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Linear-quadratic optimal control problem

Minimize J (u, x0) =
1
2

Z ∞
0

�
x(t)
u(t)

�∗ �Q S
S∗ R

� �
x(t)
u(t)

�
dt

subject to ẋ(t) = Ax(t) + Bu(t), x(0) = x0.

with (A,B) stabilizable, i.e. rank[A− sI , B ] = n ∀s ∈ C+.

Definition

û : C+ → Cm is called minimizer if

J (û, x0) = inf{J (u, x0) : u ∈ Lloc
2 (R+)}.

The optimal value is

J (x0) = inf{J (u, x0) : u ∈ Lloc
2 (R+)}.
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Usual assumption: R ∈ Cm,m is invertible.

Equivalent criteria for the existence of a minimizer û ∈ Lloc
2 (R+):

The algebraic Riccati equation (ARE)

A∗X + XA + Q − (S + XB)R−1(S + XB)∗ = 0

has at least one solution X = X∗ ∈ Cn,n.

The ARE has a maximal solution X+ = X∗+ ∈ Cn,n, i.e., for all other
solutions X holds X+ ≥ X . In this case holds

J (x0) = x∗0 X+x0, and û(t) = −R−1(S + X+B)∗eA−BR−1(S+X+B)∗tx0.
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Further equivalent criteria for the existence of a minimizer û ∈ Lloc
2 (R+):

For all u ∈ Lloc
2 (R+) holds J (u, 0) ≥ 0.

The Popov function

P(iω) =
�
(iωI − A)−1B

I

�∗ �Q S
S∗ R

� �
(iωI − A)−1B

I

�
is positive semidefinite (P(iω) ≥ 0) for all ω ∈ R.

The Jordan form of the Hamiltonian matrix

H =

�
A 0
−Q −A∗

�
−
�

B
S

�
R−1 �S∗ −B∗

�
has the form

HT = T

"
J− 0 0
0 −J− 0
0 0 Ji

#
,

where

σ(J−) ⊂ C−,
σ(Ji) ⊂ iR and all Jordan blocks of Ji have even size.
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Solution of ARE can be obtained via invariant subspaces of the Hamiltonian
matrix H.

X is a solution of the ARE if and only if X = X2X−1
1 , where�

X1

X2

� eA = H
�
X1

X2

�
, (im[X T

1 , X T
2 ]T is H-invariant),

X1 ∈ Gln(C), (im[X T
1 , X T

2 ]T is 1-regular),

X∗2 X1 = X∗1 X2 (im[X T
1 , X T

2 ]T is Lagrangian).
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Characterization of H-invariant Lagrangian subspaces:

Let X = im[X T
1 , X T

2 ]T ⊂ C2n be an invariant subspace of the Hamiltonian
matrix H, i.e. �

X1

X2

� eA = H
�
X1

X2

�
.

Then X is Lagrangian if eA has the following properties:

For all λ, µ ∈ σ(eA)\iR holds λ+ µ 6= 0, and

The Jordan blocks of eA corresponding to the eigenvalues on iR have
half the size as the corresponding Jordan blocks of H.

If, additionally σ(eA) ⊂ C+, then X+ = X2X−1
1
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Example 1:

Minimize J (u, x0) =
1
2

Z ∞
0

�
x(t)
u(t)

�∗ �1 0
0 0

� �
x(t)
u(t)

�
dt

subject to ẋ(t) = −u(t), x(0) = x0.

Observations:

If x0 6= 0, then for all u : R+ → C holds J (u, x0) > 0.

For un = n · χ[0,n−1]x0 holds limn→∞ J (un, x0) = 0.

Conclusions:

The optimal value is given by J (x0) = 0 for all x0 ∈ C.

There exists no minimizer û : R+ → C.



Regular LQ & Riccati Singular LQ & Lur’e Lur’e equations: Solvability and Solution Consequences for LQ Conclusion

Example 2:

Minimize J (u, x0) =
1
2

Z ∞
0

�
x(t)
u(t)

�∗ �0 0
0 0

� �
x(t)
u(t)

�
dt

subject to ẋ(t) = Ax(t) + Bu(t), x(0) = x0.

