Self-adjoint Differential-Algebraic and Difference Operators and their Application

Lena Scholz
(joint work with Volker Mehrmann)

Institut für Mathematik
Technische Universität Berlin

BIRS Workshop on Control and Optimization with
Differential-Algebraic Constraints
Banff, 25th-29th October 2010

Outline

(1) Motivation

(2) Optimal Control of DAE Systems

- Continuous-time Linear-Quadratic Optimal Control Problem
- Discrete-time Linear-Quadratic Optimal Control Problem
(3) Linear Self-adjoint Operators
- Self-adjoint Differential-Algebraic Operators
- Self-adjoint Difference Operators

4 Structure Preserving Discretization
5. Conclusion

Linear-Quadratic Optimal Control Problem

- Minimizing a quadratic cost functional

$$
\mathcal{J}(x, u)=\frac{1}{2} \int_{t_{0}}^{t_{f}}\left(x^{\top} W x+2 x^{\top} S u+u^{T} R u\right) d t
$$

with $W=W^{T} \in \mathbb{R}^{n, n}, S \in \mathbb{R}^{n, m}$ and $R=R^{T} \in \mathbb{R}^{m, m}$

- subject to the system dynamics given by the descriptor system

$$
E \dot{x}+A x+B u=0, \quad x\left(t_{0}\right)=0
$$

with $E, A \in \mathbb{R}^{n, n}, B \in \mathbb{R}^{n, m}$,

- $x(t) \in \mathbb{R}^{n}$ state vector, $u(t) \in \mathbb{R}^{m}$ control input vector.
- Goal: determine optimal controls $u \in \mathbb{U}=C^{0}\left(\mathbb{I}, \mathbb{R}^{m}\right)$.

Necessary conditions for optimality

Let u_{*} define the minimal solution and let x_{*} be the corresponding trajectory, i.e., the solution of

$$
E \dot{x}(t)+A x(t)+B u_{*}(t)=0, x\left(t_{0}\right)=0
$$

Then there exists a costate function $\zeta(t)$, such that $\left(x_{*}(t), \zeta(t), u_{*}(t)\right)$ satisfy the Euler-Lagrange boundary value problem:

$$
\left[\begin{array}{ccc}
0 & E & 0 \\
-E^{T} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{\zeta}(t) \\
\dot{x}(t) \\
\dot{u}(t)
\end{array}\right]+\left[\begin{array}{ccc}
0 & A & B \\
A^{T} & W & S \\
B^{T} & S^{T} & R
\end{array}\right]\left[\begin{array}{l}
\zeta(t) \\
x(t) \\
u(t)
\end{array}\right]=0
$$

with boundary conditions $x\left(t_{0}\right)=0$ and $E^{T} \zeta\left(t_{f}\right)=0$.

Even matrix pencils

The associated matrix pair

$$
(\mathcal{N}, \mathcal{M})=\left(\left[\begin{array}{ccc}
0 & E & 0 \\
-E^{T} & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & A & B \\
A^{T} & W & S \\
B^{T} & S^{T} & R
\end{array}\right]\right)
$$

is a so-called even matrix pair, i.e.,

$$
\mathcal{N}=-\mathcal{N}^{\top} \text { and } \mathcal{M}=\mathcal{M}^{\top}
$$

since the associated linear matrix polynomial

$$
\mathcal{P}(\lambda)=\lambda \mathcal{N}+\mathcal{M}
$$

is an even polynomial

$$
\mathcal{P}(\lambda)=\lambda \mathcal{N}+\mathcal{M}=(-\lambda)\left(-\mathcal{N}^{T}\right)-\mathcal{M}^{T}=\mathcal{P}^{T}(-\lambda)
$$

Reduced Euler Lagrange equations

If E and R are invertible then we obtain the equivalent reduced Euler-Lagrange system

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{\xi}
\end{array}\right]+\left[\begin{array}{cc}
F & G \\
H & -F^{T}
\end{array}\right]\left[\begin{array}{l}
x \\
\xi
\end{array}\right]=0, \quad x\left(t_{0}\right)=0, \xi\left(t_{f}\right)=0
$$

with $\xi=-E^{\top} \zeta$ and with the Hamiltonian matrix

$$
\left[\begin{array}{cc}
F & G \\
H & -F^{T}
\end{array}\right]=\left[\begin{array}{cc}
E^{-1}\left(A-B R^{-1} S^{T}\right) & E^{-1} B R^{-1} B^{T} E^{-T} \\
W-S R^{-1} S^{T} & -\left(E^{-1}\left(A-B R^{-1} S^{T}\right)\right)^{T}
\end{array}\right]
$$

In general:

- Even matrix pencils generalize Hamiltonian matrices.
- Even matrix pencils have Hamiltonian spectrum plus possibly some extra infinite eigenvalues or singular parts.

Discretization of Hamiltonian systems

- The discretization of an Hamiltonian system

$$
\dot{x}=\mathcal{H} x, \quad \text { with } \mathcal{H} J=(\mathcal{H} J)^{T}, \quad J=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right]
$$

with symplectic integration methods yields a discrete system

$$
x_{i+1}=\mathcal{S} x_{i}, \quad x_{i} \approx x\left(t_{i}\right) \quad \text { for some } t_{i} \in\left[t_{0}, t_{f}\right]
$$

with symplectic iteration matrix \mathcal{S}, i.e., $\mathcal{S}^{\top} \mathcal{J} \mathcal{S}=J$.

- Using symplectic methods the total energy of the system (i.e., the Hamiltonian function of the dynamical system) and the symplecticity of the flow is preserved.

Palindromic Matrix Polynomials

- A matrix polynomial

$$
P(\lambda)=\sum_{i=0}^{k} \lambda^{i} A_{i}
$$

of degree k, where $A_{i} \in \mathbb{R}^{n, n}$, is said to be palindromic if

$$
\lambda^{k} P^{T}(1 / \lambda)=P(\lambda)
$$

i.e., if

$$
A_{k-i}^{T}=A_{i} \quad \text { for } \quad i=0, \ldots, k
$$

- Palindromic matrix polynomials generalize symplectic matrices.
- The spectrum of a palindromic polynomial is symmetric w.r.t. the unit circle and if 0 is an eigenvalue then also $\infty=\frac{1}{0}$.

Example

- For an Hamiltonian system

$$
\dot{x}=\mathcal{H} x
$$

a discretization with the implicit midpoint rule yields

$$
\begin{aligned}
\left(I_{n}-\frac{h}{2} \mathcal{H}\right) x_{i+1} & =\left(I_{n}+\frac{h}{2} \mathcal{H}\right) x_{i} \\
x_{i+1} & =\left(I_{n}-\frac{h}{2} \mathcal{H}\right)^{-1}\left(I_{n}+\frac{h}{2} \mathcal{H}\right) x_{i}=\mathcal{S} x_{i}
\end{aligned}
$$

with symplectic matrix $\mathcal{S}=\left(\sigma I_{n}-\mathcal{H}\right)^{-1}\left(\sigma I_{n}+\mathcal{H}\right)$ for $\sigma=\frac{2}{h}$.

