I: No measurements are used and an open-loop solution is implemented
- Case II: A measurement of *D* is made at the end of the batch and the switching time *t*₂ is adjusted in the subsequent batches
- Case III: The temperature, T_c , is measured and the switching time t_1 and the flow rate of B is adjusted to satisfy the path constraint

Results

k_1 unknown, 5% measurement noise

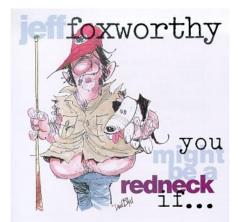
Optimization	Terminal	Path	Cost	Loss
Scenario	Constraint	Constraint	(mol of C)	(%)
	$n_D(t_f) < 5$	$T_{c}(t) > 10$		
Case I	2.71	12.87	498.8	20
Case II	4.75	11.62	582.6	3
Case III	4.75	11.25	590.9	1.5

Conclusions

- The nominal solution to the dynamic optimization problem can be parameterized efficiently using a PMP formulation
- This solution can be utilized in a real-time optimization framework to account for uncertainty

Future Work

- Model structures for which optimal solution is always on path constraints (e.g. linear systems, feedback linearizable systems, flat systems)
- Parameter estimation for batch-to-batch update
- Stability results for finite-time processes



..... you control your process using the PLD knob.