Observations:

For all u : R+ → Cm holds J (u, x0) = 0.

Conclusions:

The optimal value is given by J (x0) = 0 for all x0 ∈ Cn.

Every control û : R+ → Cm is a minimizer.



Regular LQ & Riccati Singular LQ & Lur’e Lur’e equations: Solvability and Solution Consequences for LQ Conclusion

Linear-quadratic optimal control problem

Minimize J (u, x0) =
1
2

Z ∞
0

�
x(t)
u(t)

�∗ �Q S
S∗ R

� �
x(t)
u(t)

�
dt

subject to ẋ(t) = Ax(t) + Bu(t), x(0) = x0.

with (A,B) stabilizable.

Result: (Willems 1972)

The optimal value is given by J (x0) = x∗0 X+x0, where X+ is the maximal
solution of the Lur’e equations

A∗X + XA + Q = K ∗K ,

XB + S = K ∗L,

R = L∗L.

i.e., X+ is a solution and all other solutions X fulfill X+ ≥ X .
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Lur’e equations

A∗X + XA + Q = K ∗K ,

XB + S = K ∗L,

R = L∗L.

Unknowns: L ∈ Cm,m, K ∈ Cm,n, X ∈ Cn,n.

Observation:

If R is invertible, then K and L can be eliminated, such that

A∗X + XA + Q − (XB + S)R−1(XB + S)∗ = 0. (ARE)
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Lur’e equations

A∗X + XA + Q = K ∗K ,

XB + S = K ∗L,

R = L∗L.

Typical approach for singular R (Regularization):

Perturbed Lur’e equations with ε > 0

A∗Xε + XεA + Q = K ∗ε Kε,

XεB + S = K ∗ε Lε,

R + εI = L∗εLε.

 Reformulation as ARE is possible.

Result: (Trentelman, 1987)

The maximal solutions (Xε)+ of the perturbed Lur’e equations fulfill

lim
ε→0

(Xε)+ = X+.
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Lur’e equations

A∗X + XA + Q = K ∗K ,

XB + S = K ∗L,

R = L∗L.

with (A,B) stabilizable.

Necessary characterizations for solvability (Willems, 1972):

For all u ∈ Lloc
2 (R+) holds J (u, 0) ≥ 0.

The Popov function

P(iω) =
�
(iωI − A)−1B

I

�∗ �Q S
S∗ R

� �
(iωI − A)−1B

I

�
is positive semidefinite (P(iω) ≥ 0) for all ω ∈ R.
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Lur’e equations

A∗X + XA + Q = K ∗K ,

XB + S = K ∗L,

R = L∗L.

with (A,B) stabilizable.

Sufficient characterizations for solvability (Clements, Anderson, Laub,
Matson, 1997):

The Popov function fulfills P(iω) ≥ 0 for all ω ∈ R and there exists a
γ ∈ R such that P(iγ) > 0.

(A,B) is controllable and P(iω) ≥ 0 for all ω ∈ R.
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Lur’e equations

A∗X + XA + Q = K ∗K ,

XB + S = K ∗L,

R = L∗L.

with (A,B) stabilizable.

Aim: Generalization of the Hamiltonian eigenspace correspondence to Lur’e
equations.

Consider the matrix pencil

λE − A =

"
Q λI + A∗ S

−λI + A 0 B
S∗ B∗ R

#
, E ,A ∈ C2n+m,2n+m.

The pencil λE − A is even, that is E = −E∗, A = A∗.
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Basics of matrix pencils

λE − A, E ,A ∈ CN,N .

Definition

λE − A is called regular if there exists some s ∈ C such that
det(sE − A) 6= 0.