- Discretization of an even system

$$
\mathcal{N} \dot{x}+\mathcal{M} x=0, \quad \mathcal{N}=-\mathcal{N}^{T}, \mathcal{M}=\mathcal{M}^{T}
$$

with the implicit midpoint rule yields

$$
\left(\mathcal{N}+\frac{h}{2} \mathcal{M}\right) x_{i+1}+\left(-\mathcal{N}+\frac{h}{2} \mathcal{M}\right) x_{i}=0
$$

i.e., a palindromic difference equation.

Generalization of Hamiltonian/Symplectic Structures

continuous time

Outline

(1) Motivation

(2) Optimal Control of DAE Systems

- Continuous-time Linear-Quadratic Optimal Control Problem
- Discrete-time Linear-Quadratic Optimal Control Problem
(3) Linear Self-adjoint Operators
- Self-adjoint Differential-Algebraic Operators
- Self-adjoint Difference Operators

4 Structure Preserving Discretization
(5) Conclusion

Outline

(1) Motivation

(2) Optimal Control of DAE Systems

- Continuous-time Linear-Quadratic Optimal Control Problem
- Discrete-time Linear-Quadratic Optimal Control Problem
(3) Linear Self-adjoint Operators
- Self-adjoint Differential-Algebraic Operators
- Self-adjoint Difference Operators

4) Structure Preserving Discretization
(5) Conclusion

The linear-quadratic optimal control problem

- Minimize the quadratic cost functional

$$
\begin{gathered}
\mathcal{J}(x, u)=\frac{1}{2} \int_{t_{0}}^{t_{f}}\left(x^{T} W(t) x+x^{T} S(t) u+u^{T} R(t) u\right) d t \\
W=W^{T} \in C^{0}\left(\mathbb{I}, \mathbb{R}^{n, n}\right), S \in C^{0}\left(\mathbb{I}, \mathbb{R}^{n, m}\right), R=R^{T} \in C^{0}\left(\mathbb{I}, \mathbb{R}^{m, m}\right) .
\end{gathered}
$$

- subject to the constraint

$$
E(t) \dot{x}+A(t) x+B(t) u=f(t), \quad x\left(t_{0}\right)=0
$$

$E \in C^{1}\left(\mathbb{I}, \mathbb{R}^{n, n}\right), A \in C^{0}\left(\mathbb{I}, \mathbb{R}^{n, n}\right), B \in C^{0}\left(\mathbb{I}, \mathbb{R}^{n, m}\right), f \in C^{0}\left(\mathbb{I}, \mathbb{R}^{n}\right)$ sufficiently smooth.

Reduced problem

- For control problems of the form

$$
E(t) \dot{x}+A(t) x+B(t) u=f(t), \quad x\left(t_{0}\right)=0,
$$

- a behavior approach by introducing $z=\left[x^{T}, u^{T}\right]^{T}$ leads to

$$
\mathcal{E}(t) \dot{z}+\mathcal{A}(t) z=f(t),
$$

with $\mathcal{E}(t)=\left[\begin{array}{ll}E(t) & 0\end{array}\right], \mathcal{A}(t)=\left[\begin{array}{ll}A(t) & B(t)\end{array}\right]$

- Using derivative arrays we obtain a reduced system:

$$
\left[\begin{array}{c}
\hat{E}_{1}(t) \\
0 \\
0
\end{array}\right] \dot{z}+\left[\begin{array}{c}
\hat{A}_{1}(t) \\
\hat{A}_{2}(t) \\
0
\end{array}\right] z=\left[\begin{array}{c}
\hat{f}_{1}(t) \\
\hat{2}_{2}(t) \\
\hat{f}_{3}(t)
\end{array}\right], \begin{aligned}
& \hat{d} \text { differential equations } \\
& \hat{a} \text { algebraic equations } \\
& \hat{u}^{\prime} \text { consistency equations }
\end{aligned}
$$

We assume from now on that the system is regular and given in reduced form.

Necessary optimality condition

Theorem (Kunkel \& Mehrmann '08)

Consider the linear quadratic DAE optimal control problem with a consistent initial condition. Suppose that the system is strangenessfree as a behavior system. If $(x, u) \in \mathbb{X} \times \mathbb{U}$ is a solution to this optimal control problem, then there exists a Lagrange multiplier function $\zeta \in C_{E^{+E}}^{1}\left(\mathbb{I}, \mathbb{R}^{n}\right)$ with

$$
C_{E^{+} E}^{1}\left(\mathbb{I}, \mathbb{R}^{n}\right)=\left\{x \in C^{0}\left(\mathbb{I}, \mathbb{R}^{n}\right) \mid E^{+} E x \in C^{1}\left(\mathbb{I}, \mathbb{R}^{n}\right)\right\} .
$$

such that (x, ζ, u) satisfy the optimality boundary value problem

$$
\begin{aligned}
& E_{d t}^{d t}\left(E^{+} E x\right)+\left(A-E \frac{d}{d t}\left(E^{+} E\right)\right) x+B u=f,\left(E^{+} E x\right)\left(t_{0}\right)=0, \\
& -E^{\top} \frac{d}{d t}\left(E E^{+} \zeta\right)+W x+S u+\left(A-E E^{+} \dot{E}\right)^{T} \zeta=0,\left(E E^{+} \zeta\right)\left(t_{t}\right)=0, \\
& S^{T} x+R u+B^{\top} \zeta=0 .
\end{aligned}
$$

The differential-algebraic operator

- If the coefficients are sufficiently smooth then the differential-algebraic operator corresponding to the boundary value problem is given by

$$
\left[\begin{array}{ccc}
0 & E(t) & 0 \\
-E^{T}(t) & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \frac{d}{d t}+\left[\begin{array}{ccc}
0 & A(t) & B(t) \\
A^{T}(t)-\dot{E}^{T}(t) & W(t) & S(t) \\
B^{T}(t) & S^{T}(t) & R(t)
\end{array}\right]
$$

- The associated DAE operator is formally self-adjoint in L_{2}.
- Analogous linear operators are obtained for higher order optimal control problems.

