Singular Optimal Control, Lur'e Equations and Even Matrix Pencils

Timo Reis (TU Hamburg-Harburg)

Workshop on Control and Optimization with Differential-Algebraic Constraints Banff International Research Station

10/29/2010

Overview

- Regular Optimal Control and Riccati equations
- 2 Singular Optimal Control and Lur'e equations
- Solvability and Solution of Lur'e equations
- 4 Conclusions for the Optimal Control Problem
- 5 Further Results and Conclusion

(日) (日) (日) (日) (日) (日) (日)

Outline

Regular Optimal Control and Riccati equations

- Singular Optimal Control and Lur'e equations
- Solvability and Solution of Lur'e equations
- Conclusions for the Optimal Control Problem
- 5 Further Results and Conclusion

Linear-quadratic optimal control problem		
Minimize	$\mathcal{J}(u, x_0) = \frac{1}{2} \int_0^\infty \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}^* \begin{bmatrix} Q & S \\ S^* & R \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} dt$	
subject to	$\dot{x}(t) = Ax(t) + Bu(t), x(0) = x_0.$	

with (A, B) stabilizable, i.e. rank $[A - sI, B] = n \quad \forall s \in \overline{\mathbb{C}^+}$.

Definition

 $\hat{u}: \mathbb{C}^+ \to \mathbb{C}^m$ is called *minimizer* if

$$\mathcal{J}(\hat{u}, x_0) = \inf\{\mathcal{J}(u, x_0) : u \in L_2^{loc}(\mathbb{R}^+)\}.$$

The optimal value is

$$\mathcal{J}(x_0) = \inf \{ \mathcal{J}(u, x_0) : u \in L_2^{loc}(\mathbb{R}^+) \}.$$

Usual assumption: $R \in \mathbb{C}^{m,m}$ is invertible.

Equivalent criteria for the existence of a minimizer $\hat{u} \in L_2^{loc}(\mathbb{R}^+)$:

The algebraic Riccati equation (ARE)

$$A^*X + XA + Q - (S + XB)R^{-1}(S + XB)^* = 0$$

has at least one solution $X = X^* \in \mathbb{C}^{n,n}$.

The ARE has a maximal solution X₊ = X^{*}₊ ∈ C^{n,n}, i.e., for all other solutions X holds X₊ ≥ X. In this case holds

$$\mathcal{J}(x_0) = x_0^* X_+ x_0$$
, and $\hat{u}(t) = -R^{-1} (S + X_+ B)^* e^{A - BR^{-1} (S + X_+ B)^* t} x_0$.

(日) (日) (日) (日) (日) (日) (日)

Further equivalent criteria for the existence of a minimizer $\hat{u} \in L_2^{loc}(\mathbb{R}^+)$:

- For all $u \in L_2^{loc}(\mathbb{R}^+)$ holds $\mathcal{J}(u, 0) \ge 0$.
- The Popov function

$$\mathcal{P}(i\omega) = \begin{bmatrix} (i\omega I - A)^{-1}B\\ I \end{bmatrix}^* \begin{bmatrix} Q & S\\ S^* & B \end{bmatrix} \begin{bmatrix} (i\omega I - A)^{-1}B\\ I \end{bmatrix}$$

is positive semidefinite ($\mathcal{P}(i\omega) \geq 0$) for all $\omega \in \mathbb{R}$.

The Jordan form of the Hamiltonian matrix

$$H = \begin{bmatrix} A & 0 \\ -Q & -A^* \end{bmatrix} - \begin{bmatrix} B \\ S \end{bmatrix} R^{-1} \begin{bmatrix} S^* & -B^* \end{bmatrix}$$

has the form

$$HT = T \begin{bmatrix} J_{-} & 0 & 0 \\ 0 & -J_{-} & 0 \\ 0 & 0 & J_{i} \end{bmatrix}$$

where

σ(J₋) ⊂ C⁻,
σ(J_i) ⊂ iℝ and all Jordan blocks of J_i have even size.

