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0 Motivation



Linear-Quadratic Optimal Control Problem

@ Minimizing a quadratic cost functional

tr
J(x,u) = ;/ (x"Wx + 2xTSu + u" Ru) dt,
fo

with W = WT e R?" S R and R = RT ¢ R™™
@ subject to the system dynamics given by the descriptor system

Ex+Ax+Bu=0, x(t)=0,

with E,A e R™" B e R™M,
@ x(t) € R" state vector, u(t) € R™ control input vector.
@ Goal: determine optimal controls u € U = C(I, R™).



Necessary conditions for optimality

Let u, define the minimal solution and let x. be the corresponding
trajectory, i.e., the solution of

Ex(t) + Ax(t) + Bu.(t) = 0, x(t) = 0.

Then there exists a costate function ((t), such that (x.(t), {(t), u«(t))
satisfy the Euler-Lagrange boundary value problem:

0 E 07T ¢ 0 A B[
[ETOO]{X(I‘)}+{AT w S !x(t)]O,
0 00 u(t) B" ST R u(t)

with boundary conditions x(t)) = 0 and ET¢(t) = 0.



Even matrix pencils

The associated matrix pair

0 E O 0O A B
W, M)=|| -ET 0 0o]|,|AT w s

0 00 BT ST R

is a so-called even matrix pair, i.e.,
N=-NTand M = MT,
since the associated linear matrix polynomial
P(A) = N + M
is an even polynomial

PA) =MW+ M= (-N)(-NT) = MT =PT(-)).



Reduced Euler Lagrange equations

If E and R are invertible then we obtain the equivalent reduced
Euler-Lagrange system

- [f 2] womn-e

with ¢ = —ET¢ and with the Hamiltonian matrix

F G [ EEY(A-BR'ST) E-'BR'BTE-T
H —FT |~ W—-SR'ST —(E-Y(A-BR'S™)T
In general:
@ Even matrix pencils generalize Hamiltonian matrices.

@ Even matrix pencils have Hamiltonian spectrum plus possibly
some extra infinite eigenvalues or singular parts.



Discretization of Hamiltonian systems

@ The discretization of an Hamiltonian system

X=Hx, with HJ=(HJ)T, J=|O '
—Ih 0
with symplectic integration methods yields a discrete system

Xiv1=8X;, Xi=x(t) forsomet; € [ty,t]

with symplectic iteration matrix S, i.e., STJS = J.

@ Using symplectic methods the total energy of the system (i.e., the
Hamiltonian function of the dynamical system) and the
symplecticity of the flow is preserved.



Palindromic Matrix Polynomials

@ A matrix polynomial
k
P(A) =Y XA
i=0
of degree k, where A; € R™", is said to be palindromic if
NPT(1/X) = P(N),

ie., if
Al j=A for i=0,... .k
@ Palindromic matrix polynomials generalize symplectic matrices.

@ The spectrum of a palindromic polynomial is symmetric w.r.t. the

unit circle and if 0 is an eigenvalue then also co = %.



Example

@ For an Hamiltonian system
X =Hx
a discretization with the implicit midpoint rule yields
(In = 8H)Xit1 = (I + 3H)X;,
Xiv1 = (I — 3H) 7 (I + BH)x; = Sx;,

with symplectic matrix S = (ol — H) (ol + H) for o = 2.
@ Discretization of an even system

NX+Mx=0, N=-NT, M=M",
with the implicit midpoint rule yields
(N + BM)Xip1 + (=N + dM)x; = 0,

i.e., a palindromic difference equation.



continuous time

Hamiltonian system

i=Hx, HJ=(HJ)T

Cayley

discrete time

t

Even system

Ni+Mz=0, N=-N"M=M"

Cayley

Symplectic system

STjS=1J

Tiy1 = Sy,

t

t

Self-adjoint system
N+ Mt)z=0, N=-NT

M= (M-N)"

Palindromic system

PTIi+1+PIi:0

t

(Discrete) self-adjoint system

PT(i+ D + Q)i + P(i)xi—y = 0,
Q) = Q")