Outline

(1) Motivation

(2) Optimal Control of DAE Systems

- Continuous-time Linear-Quadratic Optimal Control Problem
- Discrete-time Linear-Quadratic Optimal Control Problem

3 Linear Self-adjoint Operators

- Self-adjoint Differential-Algebraic Operators
- Self-adjoint Difference Operators

4 Structure Preserving Discretization
(5) Conclusion

Discrete-time Linear-Quadratic Optimal Control Problem

Minimize the cost functional

$$
\mathcal{J}(x, u)=\frac{1}{2} \sum_{j=0}^{\infty}\left(x_{j}^{\top} W x_{j}+2 x_{j}^{\top} S u_{j}+u_{j}^{\top} R u_{j}\right)
$$

subject to

$$
E x_{j+1}+A x_{j}+B u_{j}=0, \quad j=0,1, \ldots
$$

with given starting value $x_{0} \in \mathbb{R}^{n}$ and coefficient matrices $W=W^{T} \in \mathbb{R}^{n, n}, S \in \mathbb{R}^{n, m}, R=R^{T} \in \mathbb{R}^{m, m}$ and $E, A \in \mathbb{R}^{n, n}, B \in \mathbb{R}^{n, m}$.

- Classical case: $\hat{R}=\left[\begin{array}{cc}W & S \\ S^{T} & R\end{array}\right]$ symm.pos.def., E nonsingular.
- Discrete-time H_{∞} control: \hat{R} indefinite or singular.
- Descriptor system: E singular.

Maximum Principle

- Introducing Lagrange multipliers $m_{j}=\left[-\nu_{j}^{T}-\tilde{\nu}_{j}^{T}\right]^{T}$ with $\nu_{j} \in \mathbb{R}^{n}$ and $\tilde{\nu}_{j} \in \mathbb{R}^{(k-1) n}$ and applying the Pontryagin maximum principle.
- This leads to the two-point boundary value problem

$$
\left[\begin{array}{ccc}
0 & E & 0 \\
A^{T} & 0 & 0 \\
B^{T} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
m_{j+1} \\
x_{j+1} \\
u_{j+1}
\end{array}\right]+\left[\begin{array}{ccc}
0 & A & B \\
E^{T} & W & S \\
0 & S^{T} & R
\end{array}\right]\left[\begin{array}{c}
m_{j} \\
x_{j} \\
u_{j}
\end{array}\right]=0
$$

with original initial condition and terminal condition $\lim _{j \rightarrow \infty} E^{\top} m_{j}=0$.

Transformation into Palindromic form

- Shift the first block row one step downwards and introduce another boundary value $x_{-1}=0$ to obtain

$$
\begin{aligned}
{\left[\begin{array}{ccc}
0 & 0 & 0 \\
A^{T} & 0 & 0 \\
B^{T} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
m_{j+1} \\
x_{j+1} \\
u_{j+1}
\end{array}\right] } & +\left[\begin{array}{ccc}
0 & E & 0 \\
E^{T} & W & S \\
0 & S^{T} & R
\end{array}\right]\left[\begin{array}{l}
m_{j} \\
x_{j} \\
u_{j}
\end{array}\right] \\
& +\left[\begin{array}{lll}
0 & A & B \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
m_{j-1} \\
x_{j-1} \\
u_{j-1}
\end{array}\right]=0 .
\end{aligned}
$$

Transformation into Palindromic form

- This can be extended to variable coefficients

$$
\begin{array}{r}
{\left[\begin{array}{ccc}
0 & 0 & 0 \\
A_{j}^{T} & 0 & 0 \\
B_{j}^{T} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
m_{j+1} \\
x_{j+1} \\
u_{j+1}
\end{array}\right]+\left[\begin{array}{ccc}
0 & E_{j} & 0 \\
E_{j}^{T} & W_{j} & S_{j} \\
0 & S_{j}^{T} & R_{j}
\end{array}\right]\left[\begin{array}{c}
m_{j} \\
x_{j} \\
u_{j}
\end{array}\right]} \\
+\left[\begin{array}{ccc}
0 & A_{j-1} & B_{j-1} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
m_{j-1} \\
x_{j-1} \\
u_{j-1}
\end{array}\right]=0 .
\end{array}
$$

- This corresponds to a self-adjoint difference operator in ℓ^{2}.

Outline

(2) Optimal Control of DAE Systems

- Continuous-time Linear-Quadratic Optimal Control Problem - Discrete-time Linear-Quadratic Optimal Control Problem
(3) Linear Self-adjoint Operators
- Self-adjoint Differential-Algebraic Operators
- Self-adjoint Difference Operators

4) Structure Preserving Discretization
(5) Conclusion

Outline

(1) Motivation

(2) Optimal Control of DAE Systems

- Continuous-time Linear-Quadratic Optimal Control Problem - Discrete-time Linear-Quadratic Optimal Control Problem
(3) Linear Self-adjoint Operators
- Self-adjoint Differential-Algebraic Operators
- Self-adjoint Difference Operators

4 Structure Preserving Discretization
(5) Conclusion

Linear DAE operators

Consider a linear k-th order differential-algebraic operator

$$
\mathcal{L}: \mathbb{X} \rightarrow \mathbb{Y}, \quad x \mapsto \mathcal{L} x=\sum_{i=0}^{k} A_{i}(t) x^{(i)},
$$

on $\mathbb{I}=\left[t_{0}, t_{f}\right]$ with sufficiently smooth matrix-valued functions $A_{i} \in C\left(\mathbb{I}, \mathbb{R}^{n, n}\right)$ for $i=0, \ldots, k$ acting on the Hilbert space

$$
L^{2}\left(\mathbb{I}, \mathbb{R}^{n}\right):=\left\{x: \mathbb{I} \rightarrow \mathbb{R}^{n} \mid \int_{\mathbb{I}}\|x(t)\|^{2} d t \text { exists and is finite }\right\}
$$

with standard L^{2}-inner product

$$
\langle x, y\rangle=\int_{t_{0}}^{t_{t}} x^{T}(t) y(t) d t \quad \text { for all } x, y \in L_{2}\left(\mathbb{I}, \mathbb{R}^{n}\right) .
$$

and function spaces $\mathbb{X} \subset L^{2}\left(\mathbb{I}, \mathbb{R}^{n}\right)($ domain of $\mathcal{L}), \mathbb{Y} \subseteq L^{2}\left(\mathbb{I}, \mathbb{R}^{n}\right)$,

Reduced Form

Assume that the matrix pencil

$$
\left(A_{k}(t), A_{k-1}(t), \ldots, A_{0}(t)\right)
$$

is regular (i.e. $\operatorname{det}(P(\lambda))$ does not vanish identically) and given in reduced form

$$
\left(\left[\begin{array}{c}
A_{k, 1}(t) \\
0 \\
\vdots \\
0
\end{array}\right],\left[\begin{array}{c}
A_{k-1,1}(t) \\
A_{k-1,2}(t) \\
0 \\
\vdots \\
0
\end{array}\right], \ldots,\left[\begin{array}{c}
A_{0,1}(t) \\
A_{0,2}(t) \\
\\
\vdots \\
A_{0, k+1}(t)
\end{array}\right]\right)
$$

with pointwise nonsingular matrix

$$
\left[\begin{array}{c}
A_{k, 1}(t) \\
A_{k-1,2}(t) \\
\vdots \\
A_{0, k+1}(t)
\end{array}\right]
$$