Solution of ARE can be obtained via invariant subspaces of the Hamiltonian matrix *H*.

X is a solution of the ARE if and only if $X = X_2 X_1^{-1}$, where

• $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \widetilde{A} = H \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$, (im $[X_1^T, X_2^T]^T$ is *H*-invariant),

• $X_1 \in \operatorname{Gl}_n(\mathbb{C})$, $(\operatorname{im}[X_1^T, X_2^T]^T \text{ is } 1\text{-regular})$,

• $X_2^* X_1 = X_1^* X_2$ (im $[X_1^T, X_2^T]^T$ is Lagrangian).

A D > 4 目 > 4 目 > 4 目 > 10 の (の)

Characterization of *H*-invariant Lagrangian subspaces:

Let $\mathcal{X} = im[X_1^T, X_2^T]^T \subset \mathbb{C}^{2n}$ be an invariant subspace of the Hamiltonian matrix H, i.e.

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \widetilde{A} = H \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

Then \mathcal{X} is Lagrangian if \widetilde{A} has the following properties:

- For all $\lambda, \mu \in \sigma(\widetilde{A}) \setminus i\mathbb{R}$ holds $\lambda + \overline{\mu} \neq 0$, and
- The Jordan blocks of *A* corresponding to the eigenvalues on *i*ℝ have half the size as the corresponding Jordan blocks of *H*.

(日) (日) (日) (日) (日) (日) (日)

If, additionally
$$\sigma(\widetilde{A}) \subset \overline{\mathbb{C}^+}$$
, then $X_+ = X_2 X_1^{-1}$

(日) (日) (日) (日) (日) (日) (日)

Outline

Regular Optimal Control and Riccati equations

- 2 Singular Optimal Control and Lur'e equations
- 3 Solvability and Solution of Lur'e equations
- Conclusions for the Optimal Control Problem
- 5 Further Results and Conclusion

Example 1:	
Minimize	$\mathcal{J}(u, x_0) = \frac{1}{2} \int_0^\infty \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}^* \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} dt$
subject to	$\dot{x}(t) = -u(t), x(0) = x_0.$

A D > 4 目 > 4 目 > 4 目 > 10 の (の)

Observations:

- If $x_0 \neq 0$, then for all $u : \mathbb{R}^+ \to \mathbb{C}$ holds $\mathcal{J}(u, x_0) > 0$.
- For $u_n = n \cdot \chi_{[0,n^{-1}]} x_0$ holds $\lim_{n \to \infty} \mathcal{J}(u_n, x_0) = 0$.

Conclusions:

- The optimal value is given by $\mathcal{J}(x_0) = 0$ for all $x_0 \in \mathbb{C}$.
- There exists no minimizer $\hat{u} : \mathbb{R}^+ \to \mathbb{C}$.

Example 2:	
Minimize	$\mathcal{J}(u, x_0) = \frac{1}{2} \int_0^\infty \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}^* \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} dt$
subject to	$\dot{x}(t) = Ax(t) + Bu(t), x(0) = x_0.$

(日)

Observations:

• For all $u : \mathbb{R}^+ \to \mathbb{C}^m$ holds $\mathcal{J}(u, x_0) = 0$.

Conclusions:

- The optimal value is given by $\mathcal{J}(x_0) = 0$ for all $x_0 \in \mathbb{C}^n$.
- Every control $\hat{u} : \mathbb{R}^+ \to \mathbb{C}^m$ is a minimizer.

Linear-quadratic optimal control problem

Minimize
$$\mathcal{J}(u, x_0) = \frac{1}{2} \int_0^\infty \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}^* \begin{bmatrix} Q & S \\ S^* & R \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} dt$$
subject to $\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0.$

with (A, B) stabilizable.

Result: (Willems 1972)

The *optimal value* is given by $\mathcal{J}(x_0) = x_0^* X_+ x_0$, where X_+ is the *maximal solution* of the Lur'e equations

$$A^*X + XA + Q = K^*K,$$
$$XB + S = K^*L,$$
$$R = L^*L.$$

i.e., X_+ is a solution and all other solutions X fulfill $X_+ \ge X$.