Generalization of Hamiltonian/Symplectic Structures
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@ Discrete-time Linear-Quadratic Optimal Control Problem
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Optimal Control of DAE Systems Continuous-time Linear-Quadratic Optimal Control Problem

The linear-quadratic optimal control problem

@ Minimize the quadratic cost functional

1 [
J(xu) =5 (xTW(t)x + xTS(t)u+ u"R(t)u) dt,
b
W=wT" e CoI,R™), S e CO(I,R™™), R = RT ¢ CO(I,R™™).
@ subject to the constraint

E(t)x + A()x + B(t)u = £(1), x(t) =0,

E ¢ C'(I,R™"), A e CO(I,R™M), B € C(I,R™™), f ¢ CO(I,R")
sufficiently smooth.
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Optimal Control of DAE Systems Continuous-time Linear-Quadratic Optimal Control Problem

Reduced problem
@ For control problems of the form
E(t)x + A(t)x + B(t)u = f(t), x(f) =0,
@ a behavior approach by introducing z = [XT, uT] " leads to
Et)z+ Atz = (1),

with E(t) = [ E(t) 0 ], A(t)=[ A(t) B(t) |
@ Using derivative arrays we obtain a reduced system:

Ei (1) %\1 (1) 2’1 (t) | d differential equations
0 z+ | Ay(t) | z=| K(t) |, aalgebraic equations
0 0 ?3(1‘) i’ consistency equations

We assume from now on that the system is regular and given in
reduced form.
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Optimal Control of DAE Systems Continuous-time Linear-Quadratic Optimal Control Problem

Necessary optimality condition

Theorem ( Kunkel & Mehrmann '08 )

Consider the linear quadratic DAE optimal control problem with a
consistent initial condition. Suppose that the system is strangeness-
free as a behavior system. If (x, u) € X x U is a solution to this optimal

control problem, then there exists a Lagrange multiplier function
¢ € CL (I,R") with

CL, (L, R") = {x e CO(I,R") | E+Ex € C' (]I,R”)}.
such that (x, ¢, u) satisfy the optimality boundary value problem
EZ(ETEX)+ (A— EZ(ETE))x + Bu=f, (E*Ex)(t) =0,

—ET4(EE*¢) + Wx + Su+ (A— EETE)T¢ =0, (EE*¢)(t) =0,
S™x+ Ru+B"¢=0.
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Optimal Control of DAE Systems Continuous-time Linear-Quadratic Optimal Control Problem

The differential-algebraic operator

@ If the coefficients are sufficiently smooth then the
differential-algebraic operator corresponding to the boundary
value problem is given by

0 E(® 0], 0 Alt) B(1)
{ET(I‘) 0 o] [
0 0 0

@ The associated DAE operator is formally self-adjoint in L.

@ Analogous linear operators are obtained for higher order optimal
control problems.
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Optimal Control of DAE Systems Discrete-time Linear-Quadratic Optimal Control Problem
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Optimal Control of DAE Systems Discrete-time Linear-Quadratic Optimal Control Problem

Discrete-time Linear-Quadratic Optimal Control
Problem
Minimize the cost functional
(x/-T Wx; + 2x Suj + uf RUj)
j=0

J(x,u) =

subject to
Exjy1 +Ax;+Bu; =0, j=0,1,...

with given starting value xg € R"” and coefficient matrices
W=WTecR" SecR" R=R" cR™and E,Ac R"" BeR".

@ Classical case: R = [ SVZ g ] symm.pos.def., E nonsingular.

@ Discrete-time H, control: R indefinite or singular.
@ Descriptor system: E singular.
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Optimal Control of DAE Systems Discrete-time Linear-Quadratic Optimal Control Problem

Maximum Principle

@ Introducing Lagrange multipliers m; = [/ — ]" with 1; € R”
and # € R and applying the Pontryagin maximum principle.
@ This leads to the two-point boundary value problem

0 E O mj 4 0 A B m;
AT 0 0| | x4t |+|ET W S| | x |=0
BT 0 0 Ujtq 0 ST R uj

with original initial condition and terminal condition lim E”m; = 0.