The Adjoint Operator

Definition

For a linear differential operator $\mathcal{L}: \mathbb{X} \rightarrow \mathbb{Y}$ the adjoint operator $\mathcal{L}^{*}: \mathbb{Y}^{*} \rightarrow \mathbb{X}^{*}$ is the operator with domain

$$
\mathbb{Y}^{*}=\mathcal{D}\left(\mathcal{L}^{*}\right)=\left\{y \in \mathbb{Y} \mid \exists z \in \mathbb{X}^{*} \text { with }\langle\mathcal{L} x, y\rangle=\langle x, z\rangle \forall x \in \mathbb{X}\right\}
$$

i.e., for all $y \in \mathbb{Y}^{*}$ we define $\mathcal{L}^{*} y$ such that

$$
\langle\mathcal{L} x, y\rangle=\left\langle x, \mathcal{L}^{*} y\right\rangle \text { for all } x \in \mathbb{X}
$$

An operator \mathcal{L} is said to be self-adjoint if $\mathbb{Y}^{*}=\mathbb{X}$ and $\mathcal{L}^{*}=\mathcal{L}$.

Lemma

- The adjoint operator is unique and $\left(\mathcal{L}^{*}\right)^{*}=\mathcal{L}$.
- $\mathcal{L}_{1}, \mathcal{L}_{2}$ self-adjoint, $\lambda \in \mathbb{R} \Longrightarrow \mathcal{L}_{1}+\mathcal{L}_{2}$ and $\lambda \mathcal{L}_{1}$ self-adjoint.

Integration by Parts

- For $x \in \mathbb{X}$ and $y \in \mathbb{Y}^{*}$ we have

$$
\langle\mathcal{L} x, y\rangle=\int_{\mathbb{I}} \sum_{i=0}^{k}\left(x^{(i)}\right)^{T} A_{i}^{T} y d t=\sum_{i=0}^{k} \int_{\mathbb{I}}\left(x^{(i)}\right)^{T} A_{i}^{T} y d t
$$

- Integration by parts of the terms $\left(x^{(i)}\right)^{T} A_{i}^{T} y$ yields

$$
\int_{\mathbb{I}}\left(x^{(i)}\right)^{T} A_{i}^{T} y d t=b_{i}(x, y)+(-1)^{i} \int_{\mathbb{I}} x^{T}\left(A_{i}^{T} y\right)^{(i)} d t
$$

with boundary term

$$
b_{i}(x, y)=\left.\sum_{j=0}^{i-1}(-1)^{j}\left(x^{(i-j-1)}\right)^{T}\left(A_{i}^{T} y\right)^{(j)}\right|_{t_{0}} ^{t_{f}} .
$$

- Thus, formally the adjoint operator is given by

$$
\mathcal{L}^{*} y=\sum_{i=0}^{k}(-1)^{i} \frac{d^{i}}{d t^{i}}\left(A_{i}^{T} y\right) .
$$

Boundary Conditions

- The domain \mathbb{X} defines boundary conditions for \mathcal{L}, while \mathbb{Y}^{*} defines adjoint boundary conditions for \mathcal{L}^{*}.
\Longrightarrow Define $\mathbb{X}, \mathbb{Y}^{*}$ such that the boundary terms $b_{i}(x, y)$ vanish.
- we consider the function spaces

$$
\begin{aligned}
& \mathbb{X}=\left\{x \in C^{0}\left(\mathbb{I}, \mathbb{R}^{n}\right) \mid A_{i}^{+} A_{i} x \in C^{i}\left(\mathbb{I}, \mathbb{R}^{n}\right), B_{i}\left(x, t_{0}\right)=0, i=1, \ldots, k\right\} \\
& \mathbb{Y}=C^{0}\left(\mathbb{I}, \mathbb{R}^{n}\right)
\end{aligned}
$$

with homogeneous boundary conditions

$$
B_{i}\left(x, t_{0}\right)=0, \quad i=1, \ldots, k
$$

The Adjoint Operator

Theorem

A linear operator $\mathcal{L}: \mathbb{X} \rightarrow \mathbb{Y}$ with regular matrix tuple $\left(A_{k}, \ldots, A_{0}\right)$ in reduced form and boundary conditions

$$
B_{i}\left(x, t_{0}\right)=\left\{\left.\left(A_{i}^{+} A_{i}\right)^{(\ell)} x^{(i-j-1)}\right|_{t_{0}}=0, \text { for } j=0, \ldots, i-1, \ell=0, \ldots, j\right\}
$$

has a unique adjoint operator $\mathcal{L}^{*}: \mathbb{Y}^{*} \rightarrow \mathbb{X}^{*}$ with

$$
\begin{aligned}
& \mathbb{X}^{*}=C^{0}\left(\mathbb{I}, \mathbb{R}^{n}\right), \\
& \mathbb{Y}^{*}=\left\{y \in C^{0}\left(\mathbb{I}, \mathbb{R}^{n}\right) \mid A_{i} A_{i}^{+} y \in C^{i}\left(\mathbb{I}, \mathbb{R}^{n}\right), B_{i}^{*}\left(y, t_{f}\right)=0, i=1, \ldots, k\right\}
\end{aligned}
$$

and boundary terms

$$
B_{i}^{*}\left(y, t_{f}\right)=\left\{\left.\left(A_{i} A_{i}^{+}\right)^{(\ell)} y^{(j-\ell)}\right|_{t_{f}}=0, \text { for } j=0, \ldots i-1, \ell=0 \ldots, j\right\}
$$

that is given by $\mathcal{L}^{*} y=\sum_{i=0}^{k}(-1)^{i} \frac{d^{i}}{d t^{i}}\left(A_{i}^{T} y\right)$.