Lur'e equations

$$A^*X + XA + Q = K^*K,$$
$$XB + S = K^*L,$$
$$R = L^*L.$$

Unknowns: $L \in \mathbb{C}^{m,m}$, $K \in \mathbb{C}^{m,n}$, $X \in \mathbb{C}^{n,n}$.

Observation:

If R is invertible, then K and L can be eliminated, such that

$$A^*X + XA + Q - (XB + S)R^{-1}(XB + S)^* = 0.$$
 (ARE)

◆□> < □> < □> < □> < □> < □</p>

Lur'e equations

$$A^*X + XA + Q = K^*K,$$
$$XB + S = K^*L,$$
$$R = L^*L.$$

Typical approach for singular *R* (Regularization):

Perturbed Lur'e equations with $\varepsilon > 0$ $A^* X_{\varepsilon} + X_{\varepsilon} A + Q = K_{\varepsilon}^* K_{\varepsilon},$ $X_{\varepsilon} B + S = K_{\varepsilon}^* L_{\varepsilon}, \quad \rightsquigarrow \text{Reformulation as ARE is possible.}$ $R + \varepsilon I = L_{\varepsilon}^* L_{\varepsilon}.$

Result: (Trentelman, 1987)

The maximal solutions $(X_{\varepsilon})_+$ of the perturbed Lur'e equations fulfill

$$\lim_{\varepsilon\to 0} (X_{\varepsilon})_+ = X_+.$$

) 9 ()

Outline

Regular Optimal Control and Riccati equations

- 2 Singular Optimal Control and Lur'e equations
- Solvability and Solution of Lur'e equations
- 4 Conclusions for the Optimal Control Problem
- 5 Further Results and Conclusion

Lur'e equations $A^*X + XA + Q = K^*K,$ $XB + S = K^*L,$ $R = L^*L.$ with (A, B) stabilizable.

Necessary characterizations for solvability (Willems, 1972):

- For all $u \in L_2^{loc}(\mathbb{R}^+)$ holds $\mathcal{J}(u, 0) \ge 0$.
- The Popov function

$$\mathcal{P}(i\omega) = \begin{bmatrix} (i\omega I - A)^{-1}B\\ I \end{bmatrix}^* \begin{bmatrix} Q & S\\ S^* & R \end{bmatrix} \begin{bmatrix} (i\omega I - A)^{-1}B\\ I \end{bmatrix}^*$$

is positive semidefinite ($\mathcal{P}(i\omega) \geq 0$) for all $\omega \in \mathbb{R}$.

Lur'e equations

$$A^*X + XA + Q = K^*K,$$
$$XB + S = K^*L,$$
$$R = L^*L.$$

with (A, B) stabilizable.

Sufficient characterizations for solvability (Clements, Anderson, Laub, Matson, 1997):

• The Popov function fulfills $\mathcal{P}(i\omega) \ge 0$ for all $\omega \in \mathbb{R}$ and there exists a $\gamma \in \mathbb{R}$ such that $\mathcal{P}(i\gamma) > 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• (A, B) is controllable and $\mathcal{P}(i\omega) \geq 0$ for all $\omega \in \mathbb{R}$.

Lur'e equations

$$X^*X + XA + Q = K^*K,$$

 $XB + S = K^*L,$
 $R = L^*L.$

with (A, B) stabilizable.

Aim: Generalization of the Hamiltonian eigenspace correspondence to Lur'e equations.

Consider the matrix pencil

$$\lambda \mathcal{E} - \mathcal{A} = \begin{bmatrix} Q & \lambda I + A^* & S \\ -\lambda I + A & 0 & B \\ S^* & B^* & R \end{bmatrix}, \qquad \mathcal{E}, \mathcal{A} \in \mathbb{C}^{2n+m,2n+m}$$

The pencil $\lambda \mathcal{E} - \mathcal{A}$ is *even*, that is $\mathcal{E} = -\mathcal{E}^*$, $\mathcal{A} = \mathcal{A}^*$.