J—0o0
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Optimal Control of DAE Systems

Discrete-time Linear-Quadratic Optimal Control Problem

Transformation into Palindromic form
@ Shift the first block row one step downwards and introduce

another boundary value x_1 = 0to

0 0 0] [ mpq 0 E
AT 0 O| | xiq |+ |ET W

BT 0 0] | us

|

obtain

0o ST

0 A B
0 0O
0 0O

0
S
R

|

mj
X
U

mj_1
Xj—1 =0.
Uj_+
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Discrete-time Linear-Quadratic Optimal Control Problem

Optimal Control of DAE Systems

Transformation into Palindromic form

@ This can be extended to variable coefficients

|

0 00
A /-T 00
BjT 00

|

M1 O E 01 ©m
Xj+1 ] + [E/T W Sf] Xj
Ujtq 0 SjT Rj
!O Aj_1 Bj1:| |: mj_1 i
+ {0 0 0 Xj_1
0 0 0 U1 |

L/

=0.

@ This corresponds to a self-adjoint difference operator in ¢2.
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Linear DAE operators
Consider a linear k-th order differential-algebraic operator

k
L:X-Y, x—Lx= ZA;(t)x(’),
i=0
on I = [fy, t;] with sufficiently smooth matrix-valued functions
A € C(I,R™™) for i = 0,..., k acting on the Hilbert space

L2(I,R") := {x 1 —R" /||x(t)||2dt exists and is finite}
I

with standard L2-inner product
ts
(X, y) = / xT(t)y(t)dt forall x, y € Lp(I, R").
fo

and function spaces X c L2(I,R") (domain of £), Y C L2(I,R").
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Reduced Form
Assume that the matrix pencil
(Ak(t)a A1 (t)7 B AO(t))

is regular (i.e. det(P())) does not vanish identically) and given in
reduced form

[Ak1(t)] [Ak—1,1(D)] [ Aoa(t) ]
0 Ak-12(1) Ao 2(1)
: ) O b 9
. o0 ] [ o | [ Ao k1 (1),
with pointwise nonsingular matrix
Ak1(1)
Ak—1,2(1)
Ao k+1(1)
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

The Adjoint Operator

For a linear differential operator £ : X — Y the adjoint operator
L*:Y* — X* is the operator with domain

Y*=D(L)={yeY|3IzeX with (Lx,y) = (x,2) Vx € X},
i.e., for all y € Y* we define £*y such that

(Lx,y) = (x,L*y) for all x € X.

An operator L is said to be self-adjoint if Y* = X and £* = L.

@ The adjoint operator is unique and (L*)* = L.
@ L4, Lo self-adjoint, A € R = L1 + L» and ALy self-adjoint.
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Integration by Parts

@ For x ¢ Xand y € Y* we have

K K
exy) = [ TATydt =Y [Ty
Fi=o i=0 V1
@ Integration by parts of the terms (x())T ATy yields

/ (xXD)TATy ot =bi(x, y) + (1) / xT(ATy) dt
I I

with boundary term

bi(x,y) = 2(1 XUT=D)T (AT y)U

ty

@ Thus, formally the adjomt operator is given by

k -di
Loy =S (1) S (AT).
i=0
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Boundary Conditions

@ The domain X defines boundary conditions for £, while Y* defines
adjoint boundary conditions for £*.

— Define X, Y* such that the boundary terms b;(x, y) vanish.
@ we consider the function spaces

X = {x € C%I,R") |AFAix € C'(I,R"), Bi(x, 1) =0, i =1,...,k},
Y = C(I,R"),

with homogeneous boundary conditions

B,‘(X,fo)zo, i:1,...,k,
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

The Adjoint Operator

A linear operator L : X — Y with regular matrix tuple (Ag, ..., Ao) in
reduced form and boundary conditions

Bi(x, b)) = {(ATA)OxU==D|, =0, forj=0,...,i—1, £=0,....j},

has a unique adjoint operator L* : Y* — X* with

X* = C%I,R"),

Y* = {y € COLR")|AA Yy € C'(I,R"), B (y,t) = 0,i =1,..., k}

and boundary terms
Bi (v, t) = {(AAN) YU, =0, forj=0,...i=1,£=0....j}

that is given by L*y = Sk o(—1)/ (AT y).
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Example
@ Considering a linear first order differential-algebraic operator
LX = A1X + AOX,

with sufficiently smooth matrix-valued functions A¢, Ag € C(I,R™")
@ and homogeneous initial condition

(ATA1 X)(to) =0.