Example

- Considering a linear first order differential-algebraic operator

$$
\mathcal{L} X=A_{1} \dot{x}+A_{0} x,
$$

with sufficiently smooth matrix-valued functions $A_{1}, A_{0} \in C\left(\mathbb{I}, \mathbb{R}^{n, n}\right)$

- and homogeneous initial condition

$$
\left(A_{1}^{+} A_{1} x\right)\left(t_{0}\right)=0
$$

- Then, the adjoint operator is of the form

$$
\mathcal{L}^{*} x=-\frac{d}{d t}\left(A_{1}^{T} y\right)+A_{0}^{T} y=-A_{1}^{T} \dot{y}+\left(A_{0}^{T}-\dot{A}_{1}^{T}\right) y
$$

- with homogeneous end condition

$$
\left(A_{1} A_{1}^{+} y\right)\left(t_{f}\right)=0
$$

Self-adjoint DAE Operators

- The adjoint operator \mathcal{L}^{*} can be written as

$$
\mathcal{L}^{*} y=\sum_{i=0}^{k}(-1)^{i} \frac{d^{i}}{d t^{i}}\left(A_{i}^{T} y\right)=\sum_{i=0}^{k}(-1)^{i} \sum_{j=0}^{i}\binom{i}{j}\left(A_{i}^{T}\right)^{(j)} y^{(i-j)}
$$

- For self-adjointness we need $\mathcal{L}=\mathcal{L}^{*}$ and therefore the formal conditions for self-adjointness are

$$
A_{\ell}=\sum_{i=0}^{k}(-1)^{i}\binom{i}{i-\ell}\left(A_{i}^{T}\right)^{(i-\ell)}=\sum_{i=\ell}^{k}(-1)^{i}\binom{i}{\ell}\left(A_{i}^{T}\right)^{(i-\ell)}
$$

for $\ell=0, \ldots, k$ using that $\binom{i}{j}=0$ for $j<0$.

Self-adjoint DAE Operators

Theorem

A differential-algebraic operator \mathcal{L} with regular matrix tuple $\left(A_{k} \ldots, A_{0}\right)$ in reduced form, sufficiently smooth $A_{i} \in C^{i}\left(\mathbb{I}, \mathbb{R}^{n, n}\right)$ and

$$
\begin{aligned}
\mathbb{X} & =\left\{x \in C^{0}\left(\mathbb{I}, \mathbb{R}^{n}\right) \mid A_{i}^{+} A_{i} x \in C^{i}\left(\mathbb{I}, \mathbb{R}^{n}\right), B_{i}\left(x, t_{0}\right)=B_{i}^{*}\left(x, t_{f}\right)=0\right\} \\
\mathbb{Y} & =C^{0}\left(\mathbb{I}, \mathbb{R}^{n}\right)
\end{aligned}
$$

is self-adjoint if and only if

$$
A_{\ell}=\sum_{i=\ell}^{k}(-1)^{i}\binom{i}{\ell}\left(A_{i}^{T}\right)^{(i-\ell)} \quad \text { for } \ell=0, \ldots, k
$$

Self-adjoint DAE Operators

Theorem

A differential-algebraic operator \mathcal{L} with regular matrix tuple $\left(A_{k} \ldots, A_{0}\right)$ in reduced form, sufficiently smooth $A_{i} \in C^{i}\left(\mathbb{I}, \mathbb{R}^{n, n}\right)$ and

$$
\begin{aligned}
& \mathbb{X}=\left\{x \in C^{0}\left(\mathbb{I}, \mathbb{R}^{n}\right) \mid A_{i}^{+} A_{i} x \in C^{i}\left(\mathbb{I}, \mathbb{R}^{n}\right), B_{i}\left(x, t_{0}\right)=B_{i}^{*}\left(x, t_{f}\right)=0\right\} \\
& \mathbb{Y}=C^{0}\left(\mathbb{I}, \mathbb{R}^{n}\right)
\end{aligned}
$$

is self-adjoint if and only if

$$
A_{\ell}=\sum_{i=\ell}^{k}(-1)^{i}\binom{i}{\ell}\left(A_{i}^{T}\right)^{(i-\ell)} \quad \text { for } \ell=0, \ldots, k
$$

- An operator with constant coefficients is formally self-adjoint if

$$
A_{\ell}=(-1)^{\ell} A_{\ell}^{T} \quad \text { for } \ell=0, \ldots, k
$$

Even/Odd Order Splitting

Theorem

Any formally self-adjoint operator $\mathcal{L} x$ is a sum of operators of the form

$$
\begin{aligned}
\mathcal{L}_{2 \nu} x & =\left(P_{2 \nu} x^{(\nu)}\right)^{(\nu)}, \\
\mathcal{L}_{2 \nu-1} x & =\frac{1}{2}\left[\left(Q_{2 \nu-1} x^{(\nu-1)}\right)^{(\nu)}+\left(Q_{2 \nu-1} x^{(\nu)}\right)^{(\nu-1)}\right]
\end{aligned}
$$

with matrix valued functions

- $P_{2 \nu}=P_{2 \nu}^{T} \in C^{\nu}\left(\mathbb{I}, \mathbb{R}^{n, n}\right)$ and
- $Q_{2 \nu-1}=-Q_{2 \nu-1}^{T} \in C^{\nu}\left(\mathbb{I}, \mathbb{R}^{n, n}\right)$ for $\nu=0, \ldots, \mu$,
- whereby $\mu=\frac{k}{2}$ if k is even and $\mu=\frac{k+1}{2}$ if k is odd.

Even/Odd Order Splitting

Theorem

Any formally self-adjoint operator $\mathcal{L} x$ is a sum of operators of the form

$$
\begin{aligned}
\mathcal{L}_{2 \nu} x & =\left(P_{2 \nu} x^{(\nu)}\right)^{(\nu)}, \\
\mathcal{L}_{2 \nu-1} x & =\frac{1}{2}\left[\left(Q_{2 \nu-1} x^{(\nu-1)}\right)^{(\nu)}+\left(Q_{2 \nu-1} x^{(\nu)}\right)^{(\nu-1)}\right]
\end{aligned}
$$

with matrix valued functions

- $P_{2 \nu}=P_{2 \nu}^{T} \in C^{\nu}\left(\mathbb{I}, \mathbb{R}^{n, n}\right)$ and
- $Q_{2 \nu-1}=-Q_{2 \nu-1}^{T} \in C^{\nu}\left(\mathbb{I}, \mathbb{R}^{n, n}\right)$ for $\nu=0, \ldots, \mu$,
- whereby $\mu=\frac{k}{2}$ if k is even and $\mu=\frac{k+1}{2}$ if k is odd.