A subspace im XL ⊂ CN (with XL ∈ CN,k full column rank) is called
deflating subspace there exist matrices YL ∈ Cn,k , EL,AL ∈ Ck,k such
that for all s ∈ C holds

YL(sEL − AL) = (sE − A)XL.
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Even Kronecker Form (Thompson 1976)

For an even matrix pencil there exists a W ∈ GlN(C) such that

W ∗(λE − A)W = diag(B1(λ), . . . ,Bk (λ))

where the pencils Bj(λ) are one of the following type:
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Even Kronecker Form (Thompson 1976)

For an even matrix pencil there exists a W ∈ GlN(C) such that

W ∗(λE − A)W = diag(B1(λ), . . . ,Bk (λ))

where the pencils Bj(λ) are one of the following type:

Type 1: Non-imaginary eigenvalues:

Bj (λ) =

266666666664

λ− a 1

. . .
. . .

. . . 1
λ− a

−λ− a

1
. . .

. . .
. . .
1 −λ− a

377777777775
with a ∈ C−.
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Even Kronecker Form (Thompson 1976)

For an even matrix pencil there exists a W ∈ GlN(C) such that

W ∗(λE − A)W = diag(B1(λ), . . . ,Bk (λ))

where the pencils Bj(λ) are one of the following type:

Type 2: Imaginary eigenvalues:

Bj(λ) = εj

26664
iλ+ a

. .
.

1

. .
.

. .
.

iλ+ a 1

37775
with a ∈ R and

εj = 1 (positive signature), or

εj = −1 (negative signature).
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Even Kronecker Form (Thompson 1976)

For an even matrix pencil there exists a W ∈ GlN(C) such that

W ∗(λE − A)W = diag(B1(λ), . . . ,Bk (λ))

where the pencils Bj(λ) are one of the following type:

Type 3: Infinite eigenvalues:

Bj(λ) = εj

26664
1

. .
.

iλ

. .
.

. .
.

1 iλ

37775
with

εj = 1 (positive signature), or

εj = −1 (negative signature).
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Even Kronecker Form (Thompson 1976)

For an even matrix pencil there exists a W ∈ GlN(C) such that

W ∗(λE − A)W = diag(B1(λ), . . . ,Bk (λ))

where the pencils Bj(λ) are one of the following type:

Type 4: Singular block:

Bj(λ) =

266666666664

λ 1
. . .

. . .
λ 1

−λ

1
. . .
. . . −λ

1

377777777775
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Theorem: (R., slight extension of results of Clements, Glover 89)

Let

(i) (A,B) controllable, or

(ii) (A,B) stabilizable and the associated even matrix pencil be regular.

Then a maximal solution X+ exists if and only if the even Kronecker form of
the associated even matrix pencil has the following properties:

All blocks corresponding to the infinite eigenvalues have odd size and
negative signature.

All blocks corresponding to the imaginary eigenvalues have even size
and positive signature.
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Theorem: (R., slight extension of results of Clements, Glover 89)

Let

(i) (A,B) controllable, or

(ii) (A,B) stabilizable and the associated even matrix pencil be regular.

Then a maximal solution X+ exists if and only if the even Kronecker form of
the associated even matrix pencil has the following properties:

All blocks corresponding to the infinite eigenvalues have odd size and
negative signature.

All blocks corresponding to the imaginary eigenvalues have even size
and positive signature.
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Theorem: (R., slight extension of results of Clements, Glover 89)

Let

(i) (A,B) controllable, or

(ii) (A,B) stabilizable and the associated even matrix pencil be regular.

Then a maximal solution X+ exists if and only if the even Kronecker form of
the associated even matrix pencil has the following properties:

All blocks corresponding to the infinite eigenvalues have odd size and
negative signature.

All blocks corresponding to the imaginary eigenvalues have even size.
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Theorem: (R., slight extension of results of Clements, Glover 89)

Let

(i) (A,B) controllable, or

(ii) (A,B) stabilizable and the associated even matrix pencil be regular.

Then a maximal solution X+ exists if and only if the even Kronecker form of
the associated even matrix pencil has the following properties:

All blocks corresponding to the infinite eigenvalues have odd size and
negative signature.