@ Then, the adjoint operator is of the form

. d . :
Lx == (Aly) + Agy = Ay + (Ag — Ay,

@ with homogeneous end condition
(AATy)(t) = 0.
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Self-adjoint DAE Operators

@ The adjoint operator £* can be written as

Cy= Z dt, Aly 1)2() Ny,

@ For self-adjointness we need £ = £* and therefore the formal
conditions for self-adjointness are

k

Ae=Z(—1)"<,_ >AT (i-0) _ Z( 1) <>(AT 0=

i=0

for¢=0,...,k using that (j) = 0 for j < 0.
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Self-adjoint DAE Operators

A differential-algebraic operator L with regular matrix tuple (Ak. ..., Ao)
in reduced form, sufficiently smooth A; € C'(I, R™") and

X= {X € CO(LR”) |A/+AIX € Ci(HaRn)a B,'(X, tO) = B;'k(xa tf) = O}a
Y = C°(L,R"),
is self-adjoint if and only if

k

Ac=>"(-1 (AN fore=o0,... k.
i=0
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Self-adjoint DAE Operators

A differential-algebraic operator L with regular matrix tuple (Ak. ..., Ao)
in reduced form, sufficiently smooth A; € C'(I, R™") and

X= {X € CO(LR”) |A/+AIX € Ci(HaRn)a B,'(X, tO) = B;'k(xa tf) = O}a
Y = C°(L,R"),
is self-adjoint if and only if

k

Ac=S (1) ()AND fore=0,....k.
i=0

@ An operator with constant coefficients is formally self-adjoint if
A = (-1)'Al fore=o0,... k.
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Even/Odd Order Splitting

Theorem
Any formally self-adjoint operator Lx is a sum of operators of the form

£2VX = (PZVX(V))(V)a
1
Loy 1X = E[(Qg,,,1x(”‘1))(”) + (Qop_1x =1,
with matrix valued functions
@ P, =P] e C*(I,R") and
@ o, 1=-Q) ,€C'(LR")forv=0,...,u,
® whereby 1 = X ifk is even and n = 51 if k is odd.
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Even/Odd Order Splitting

Theorem
Any formally self-adjoint operator Lx is a sum of operators of the form

£2VX = (PZVX(V))(V)a
1
Loy 1X = E[(Qg,,,1x(”‘1))(”) + (Qop— 1 xW) =1,
with matrix valued functions
@ P, =P] e C*(I,R") and
@ o, 1=-Q) ,€C'(LR")forv=0,...,u,
® whereby 1 = X ifk is even and n = 51 if k is odd.

A self-adjoint operator is in canonical form if it is given by

Ly — S o LoX+ >0 1 Loy_1X, ifmiseven, r=17,
- r—1 r : . 1
Yo LovX+>, 1 Loy_1x, ifmisodd, r= "%
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Example

@ Consider a second order differential-algebraic operator
Lox = AcX + A1 x + AoX,
with boundary conditions
Bi(x,to) = AT Aix|y, =0,
Bo(x, ty) = {A;Ag)'% =0, AfAoxly, =0, (AfA) x|, = o}.
@ Then the corresponding adjoint operator given by

" a7 d, ,.r T
Lry = dTg(Az}’) - E(A1 y)+AY,

with boundary conditions
BT(y, tf) = A1ATy‘tf =0,
B3y, ) = { AeA¥ly = 0, AoALVly =0, (AoAS) Myl =0}
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Example (continued)

@ The operator is self-adjoint if and only if
Ap=AJ, A=A —A)T, and Ay =(Az— A +A),

and all of the above boundary conditions hold.
@ A self-adjoint second order operator £, can be written as

1d
P2X) + PoX —+

Lox = 23t

dt( Qix)+ = Q1X
with

° P2—A2—P2T,

o Q) =A— Ag_—Q1,and

o Ph=Ay— A1+;A2—PT.
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Outline

e Linear Self-adjoint Operators

@ Self-adjoint Difference Operators
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Difference Operators