A self-adjoint operator is in canonical form if it is given by

$$
\mathcal{L} x= \begin{cases}\sum_{\nu=0}^{r} \mathcal{L}_{2 \nu} x+\sum_{\nu=1}^{r} \mathcal{L}_{2 \nu-1} x, & \text { if } m \text { is even, } r=\frac{m}{2} \\ \sum_{\nu=0}^{r-1} \mathcal{L}_{2 \nu} x+\sum_{\nu=1}^{r} \mathcal{L}_{2 \nu-1} x, \quad \text { if } m \text { is odd, } r=\frac{m+1}{2}\end{cases}
$$

Example

- Consider a second order differential-algebraic operator

$$
\mathcal{L}_{2} x=A_{2} \ddot{x}+A_{1} \dot{x}+A_{0} x,
$$

with boundary conditions

$$
\begin{aligned}
& B_{1}\left(x, t_{0}\right)=\left.A_{1}^{+} A_{1} x\right|_{t_{0}}=0, \\
& B_{2}\left(x, t_{0}\right)=\left\{\left.A_{2}^{+} A_{2} \dot{x}\right|_{t_{0}}=0,\left.A_{2}^{+} A_{2} x\right|_{t_{0}}=0,\left.\left(A_{2}^{+} A_{2}\right)^{(1)} x\right|_{t_{0}}=0\right\} .
\end{aligned}
$$

- Then the corresponding adjoint operator given by

$$
\mathcal{L}_{2}^{*} y=\frac{d^{2}}{d t^{2}}\left(A_{2}^{T} y\right)-\frac{d}{d t}\left(A_{1}^{T} y\right)+A_{0}^{T} y,
$$

with boundary conditions

$$
\begin{aligned}
& B_{1}^{*}\left(y, t_{f}\right)=\left.A_{1} A_{1}^{+} y\right|_{t_{f}}=0, \\
& B_{2}^{*}\left(y, t_{f}\right)=\left\{\left.A_{2} A_{2}^{+} y\right|_{t_{f}}=0, A_{2} A_{2}^{+} \dot{y}| |_{t_{f}}=0,\left.\left(A_{2} A_{2}^{+}\right)^{(1)} y\right|_{t_{f}}=0\right\} .
\end{aligned}
$$

Example (continued)

- The operator is self-adjoint if and only if

$$
A_{2}=A_{2}^{T}, \quad A_{1}=\left(2 \dot{A}_{2}-A_{1}\right)^{T}, \quad \text { and } \quad A_{0}=\left(\ddot{A}_{2}-\dot{A}_{1}+A_{0}\right)^{T}
$$

and all of the above boundary conditions hold.

- A self-adjoint second order operator \mathcal{L}_{2} can be written as

$$
\mathcal{L}_{2} x=\frac{d}{d t}\left(P_{2} \dot{x}\right)+P_{0} x+\frac{1}{2} \frac{d}{d t}\left(Q_{1} x\right)+\frac{1}{2} Q_{1} \dot{x}
$$

with

- $P_{2}=A_{2}=P_{2}^{T}$,
- $Q_{1}=A_{1}-\dot{A}_{2}=-Q_{1}^{T}$, and
- $P_{0}=A_{0}-\frac{1}{2} \dot{A}_{1}+\frac{1}{2} \ddot{A}_{2}=P_{0}^{T}$.

Outline

(1) Motivation

(2) Optimal Control of DAE Systems

- Continuous-time Linear-Quadratic Optimal Control Problem - Discrete-time Linear-Quadratic Optimal Control Problem
(3) Linear Self-adjoint Operators
- Self-adjoint Differential-Algebraic Operators
- Self-adjoint Difference Operators
(4) Structure Preserving Discretization
(5) Conclusion

Difference Operators

- Consider the Hilbert space

$$
\ell^{2}(\mathbb{Z}):=\left\{\left(x_{i}\right)_{i \in \mathbb{Z}}, x_{i} \in \mathbb{R}^{n} \mid \sum_{i \in \mathbb{Z}}\left\|x_{i}\right\|^{2}<\infty\right\}
$$

with the inner product

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i \in \mathbb{Z}} x_{i}^{T} y_{i}, \quad \text { for } \mathbf{x}=\left(x_{i}\right)_{i \in \mathbb{Z}}, \mathbf{y}=\left(y_{i}\right)_{i \in \mathbb{Z}}
$$

- Linear kth-order difference operator $\mathcal{L}_{d}: \mathbb{X}_{d} \rightarrow \mathbb{Y}_{d}$ is given by

$$
\mathcal{L}_{d} \mathbf{x}=\sum_{j=0}^{k} A_{j}(i) x_{i+j}=0, \quad \text { for all } i \in \mathcal{I} \subset \mathbb{Z}
$$

with $A_{j}(i) \in \mathbb{R}^{n, n}$ for all $i \in \mathcal{I}_{0}=\{0,1, \ldots, N\} \subset \mathcal{I}$ and function spaces $\mathbb{X}_{d}, \mathbb{Y}_{d} \subset \ell^{2}(\mathbb{Z})$.

Adjoint Difference Operator

- The adjoint is defined via the relation $\left\langle\mathcal{L}_{d} \mathbf{x}, \mathbf{y}\right\rangle=\left\langle\mathbf{x}, \mathcal{L}_{d}^{*} \mathbf{y}\right\rangle$, and the operator is self-adjoint if $\left\langle\mathcal{L}_{d} \mathbf{x}, \mathbf{y}\right\rangle=\left\langle\mathbf{x}, \mathcal{L}_{d} \mathbf{y}\right\rangle$.
- Since, formally, the adjoint of a forward shift operator is always a backward shift no difference operator of order $k \geq 1$ defined in this way can be self-adjoint.
- Alternative: define linear difference operators of even order $k=2 \mu$

$$
\mathcal{L}_{d} \mathbf{x}=\sum_{j=0}^{k} A_{j}(i) x_{i-\mu+j}=0, \quad \text { for all } i \in \mathcal{I}
$$

with $A_{j}(i) \in \mathbb{R}^{n, n}, j=0, \ldots, k$ defined for all $i \in \mathcal{I}_{0}$,

- e.g. for $k=2$:

$$
\mathcal{L}_{d} \mathbf{x}=A_{2}(i) x_{i+1}+A_{1}(i) x_{i}+A_{0}(i) x_{i-1}=0, \quad \text { for all } i \in \mathcal{I}
$$

Summation by Parts

$$
\begin{aligned}
\left\langle\mathcal{L}_{d} \mathbf{x}, \mathbf{y}\right\rangle & =\sum_{i=0}^{N} \sum_{j=0}^{k} x_{i-\mu+j}^{T} A_{j}^{T}(i) y_{i} \\
& =\sum_{i=0}^{N} x_{i}^{T} \sum_{j=0}^{k} A_{k-j}^{T}(i-\mu+j) y_{i-\mu+j}+B(\mathbf{x}, \mathbf{y})=\left\langle\mathbf{x}, \mathcal{L}_{d}^{*} \mathbf{y}\right\rangle,
\end{aligned}
$$

With boundary term $B(\mathbf{x}, \mathbf{y})$ given by

$$
\begin{aligned}
B(\mathbf{x}, \mathbf{y})=\sum_{j=0}^{\mu-1} & {\left[\sum_{i=0}^{\mu-1-j} x_{i-\mu+j}^{T} A_{j}^{T}(i) y_{i}-x_{i}^{T} A_{k-j}^{T}(i-\mu+j) y_{i-\mu+j}\right.} \\
& \left.+\sum_{i=N+1}^{N+\mu-j} x_{i}^{T} A_{k-j}^{T}(i-\mu+j) y_{i-\mu+j}-x_{i-\mu+j}^{T} A_{j}^{T}(i) y_{i}\right] .
\end{aligned}
$$