Basics of matrix pencils

$$\lambda \mathcal{E} - \mathcal{A}, \qquad \mathcal{E}, \mathcal{A} \in \mathbb{C}^{N,N}.$$

Definition

- λε − A is called *regular* if there exists some s ∈ C such that det(sε − A) ≠ 0.
- A subspace im X_L ⊂ C^N (with X_L ∈ C^{N,k} full column rank) is called *deflating subspace* there exist matrices Y_L ∈ C^{n,k}, E_L, A_L ∈ C^{k,k} such that for all s ∈ C holds

$$Y_{\mathcal{L}}(sE_{\mathcal{L}}-A_{\mathcal{L}})=(s\mathcal{E}-\mathcal{A})X_{\mathcal{L}}.$$

(日) (日) (日) (日) (日) (日) (日)

For an even matrix pencil there exists a $W \in Gl_N(\mathbb{C})$ such that

$$W^*(\lambda E - A)W = diag(\mathcal{B}_1(\lambda), \dots, \mathcal{B}_k(\lambda))$$

where the pencils $\mathcal{B}_{i}(\lambda)$ are one of the following type:

For an even matrix pencil there exists a $W \in Gl_N(\mathbb{C})$ such that

$$W^*(\lambda E - A)W = diag(\mathcal{B}_1(\lambda), \dots, \mathcal{B}_k(\lambda))$$

where the pencils $\mathcal{B}_{i}(\lambda)$ are one of the following type:

For an even matrix pencil there exists a $W \in Gl_N(\mathbb{C})$ such that

$$W^*(\lambda E - A)W = diag(\mathcal{B}_1(\lambda), \dots, \mathcal{B}_k(\lambda))$$

where the pencils $\mathcal{B}_i(\lambda)$ are one of the following type:

Type 2: Imaginary eigenvalues:

ĸ

with $a \in \mathbb{R}$ and

• $\varepsilon_j = 1$ (positive signature), or

•
$$\varepsilon_j = -1$$
 (negative signature).

For an even matrix pencil there exists a $W \in Gl_N(\mathbb{C})$ such that

$$W^*(\lambda E - A)W = diag(\mathcal{B}_1(\lambda), \dots, \mathcal{B}_k(\lambda))$$

where the pencils $\mathcal{B}_i(\lambda)$ are one of the following type:

Type 3: Infinite eigenvalues:

$$\mathcal{B}_{j}(\lambda) = arepsilon_{j} \left[egin{array}{ccc} & 1 \ & \ddots & i\lambda \ & \ddots & \ddots & \ 1 & i\lambda & \end{array}
ight]$$

with

• $\varepsilon_j = 1$ (positive signature), or

•
$$\varepsilon_i = -1$$
 (negative signature).

For an even matrix pencil there exists a $W \in Gl_N(\mathbb{C})$ such that

$$W^*(\lambda E - A)W = diag(\mathcal{B}_1(\lambda), \ldots, \mathcal{B}_k(\lambda))$$

where the pencils $\mathcal{B}_i(\lambda)$ are one of the following type:

Let

- (i) (A, B) controllable, or
- (ii) (A, B) stabilizable and the associated even matrix pencil be regular.

Then a maximal solution X_+ exists if and only if the even Kronecker form of the associated even matrix pencil has the following properties:

- All blocks corresponding to the infinite eigenvalues have odd size and negative signature.
- All blocks corresponding to the imaginary eigenvalues have even size and positive signature.

Let

- (i) (A, B) controllable, or
- (ii) (A, B) stabilizable and the associated even matrix pencil be regular.

Then a maximal solution X_+ exists if and only if the even Kronecker form of the associated even matrix pencil has the following properties:

- All blocks corresponding to the infinite eigenvalues have odd size and negative signature.
- All blocks corresponding to the imaginary eigenvalues have even size and positive signature.

Let

- (i) (A, B) controllable, or
- (ii) (A, B) stabilizable and the associated even matrix pencil be regular.