All blocks corresponding to the imaginary eigenvalues have even size.

Technique for the proof:

Comparison of inertia of the blocks Bi(iω) in the even Kronecker form of
iωE − A and the fact that there exists some matrix K (iω) ∈ Gl2n+m(C) such
that

K ∗(iω)(iωE − A)K (iω) =

"
0 −iωI + A∗ 0

−iωI + A 0 0
0 0 P(iω)

#
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Theorem: (R.)

Let there exist a deflating subspace im[X T
1 , X T

2 , X T
3 ]T ⊂ C2n+m of the

associated even matrix pencil with

rank(X1) = n, (im[X T
1 , X T

2 ]T is 1-regular),

X∗2 X1 = X∗1 X2 (im[X T
1 , X T

2 ]T is Lagrangian).

Then a solution of the Lur’e equation is given by X = X2X−1 .

Converse direction also holds due to"
Q λI + A∗ S

−λI + A 0 B
S∗ B∗ R

#"
I 0
X 0
0 I

#
=

"
X K ∗

−I 0
0 L∗

#�
λI − A −B

K L

�
.
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Theorem: (R.)

Let there exist a deflating subspace im[X T
1 , X T

2 , X T
3 ]T ⊂ C2n+m of the

associated even matrix pencil with

rank(X1) = n, (im[X T
1 , X T

2 ]T is 1-regular),

X∗2 X1 = X∗1 X2 (im[X T
1 , X T

2 ]T is Lagrangian).

Then a solution of the Lur’e equation is given by X = X2X−1 .

Converse direction also holds due to"
Q λI + A∗ S

−λI + A 0 B
S∗ B∗ R

#"
I 0
X 0
0 I

#
=

"
X K ∗

−I 0
0 L∗

#�
λI − A −B

K L

�
.

Now: Characterization of desired deflating subspaces via even Kronecker
form:
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Theorem (R.)

Assume that an even Kronecker form of the associated even matrix pencil is
given by

W ∗(λE − A)W = diag(B1(λ), . . . ,Bk (λ)), W = [W1 , . . . , Wk ]

Then a deflating subspace X = im[X T
1 , X T

2 , X T
3 ]T ⊂ C2n+m has the property

that im[X T
1 , X T

2 ]T is 1-regular and Lagrangian if and only if

X = im ÜW1 ⊕ · · · ⊕ im ÜWk ,

where



Regular LQ & Riccati Singular LQ & Lur’e Lur’e equations: Solvability and Solution Consequences for LQ Conclusion

Theorem (R.)

Assume that an even Kronecker form of the associated even matrix pencil is
given by

W ∗(λE − A)W = diag(B1(λ), . . . ,Bk (λ)), W = [W1 , . . . , Wk ]

Then a deflating subspace X = im[X T
1 , X T

2 , X T
3 ]T ⊂ C2n+m has the property

that im[X T
1 , X T

2 ]T is 1-regular and Lagrangian if and only if

X = im ÜW1 ⊕ · · · ⊕ im ÜWk ,

whereÜWj either contains the first or the second half of the columns of Wj if
Bj(λ) is a block corresponding to non-imaginary eigenvalues.
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Theorem (R.)

Assume that an even Kronecker form of the associated even matrix pencil is
given by

W ∗(λE − A)W = diag(B1(λ), . . . ,Bk (λ)), W = [W1 , . . . , Wk ]

Then a deflating subspace X = im[X T
1 , X T

2 , X T
3 ]T ⊂ C2n+m has the property

that im[X T
1 , X T

2 ]T is 1-regular and Lagrangian if and only if

X = im ÜW1 ⊕ · · · ⊕ im ÜWk ,

where

...ÜWj contains the second half of the columns of Wj if Bj(λ) is a block
corresponding to imaginary eigenvalues.
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Theorem (R.)