The Adjoint Difference Operator

Theorem

Consider a difference operator \mathcal{L}_{d} even order $k=2 \mu$ with regular matrix tuple $\left(A_{k}, \ldots, A_{0}\right)$ in reduced form and function spaces

$$
\begin{aligned}
& \mathbb{X}_{d}=\left\{\mathbf{x}=\left(x_{i}\right)_{i \in \mathcal{I}}, x_{i} \in \mathbb{R}^{n} \mid B_{j}(\mathbf{x})=0 \text { for } j=0, \ldots, \mu-1\right\} \subset \ell^{2}(\mathbb{Z}), \\
& \mathbb{Y}_{d}=\left\{\mathbf{y}=\left(y_{i}\right)_{i \in \mathcal{I}}, y_{i} \in \mathbb{R}^{n}\right\} \subset \ell^{2}(\mathbb{Z}),
\end{aligned}
$$

where $\mathcal{I}=\{-\mu, \ldots, N+\mu\}$ and

$$
\begin{aligned}
B_{j}(\mathbf{x})= & \left\{A_{k-j}^{+}(i-\mu+j) A_{k-j}(i-\mu+j) x_{i}=0, i=N+1, \ldots, N+\mu-j,\right. \\
& \left.A_{j}^{+}(i) A_{j}(i) x_{i-\mu+j}=0, i=0, \ldots, \mu-1-j\right\} .
\end{aligned}
$$

Theorem (continued)

Then the adjoint operator \mathcal{L}_{d}^{*} with function spaces

$$
\begin{aligned}
& \mathbb{X}_{d}^{*}=\left\{\left(x_{i}\right)_{i \in \mathcal{I}}, x_{i} \in \mathbb{R}^{n}\right\} \\
& \mathbb{Y}_{d}^{*}=\left\{\left(y_{i}\right)_{i \in \mathcal{I}}, y_{i} \in \mathbb{R}^{n} \mid B_{j}^{*}(\mathbf{y})=0 \text { for } j=0, \ldots, \mu-1\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
B_{j}^{*}(\mathbf{y})= & \left\{A_{k-j}(i-\mu+j) A_{k-j}^{+}(i-\mu+j) y_{i-\mu+j}=0, i=0, \ldots, \mu-1-j,\right. \\
& \left.A_{j}(i) A_{j}^{+}(i) y_{i}=0, i=N+1, \ldots, N+\mu-j\right\}
\end{aligned}
$$

is given by

$$
\mathcal{L}_{d}^{*} \mathbf{y}=\sum_{j=0}^{k} A_{k-j}^{T}(i-\mu+j) y_{i-\mu+j}
$$

Example

For a second order linear difference operator given by

$$
\mathcal{L}_{d} \mathbf{x}=A_{2}(i) x_{i+1}+A_{1}(i) x_{i}+A_{0}(i) x_{i-1}
$$

with boundary conditions

$$
B_{0}(\mathbf{x})=\left\{A_{2}^{+}(N) A_{2}(N) x_{N+1}=0, A_{0}^{+}(0) A_{0}(0) x_{-1}=0\right\}
$$

the adjoint operator is given by

$$
\mathcal{L}_{d}^{*} \mathbf{y}=A_{0}^{T}(i+1) y_{i+1}+A_{1}^{T}(i) y_{i}+A_{2}^{T}(i-1) y_{i-1} .
$$

with boundary conditions

$$
B_{0}^{*}(\mathbf{y})=\left\{A_{2}(-1) A_{2}^{+}(-1) y_{-1}=0, A_{0}(N+1) A_{0}^{+}(N+1) y_{N+1}=0\right\}
$$

Self-adjoint difference operator

Theorem

An even order difference operator \mathcal{L}_{d} is self-adjoint if and only if

$$
\mathbb{X}_{d}=\left\{\mathbf{x}=\left(x_{i}\right)_{i \in \mathcal{I}}, x_{i} \in \mathbb{R}^{n} \mid B_{j}(\mathbf{x})=B_{j}^{*}(\mathbf{x})=0 \text { for all } j=0, \ldots, \mu-1\right\}
$$

and

$$
A_{j}(i)=A_{k-j}^{T}(i+j-\mu) \quad \text { for all } j=0, \ldots, k, i \in \mathcal{I}_{0}=\{0, \ldots, N\} .
$$

Self-adjoint difference operator

Theorem

An even order difference operator \mathcal{L}_{d} is self-adjoint if and only if

$$
\mathbb{X}_{d}=\left\{\mathbf{x}=\left(x_{i}\right)_{i \in \mathcal{I}}, x_{i} \in \mathbb{R}^{n} \mid B_{j}(\mathbf{x})=B_{j}^{*}(\mathbf{x})=0 \text { for all } j=0, \ldots, \mu-1\right\}
$$

and

$$
A_{j}(i)=A_{k-j}^{T}(i+j-\mu) \quad \text { for all } j=0, \ldots, k, i \in \mathcal{I}_{0}=\{0, \ldots, N\}
$$

\Longrightarrow For constant coefficients the conditions for self-adjointness are

$$
A_{j}=A_{k-j}^{T} \quad \text { for } \quad j=0, \ldots, k
$$

and a self-adjoint difference operator is given in palindromic form

$$
\mathcal{L}_{d} \mathbf{x}=A_{0} x_{i-\mu}+A_{1} x_{i-\mu+1}+\cdots+A_{\mu} x_{i}+\cdots+A_{1}^{T} x_{i+\mu-1}+A_{0}^{T} x_{i+\mu}
$$

Example (cont.)

- For a second order linear difference operator the conditions for self-adjointness are for $i=0, \ldots, N$

$$
\begin{aligned}
& A_{0}(i)=A_{2}^{T}(i-1) \\
& A_{1}(i)=A_{1}^{T}(i)
\end{aligned}
$$

- Second order self-adjoint difference operator:

$$
\mathcal{L}_{d} \mathbf{x}=A_{0}^{T}(i+1) x_{i+1}+A_{1}(i) x_{i}+A_{0}(i) x_{i-1},
$$

with $A_{1}(i)=A_{1}^{T}(i)$ for all $i \in \mathcal{I}_{0}$ and boundary conditions

$$
B_{0}(\mathbf{x})=\left\{A_{0}(N+1) A_{0}^{+}(N+1) x_{N+1}=0, A_{0}^{+}(0) A_{0}(0) x_{-1}=0\right\}
$$

Is this the right definition of self-adjointness?