Then a maximal solution X_+ exists if and only if the even Kronecker form of the associated even matrix pencil has the following properties:

- All blocks corresponding to the infinite eigenvalues have odd size and negative signature.
- All blocks corresponding to the imaginary eigenvalues have even size.

Let

- (i) (A, B) controllable, or
- (ii) (A, B) stabilizable and the associated even matrix pencil be regular.

Then a maximal solution X_+ exists if and only if the even Kronecker form of the associated even matrix pencil has the following properties:

- All blocks corresponding to the infinite eigenvalues have odd size and negative signature.
- All blocks corresponding to the imaginary eigenvalues have even size.

Technique for the proof:

Comparison of inertia of the blocks $\mathcal{B}_i(i\omega)$ in the even Kronecker form of $i\omega \mathcal{E} - \mathcal{A}$ and the fact that there exists some matrix $K(i\omega) \in \operatorname{Gl}_{2n+m}(\mathbb{C})$ such that

$$K^{*}(i\omega)(i\omega\mathcal{E}-\mathcal{A})K(i\omega) = \begin{bmatrix} 0 & -i\omega I + A^{*} & 0 \\ -i\omega I + A & 0 & 0 \\ 0 & 0 & \mathcal{P}(i\omega) \end{bmatrix}$$

Let there exist a deflating subspace im[X_1^T , X_2^T , X_3^T]^T $\subset \mathbb{C}^{2n+m}$ of the associated even matrix pencil with

 $\operatorname{rank}(X_1) = n, \qquad (\operatorname{im}[X_1^T, X_2^T]^T \text{ is } 1\text{-regular}),$ $X_2^*X_1 = X_1^*X_2 \qquad (\operatorname{im}[X_1^T, X_2^T]^T \text{ is Lagrangian}).$

Then a solution of the Lur'e equation is given by $X = X_2 X_1^-$.

Converse direction also holds due to

$$\begin{bmatrix} Q & \lambda I + A^* & S \\ -\lambda I + A & 0 & B \\ S^* & B^* & R \end{bmatrix} \begin{bmatrix} I & 0 \\ X & 0 \\ 0 & I \end{bmatrix} = \begin{bmatrix} X & K^* \\ -I & 0 \\ 0 & L^* \end{bmatrix} \begin{bmatrix} \lambda I - A & -B \\ K & L \end{bmatrix}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let there exist a deflating subspace im[X_1^T , X_2^T , X_3^T]^T $\subset \mathbb{C}^{2n+m}$ of the associated even matrix pencil with

 $\operatorname{rank}(X_1) = n, \qquad (\operatorname{im}[X_1^T, X_2^T]^T \text{ is } 1\text{-regular}),$ $X_2^*X_1 = X_1^*X_2 \qquad (\operatorname{im}[X_1^T, X_2^T]^T \text{ is Lagrangian}).$

Then a solution of the Lur'e equation is given by $X = X_2 X_1^-$.

Converse direction also holds due to

$$\begin{bmatrix} Q & \lambda I + A^* & S \\ -\lambda I + A & 0 & B \\ S^* & B^* & R \end{bmatrix} \begin{bmatrix} I & 0 \\ X & 0 \\ 0 & I \end{bmatrix} = \begin{bmatrix} X & K^* \\ -I & 0 \\ 0 & L^* \end{bmatrix} \begin{bmatrix} \lambda I - A & -B \\ K & L \end{bmatrix}.$$

Now: Characterization of desired deflating subspaces via even Kronecker form:

Assume that an even Kronecker form of the associated even matrix pencil is given by

$$W^*(\lambda \mathcal{E} - \mathcal{A})W = \operatorname{diag}(\mathcal{B}_1(\lambda), \ldots, \mathcal{B}_k(\lambda)), \qquad W = [W_1, \ldots, W_k]$$

Then a deflating subspace $\mathcal{X} = \text{im}[X_1^T, X_2^T, X_3^T]^T \subset \mathbb{C}^{2n+m}$ has the property that $\text{im}[X_1^T, X_2^T]^T$ is 1-regular and Lagrangian if and only if

$$\mathcal{X} = \operatorname{im} \widetilde{W}_1 \oplus \cdots \oplus \operatorname{im} \widetilde{W}_k,$$