@ Consider the Hilbert space

3(Z) = {(x,-),-ez, x; € R"

Sl < oo} |

i€Z
with the inner product
<X7V> = ZX,‘T,VH for X = (Xi)iEZ7 y = (}/i)ieZ-
i€Z
@ Linear kth-order difference operator Ly : Xg — Yq is given by

K
Lax =) Al()xyj=0, forallicTcZz
j=0
with A;(i) e R™" for all i € Zo = {0,1,..., N} C Z and function
spaces Xq, Yy C 2(7).
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Adjoint Difference Operator

@ The adjoint is defined via the relation (L4X,y) = (X, £L;y), and the
operator is self-adjoint if (Lgx,y) = (X, LgY).

@ Since, formally, the adjoint of a forward shift operator is always a
backward shift no difference operator of order k > 1 defined in this
way can be self-adjoint.

@ Alternative: define linear difference operators of even order k = 2
k
Lax =Y A()Xi_u4j=0, forallieT,
j=0

with A;(i) € R™", j=0,..., k defined for all i € I,
@ eg.fork=2:

LgX = Ao(NXij11 + A1(I)X; + Ao(i)xj—1 =0, forallieZ.
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Summation by Parts

(LaX,y) ZZX/ wiiA (

i=0 j=0
=D X DA = o D)Yimug + BOY) = (X Lay),

With boundary term B(x,y) given by

p=1 [ p—1—j
Bx.y) = | S X AT (i — xT AL (= 1+ )i sy
j=0 i=0
N+p—j
+ > X AL = i+ )i — X AT (DY
i=N-+1
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Linear Self-adjoint Operators Self-adjoint Difference Operators

The Adjoint Difference Operator

Consider a difference operator L4 even order k = 2 with regular
matrix tuple (Ag, . . ., Ag) in reduced form and function spaces

Xg = {X=(X)iez, ; € R"| B(x) =0 forj=0,...,n— 1} C {*(Z),
Yo = {y = Wiez, ¥i € R"} C £3(2),

whereZ = {—u,...,N+ u} and

B(X) = {A}_j(i =+ NAkj(i — p+)x; =0, i=N+1,... N+ p—],
Aﬁ_(i)Aj(i)Xi—u—i-j = 0, i= 0,...,/1 -1 —j}
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Theorem (continued)
Then the adjoint operator L7 with function spaces

X5 = {(X)iez, xi € R"},
YZZ{(Yi)iez, YiERn|'Bf(V)ZOfOFI'ZOP--’M—@
and
B]*(y) = {Ak—](l_)U’—I_I)A:_I(I_/J—{_j)yl—,u-i—] = 07 I: 07 y b — 1 _j7
Aj(i)Af(i)y,-:O, i=N+1,....N+u—j}

is given by
k

Ly = ZAL/'(" — B+ )Yieptj-
j=0
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Example

For a second order linear difference operator given by
Lax = Ax()Xip1 + A1) X + Ao (i) Xi—1
with boundary conditions
Bo(x) = {A3 (N)Az(N)xny1 =0, Aj(0)Ao(0)x_1 = 0}
the adjoint operator is given by
Loy =AJ(i+ 1) + A (i + AL (I = 1)yis.
with boundary conditions

Bs(y) = {Ae(~1)AF (—1)y-1 = 0, Ao(N + 1)A7 (N + 1)yn11 = 0}
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Self-adjoint difference operator

An even order difference operator Ly is self-adjoint if and only if
Xg = {X = (X)iez, X € R"| B(x) = Bf(x) =0 forallj=0,...,p—1}
and

Al(i)=Af_j(i+j—p) forallj=0,... .k ic€Iy={0,...,N}.
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Self-adjoint difference operator

An even order difference operator Ly is self-adjoint if and only if
Xg = {X = (X)iez, X € R"| B(x) = Bf(x) =0 forallj=0,...,p—1}

and

Al(i)=Af_j(i+j—p) forallj=0,... .k ic€Iy={0,...,N}.

— For constant coefficients the conditions for self-adjointness are
A=A for j=0,...k
and a self-adjoint difference operator is given in palindromic form
LoX = AoXi—p + AXizpt + -+ AuXi+ -+ Al X1 + Al X
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Example (cont.)