Assume that an even Kronecker form of the associated even matrix pencil is
given by

W ∗(λE − A)W = diag(B1(λ), . . . ,Bk (λ)), W = [W1 , . . . , Wk ]

Then a deflating subspace X = im[X T
1 , X T

2 , X T
3 ]T ⊂ C2n+m has the property

that im[X T
1 , X T

2 ]T is 1-regular and Lagrangian if and only if

X = im ÜW1 ⊕ · · · ⊕ im ÜWk ,

where

...

...ÜWj contains the columns l , . . . , 2l + 1 of Wj if Bj(λ) is a block of size
2l + 1 corresponding to infinite eigenvalues.
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Theorem (R.)

Assume that an even Kronecker form of the associated even matrix pencil is
given by

W ∗(λE − A)W = diag(B1(λ), . . . ,Bk (λ)), W = [W1 , . . . , Wk ]

Then a deflating subspace X = im[X T
1 , X T

2 , X T
3 ]T ⊂ C2n+m has the property

that im[X T
1 , X T

2 ]T is 1-regular and Lagrangian if and only if

X = im ÜW1 ⊕ · · · ⊕ im ÜWk ,

where

...

...

...ÜWj contains the columns l , . . . , 2l + 1 of Wj if Bj(λ) is a singular block of
size 2l + 1.
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Theorem (R.)

Assume that an even Kronecker form of the associated even matrix pencil is
given by

W ∗(λE − A)W = diag(B1(λ), . . . ,Bk (λ)), W = [W1 , . . . , Wk ]

Then a deflating subspace X = im[X T
1 , X T

2 , X T
3 ]T ⊂ C2n+m has the property

that im[X T
1 , X T

2 ]T is 1-regular and Lagrangian if and only if

X = im ÜW1 ⊕ · · · ⊕ im ÜWk ,

where

...

...

...

...

If, particularly the second half of the columns of Wj for the blocks Bj(λ)
corresponding to non-imaginary eigenvalues is chosen, then X+ = X1X−2 .
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Linear-quadratic optimal control problem

Minimize J (u, x0) =
1
2

Z ∞
0

�
x(t)
u(t)

�∗ �Q S
S∗ R

� �
x(t)
u(t)

�
dt

subject to ẋ(t) = Ax(t) + Bu(t), x(0) = x0.

and
A∗X+ + X+A + Q = K ∗+K+,

X+B + S = K ∗+L+,

R = L∗+L+,

where X+ is the maximal solution.

Theorem (Willems, 1972)

The optimal control in the distributional sense is given by û satisfying

ẋ(t) = Ax(t) + Bû(t) + δ0x0,

0 = K+x(t) + L+û(t).
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Conclusions from deflating subspace construction of an optimal control:

Corollary (R.)

Let the even Kronecker form of the associated even pencil be given by

W ∗(λE − A)W = diag(B1(λ), . . . ,Bk (λ)), W = [W1 , . . . , Wk ]

and let 2l + 1 be the size of the largest block Bj(λ) corresponding to the
infinite eigenvalues. Then an optimal control satisfies

û ∈ span{δ0, . . . , δ
(l−1)
0 } ⊕ Lloc

2 (R+).

Moreover,

an optimal control is unique if and only if no singular block is contained,

there exists an optimal control with û ∈ span{δ0, . . . , δ
(l−1)
0 } ⊕ L2(R+) if

and only if no block corresponding to imaginary eigenvalues is
contained.
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Further results:

Existence of minimal solutions, if (A,B) is anti-stabilizable,
i.e.,

rank[A + sI , B ] = n ∀s ∈ C+.

Existence of solutions, if (A,B) is sign-controllable, i.e.,

max{rank[A− sI , B ], rank[A + sI , B ]} = n ∀s ∈ C+.
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Conclusion

Regular LQ optimal control problems lead to Riccati
equations

Solution via invariant subspaces of Hamiltonian matrices

Singular LQ optimal control problems lead to Lur’e
equations

Solution via deflating subspaces of even matrix pencils
Conclusions for the uniqueness and structure of the optimal
control
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