A D > 4 目 > 4 目 > 4 目 > 10 の (の)

where

Assume that an even Kronecker form of the associated even matrix pencil is given by

$$W^*(\lambda \mathcal{E} - \mathcal{A})W = \text{diag}(\mathcal{B}_1(\lambda), \dots, \mathcal{B}_k(\lambda)), \qquad W = [W_1, \dots, W_k]$$

Then a deflating subspace $\mathcal{X} = \text{im}[X_1^T, X_2^T, X_3^T]^T \subset \mathbb{C}^{2n+m}$ has the property that $\text{im}[X_1^T, X_2^T]^T$ is 1-regular and Lagrangian if and only if

$$\mathcal{X} = \operatorname{im} \widetilde{W}_1 \oplus \cdots \oplus \operatorname{im} \widetilde{W}_k,$$

where

W_j either contains the first or the second half of the columns of *W_j* if *B_j(λ)* is a block corresponding to non-imaginary eigenvalues.

(日) (日) (日) (日) (日) (日) (日)

Assume that an even Kronecker form of the associated even matrix pencil is given by

$$W^*(\lambda \mathcal{E} - \mathcal{A})W = \text{diag}(\mathcal{B}_1(\lambda), \dots, \mathcal{B}_k(\lambda)), \qquad W = [W_1, \dots, W_k]$$

Then a deflating subspace $\mathcal{X} = \text{im}[X_1^T, X_2^T, X_3^T]^T \subset \mathbb{C}^{2n+m}$ has the property that $\text{im}[X_1^T, X_2^T]^T$ is 1-regular and Lagrangian if and only if

$$\mathcal{X} = \operatorname{im} \widetilde{W}_1 \oplus \cdots \oplus \operatorname{im} \widetilde{W}_k,$$

where

...

W_j contains the second half of the columns of *W_j* if *B_j(λ)* is a block corresponding to imaginary eigenvalues.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Assume that an even Kronecker form of the associated even matrix pencil is given by

$$W^*(\lambda \mathcal{E} - \mathcal{A})W = \operatorname{diag}(\mathcal{B}_1(\lambda), \dots, \mathcal{B}_k(\lambda)), \qquad W = [W_1, \dots, W_k]$$

Then a deflating subspace $\mathcal{X} = \text{im}[X_1^T, X_2^T, X_3^T]^T \subset \mathbb{C}^{2n+m}$ has the property that $\text{im}[X_1^T, X_2^T]^T$ is 1-regular and Lagrangian if and only if

$$\mathcal{X} = \operatorname{im} \widetilde{W}_1 \oplus \cdots \oplus \operatorname{im} \widetilde{W}_k,$$

where

- ...
- o ...
- \widetilde{W}_j contains the columns $l, \ldots, 2l + 1$ of W_j if $\mathcal{B}_j(\lambda)$ is a block of size 2l + 1 corresponding to infinite eigenvalues.

(日) (日) (日) (日) (日) (日) (日)

Assume that an even Kronecker form of the associated even matrix pencil is given by

$$W^*(\lambda \mathcal{E} - \mathcal{A})W = \text{diag}(\mathcal{B}_1(\lambda), \dots, \mathcal{B}_k(\lambda)), \qquad W = [W_1, \dots, W_k]$$

Then a deflating subspace $\mathcal{X} = \text{im}[X_1^T, X_2^T, X_3^T]^T \subset \mathbb{C}^{2n+m}$ has the property that $\text{im}[X_1^T, X_2^T]^T$ is 1-regular and Lagrangian if and only if

$$\mathcal{X} = \operatorname{im} \widetilde{W}_1 \oplus \cdots \oplus \operatorname{im} \widetilde{W}_k,$$

where

Assume that an even Kronecker form of the associated even matrix pencil is given by

$$W^*(\lambda \mathcal{E} - \mathcal{A})W = \text{diag}(\mathcal{B}_1(\lambda), \dots, \mathcal{B}_k(\lambda)), \qquad W = [W_1, \dots, W_k]$$