@ For a second order linear difference operator the conditions for
self-adjointness are fori = 0,..., N

Ao(i) = AZ (i — 1),
Aq (i) = A] (i).

@ Second order self-adjoint difference operator:
Lgx = AJ (i + 1)Xip1 + A1 (1)X; + Ao (D) Xi_1,
with A;(i) = Al (i) for all i € Z, and boundary conditions

Bo(x) = {Ao(N + 1)AS(N + 1)xns1 = 0, AT(0)Ae(0)x_1 = 0}
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Is this the right definition of self-adjointness?

@ Our definition corresponds to the case of self-adjoint difference
equations of the form

LgX = A[P;AX/,1] +Qixi=0, Pi= P,-T, Q = Q,-T

with forward difference operator Ax; = Xj.1 — X;.
@ In our case we also have that £ = Lg4.

@ Drawback: for odd order difference operators there exists no
self-adjoint operator corresponding to the above definition.
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Alternative Formulation for Odd Order
@ Consider the Hilbert space of sequences with index set
B={.,-1,-%031,...}
?(B) = {(Xp)bes, Xo €R" | > [|x6]|* < 00},
beB

@ with the inner product (x,y) = >,z X/ yp» forall X,y € (3(B).
@ As before we have

k K
Lax =) ADX_x, Loy=) A ili=5+)Yixy
j=0 j=0
@ and a difference operator L is self-adjoint if and only if
Aili) = Ak (i +i = 3).
@ i.e. for k = 1 a self-adjoint operator is given by
Lax = AJ(i+ )X, 1+ Ao(1)X;_s.
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Operators in the Optimal Control Setting

If the coefficient matrices are sufficiently smooth then, under the
additional condition that

(EET()(to) = 0 and (EE"x)(tr) =0,

the differential-algebraic operator associated with the necessary
optimality system for the linear-quadratic optimal control problem is
self-adjoint.
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Operators in the Optimal Control Setting

Under the condition that
x_1=0 and myy4 =0,

the linear difference operator corresponding to the boundary value
problem of the optimality system for the discrete-time optimal control
problem is formally self-adjoint in (».
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e Structure Preserving Discretization
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Central Finite Differences

@ The nth-order central difference is given by

n

"lxI(t) = Y (1Y ()x(t+ (53— h)

j=0
for some discretization stepsize h such that

d"x(t) _ 0"[x](t)
an— hn

@ For odd nin the central difference h is multiplied by non-integers.

+ O(HR).

@ This problem may be avoided by taking the average of §”[x](t — g)
and §"[x](t + g). We denote this average by

FIN() = 5 ([~ §) + 8"[xl(t + B))
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Finite Differences Discretization

Consider a self-adjoint differential operator in canonical form (i.e. as
sum of even/odd order operators). A discretization using 5"[.](t;) for
odd derivatives of order n and ¢6"[.](t;) for even derivatives of order n
leads to a self-adjoint difference operator of even order.

Proof:
E.g. for a self-adjoint second order operator given in canonical form

Lox = G(P1X) + 3 [§(Qux) + Qi X] + Pox,
with Py = P], Qi = —Q[, Py = P} we get the discretized system
Lox(t) = S[P1o[X])(t) + 5 [S[Qsx](t) + Qi (1)5[x](1)] + Po(ti)x(t)

=3 {Pris1 X2 + [Q1 i1 + QilXi1 + [4Po; — Pr it — Pricqlx;
+[= Qi1 — QuilXio1 + Pri—1Xi2} -
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Outline

e Conclusion
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Conclusions and open problems

@ Linear quadratic optimal control problems lead to self-adjoint DAE
operators.

@ Self-adjointness of a systems is a more appropriate structure that
can also be dealt with in the variable coefficient or singular case.

@ We have given a proper definition of self-adjointness of differential
and difference operators.

@ In order to preserve the structure continuous-time systems should
be discretized in such a way that self-adjointness is preserved.

@ What is the right discretization of continuous time self-adjoint
operators that yield discrete time self-adjoint operators?
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Conclusion

Thank you very much
for your attention.
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