- Our definition corresponds to the case of self-adjoint difference equations of the form

$$
\mathcal{L}_{d} \mathbf{x}=\Delta\left[P_{i} \Delta x_{i-1}\right]+Q_{i} x_{i}=0, \quad P_{i}=P_{i}^{T}, Q_{i}=Q_{i}^{T}
$$

with forward difference operator $\Delta x_{i}=x_{i+1}-x_{i}$.

- In our case we also have that $\mathcal{L}_{d}^{* *}=\mathcal{L}_{d}$.
- Drawback: for odd order difference operators there exists no self-adjoint operator corresponding to the above definition.

Alternative Formulation for Odd Order

- Consider the Hilbert space of sequences with index set

$$
\begin{aligned}
& \mathcal{B}=\left\{\ldots,-1,-\frac{1}{2}, 0, \frac{1}{2}, 1, \ldots\right\} \\
& \quad \ell^{2}(\mathcal{B})=\left\{\left(x_{b}\right)_{b \in \mathcal{B}}, x_{b} \in \mathbb{R}^{n} \mid \sum_{b \in \mathcal{B}}\left\|x_{b}\right\|^{2}<\infty\right\},
\end{aligned}
$$

- with the inner product $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{b \in \mathcal{B}} x_{b}^{T} y_{b}$ for all $\mathbf{x}, \mathbf{y} \in \ell^{2}(\mathcal{B})$.
- As before we have

$$
\mathcal{L}_{d} \mathbf{x}=\sum_{j=0}^{k} A_{j}(i) x_{i-\frac{k}{2}+j}, \quad \mathcal{L}_{d}^{*} \mathbf{y}=\sum_{j=0}^{k} A_{k-j}^{T}\left(i-\frac{k}{2}+j\right) y_{i-\frac{k}{2}+j}
$$

- and a difference operator \mathcal{L}_{d} is self-adjoint if and only if

$$
A_{j}(i)=A_{k-j}^{T}\left(i+j-\frac{k}{2}\right)
$$

- i.e. for $k=1$ a self-adjoint operator is given by

$$
\mathcal{L}_{d} \mathbf{x}=A_{0}^{T}\left(i+\frac{1}{2}\right) x_{i+\frac{1}{2}}+A_{0}(i) x_{i-\frac{1}{2}}
$$

Operators in the Optimal Control Setting

Theorem

If the coefficient matrices are sufficiently smooth then, under the additional condition that

$$
\left(E E^{+} \zeta\right)\left(t_{0}\right)=0 \text { and }\left(E E^{+} x\right)\left(t_{f}\right)=0
$$

the differential-algebraic operator associated with the necessary optimality system for the linear-quadratic optimal control problem is self-adjoint.

Operators in the Optimal Control Setting

Theorem

Under the condition that

$$
x_{-1}=0 \text { and } m_{N+1}=0
$$

the linear difference operator corresponding to the boundary value problem of the optimality system for the discrete-time optimal control problem is formally self-adjoint in ℓ_{2}.

Outline

(1) Motivation
(2) Optimal Control of DAE Systems

- Continuous-time Linear-Quadratic Optimal Control Problem
- Discrete-time Linear-Quadratic Optimal Control Problem
(3) Linear Self-adjoint Operators
- Self-adjoint Differential-Algebraic Operators
- Self-adjoint Difference Operators

4 Structure Preserving Discretization
(5) Conclusion

Central Finite Differences

- The nth-order central difference is given by

$$
\delta^{n}[x](t)=\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} x\left(t+\left(\frac{n}{2}-j\right) h\right)
$$

for some discretization stepsize h such that

$$
\frac{d^{n} x(t)}{d t^{n}}=\frac{\delta^{n}[x](t)}{h^{n}}+O\left(h^{2}\right)
$$

- For odd n in the central difference h is multiplied by non-integers.
- This problem may be avoided by taking the average of $\delta^{n}[x]\left(t-\frac{h}{2}\right)$ and $\delta^{n}[x]\left(t+\frac{h}{2}\right)$. We denote this average by

$$
\bar{\delta}^{n}[x](t)=\frac{1}{2}\left(\delta^{n}[x]\left(t-\frac{h}{2}\right)+\delta^{n}[x]\left(t+\frac{h}{2}\right)\right)
$$

Finite Differences Discretization

Theorem

Consider a self-adjoint differential operator in canonical form (i.e. as sum of even/odd order operators). A discretization using $\bar{\delta}^{n}[].\left(t_{i}\right)$ for odd derivatives of order n and $\delta^{n}[].\left(t_{i}\right)$ for even derivatives of order n leads to a self-adjoint difference operator of even order.

Proof:

E.g. for a self-adjoint second order operator given in canonical form

$$
\mathcal{L}_{2} x=\frac{d}{d t}\left(P_{1} \dot{x}\right)+\frac{1}{2}\left[\frac{d}{d t}\left(Q_{1} x\right)+Q_{1} \dot{x}\right]+P_{0} x,
$$

with $P_{1}=P_{1}^{T}, Q_{1}=-Q_{1}^{T}, P_{0}=P_{0}^{T}$ we get the discretized system

$$
\begin{aligned}
& \mathcal{L}_{2} x\left(t_{i}\right) \approx \bar{\delta}\left[P_{1} \bar{\delta}[x]\right]\left(t_{i}\right)+\frac{1}{2}\left[\bar{\delta}\left[Q_{1} x\right]\left(t_{i}\right)+Q_{1}\left(t_{i}\right) \bar{\delta}[x]\left(t_{i}\right)\right]+P_{0}\left(t_{i}\right) x\left(t_{i}\right) \\
&=\frac{1}{4}\left\{P_{1, i+1} x_{i+2}+\left[Q_{1, i+1}+Q_{1, i}\right] x_{i+1}+\left[4 P_{0, i}-P_{1, i+1}-P_{1, i-1}\right] x_{i}\right. \\
&\left.+\left[-Q_{1, i-1}-Q_{1, i}\right] x_{i-1}+P_{1, i-1} x_{i-2}\right\} .
\end{aligned}
$$

Outline

(1) Motivation
(2) Optimal Control of DAE Systems

- Continuous-time Linear-Quadratic Optimal Control Problem
- Discrete-time Linear-Quadratic Optimal Control Problem
(3) Linear Self-adjoint Operators
- Self-adjoint Differential-Algebraic Operators
- Self-adjoint Difference Operators
(4) Structure Preserving Discretization
(5) Conclusion

Conclusions and open problems

- Linear quadratic optimal control problems lead to self-adjoint DAE operators.
- Self-adjointness of a systems is a more appropriate structure that can also be dealt with in the variable coefficient or singular case.
- We have given a proper definition of self-adjointness of differential and difference operators.
- In order to preserve the structure continuous-time systems should be discretized in such a way that self-adjointness is preserved.
- What is the right discretization of continuous time self-adjoint operators that yield discrete time self-adjoint operators?

Thank you very much for your attention.