Then a deflating subspace $\mathcal{X} = \operatorname{im}[X_1^T, X_2^T, X_3^T]^T \subset \mathbb{C}^{2n+m}$ has the property that $\operatorname{im}[X_1^T, X_2^T]^T$ is 1-regular and Lagrangian if and only if

$$\mathcal{X} = \operatorname{im} \widetilde{W}_1 \oplus \cdots \oplus \operatorname{im} \widetilde{W}_k,$$

where

If, particularly the second half of the columns of W_j for the blocks $\mathcal{B}_j(\lambda)$ corresponding to non-imaginary eigenvalues is chosen, then $X_+ = X_1 X_2^-$.

Outline

- Regular Optimal Control and Riccati equations
- 2 Singular Optimal Control and Lur'e equations
- 3 Solvability and Solution of Lur'e equations
- 4 Conclusions for the Optimal Control Problem
- 5 Further Results and Conclusion

Linear-quadratic optimal control problem		
Minimize	$\mathcal{J}(u, x_0) = \frac{1}{2} \int_0^\infty \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}^* \begin{bmatrix} Q & S \\ S^* & R \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} dt$	
subject to	$\dot{x}(t) = Ax(t) + Bu(t), x(0) = x_0.$	

and

$$A^*X_+ + X_+A + Q = K_+^*K_+,$$

 $X_+B + S = K_+^*L_+,$
 $R = L_+^*L_+,$

where X_+ is the maximal solution.

Theorem (Willems, 1972)

The optimal control in the distributional sense is given by \hat{u} satisfying

$$\dot{x}(t) = Ax(t) + B\hat{u}(t) + \delta_0 x_0$$
$$0 = K_+ x(t) + L_+ \hat{u}(t).$$

Conclusions from deflating subspace construction of an optimal control:

Corollary (R.)

Let the even Kronecker form of the associated even pencil be given by

 $W^*(\lambda \mathcal{E} - \mathcal{A})W = \operatorname{diag}(\mathcal{B}_1(\lambda), \dots, \mathcal{B}_k(\lambda)), \qquad W = [W_1, \dots, W_k]$

and let 2I + 1 be the size of the largest block $B_j(\lambda)$ corresponding to the infinite eigenvalues. Then an optimal control satisfies

$$\hat{u} \in \operatorname{span}\{\delta_0, \ldots, \delta_0^{(l-1)}\} \oplus L_2^{loc}(\mathbb{R}^+).$$

Moreover,

- an optimal control is unique if and only if no singular block is contained,
- there exists an optimal control with û ∈ span{δ₀,...,δ₀^(l-1)} ⊕ L₂(ℝ⁺) if and only if no block corresponding to imaginary eigenvalues is contained.

(日) (日) (日) (日) (日) (日) (日)

Outline

Regular Optimal Control and Riccati equations

- 2 Singular Optimal Control and Lur'e equations
- 3 Solvability and Solution of Lur'e equations
- Conclusions for the Optimal Control Problem
- 5 Further Results and Conclusion

Further results:

Existence of minimal solutions, if (A, B) is anti-stabilizable, i.e.,
 rank[A + sI, B] = n ∀s ∈ C⁺.

• Existence of solutions, if (A, B) is *sign-controllable*, i.e., max{rank[A - sI, B], rank[$A + \overline{s}I$, B]} = $n \quad \forall s \in \overline{\mathbb{C}^+}$.

A D > 4 目 > 4 目 > 4 目 > 10 の (の)

Conclusion

- Regular LQ optimal control problems lead to Riccati equations
 - Solution via invariant subspaces of Hamiltonian matrices
- Singular LQ optimal control problems lead to Lur'e equations
 - Solution via deflating subspaces of even matrix pencils
 - Conclusions for the uniqueness and structure of the optimal control

(日) (日) (日) (日) (日) (日) (日)