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Motivation

Linear-Quadratic Optimal Control Problem

Minimizing a quadratic cost functional

J (x , u) =
1
2

∫ tf

t0
(xT Wx + 2xT Su + uT Ru) dt ,

with W = W T ∈ Rn,n, S ∈ Rn,m and R = RT ∈ Rm,m

subject to the system dynamics given by the descriptor system

Eẋ + Ax + Bu = 0, x(t0) = 0,

with E , A ∈ Rn,n, B ∈ Rn,m,
x(t) ∈ Rn state vector, u(t) ∈ Rm control input vector.
Goal: determine optimal controls u ∈ U = C0(I, Rm).
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Motivation

Necessary conditions for optimality

Let u∗ define the minimal solution and let x∗ be the corresponding
trajectory, i.e., the solution of

Eẋ(t) + Ax(t) + Bu∗(t) = 0, x(t0) = 0.

Then there exists a costate function ζ(t), such that (x∗(t), ζ(t), u∗(t))
satisfy the Euler-Lagrange boundary value problem: 0 E 0

−ET 0 0
0 0 0

 ζ̇(t)
ẋ(t)
u̇(t)

 +

 0 A B
AT W S
BT ST R

 ζ(t)
x(t)
u(t)

 = 0,

with boundary conditions x(t0) = 0 and ET ζ(tf ) = 0.
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Motivation

Even matrix pencils
The associated matrix pair

(N ,M) =

 0 E 0
−ET 0 0

0 0 0

 ,

 0 A B
AT W S
BT ST R


is a so-called even matrix pair, i.e.,

N = −N T and M = MT ,

since the associated linear matrix polynomial

P(λ) = λN +M

is an even polynomial

P(λ) = λN +M = (−λ)(−N T )−MT = PT (−λ).
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Motivation

Reduced Euler Lagrange equations

If E and R are invertible then we obtain the equivalent reduced
Euler-Lagrange system[

ẋ
ξ̇

]
+

[
F G
H −F T

] [
x
ξ

]
= 0, x(t0) = 0, ξ(tf ) = 0,

with ξ = −ET ζ and with the Hamiltonian matrix[
F G
H −F T

]
=

[
E−1(A− BR−1ST ) E−1BR−1BT E−T

W − SR−1ST −(E−1(A− BR−1ST ))T

]
In general:

Even matrix pencils generalize Hamiltonian matrices.
Even matrix pencils have Hamiltonian spectrum plus possibly
some extra infinite eigenvalues or singular parts.
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Motivation

Discretization of Hamiltonian systems

The discretization of an Hamiltonian system

ẋ = Hx , with HJ = (HJ)T , J =

[
0 In
−In 0

]
with symplectic integration methods yields a discrete system

xi+1 = Sxi , xi ≈ x(ti) for some ti ∈ [t0, tf ]

with symplectic iteration matrix S, i.e., ST JS = J.
Using symplectic methods the total energy of the system (i.e., the
Hamiltonian function of the dynamical system) and the
symplecticity of the flow is preserved.
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Motivation

Palindromic Matrix Polynomials

A matrix polynomial

P(λ) =
k∑

i=0

λiAi

of degree k , where Ai ∈ Rn,n, is said to be palindromic if

λkPT (1/λ) = P(λ),

i.e., if
AT

k−i = Ai for i = 0, . . . , k .

Palindromic matrix polynomials generalize symplectic matrices.
The spectrum of a palindromic polynomial is symmetric w.r.t. the
unit circle and if 0 is an eigenvalue then also ∞ = 1

0 .
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Motivation

Example

For an Hamiltonian system

ẋ = Hx

a discretization with the implicit midpoint rule yields

(In − h
2H)xi+1 = (In + h

2H)xi ,

xi+1 = (In − h
2H)−1(In + h

2H)xi = Sxi ,

with symplectic matrix S = (σIn −H)−1(σIn +H) for σ = 2
h .

Discretization of an even system

N ẋ +Mx = 0, N = −N T , M = MT ,

with the implicit midpoint rule yields

(N + h
2M)xi+1 + (−N + h

2M)xi = 0,

i.e., a palindromic difference equation.
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Motivation

Generalization of Hamiltonian/Symplectic Structures

continuous time

Cayley

Palindromic system

Symplectic system

(Discrete) self−adjoint system

discrete time

Cayley

Hamiltonian system

Even system

Self−adjoint system

P T (i + 1)xi+1 + Q(i)xi + P (i)xi−1 = 0,
Q(i) = QT (i)

P Txi+1 + Pxi = 0

xi+1 = Sxi, ST JS = J

N ẋ +Mx = 0, N = −N T , M =MT

N (t)ẋ +M(t)x = 0, N = −N T

M = (M− Ṅ )T

ẋ = Hx, HJ = (HJ)T
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Optimal Control of DAE Systems Continuous-time Linear-Quadratic Optimal Control Problem

The linear-quadratic optimal control problem

Minimize the quadratic cost functional

J (x , u) =
1
2

∫ tf

t0
(xT W (t)x + xT S(t)u + uT R(t)u) dt ,

W = W T ∈ C0(I, Rn,n), S ∈ C0(I, Rn,m), R = RT ∈ C0(I, Rm,m).
subject to the constraint

E(t)ẋ + A(t)x + B(t)u = f (t), x(t0) = 0,

E ∈ C1(I, Rn,n), A ∈ C0(I, Rn,n), B ∈ C0(I, Rn,m), f ∈ C0(I, Rn)
sufficiently smooth.
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Optimal Control of DAE Systems Continuous-time Linear-Quadratic Optimal Control Problem

Reduced problem

For control problems of the form

E(t)ẋ + A(t)x + B(t)u = f (t), x(t0) = 0,

a behavior approach by introducing z =
[
xT , uT ]T leads to

E(t)ż +A(t)z = f (t),

with E(t) =
[

E(t) 0
]
, A(t) =

[
A(t) B(t)

]
Using derivative arrays we obtain a reduced system: Ê1(t)

0
0

 ż +

 Â1(t)
Â2(t)

0

 z =

 f̂1(t)
f̂2(t)
f̂3(t)

 ,
d̂ differential equations
â algebraic equations
ûl consistency equations

We assume from now on that the system is regular and given in
reduced form.
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Optimal Control of DAE Systems Continuous-time Linear-Quadratic Optimal Control Problem

Necessary optimality condition

Theorem ( Kunkel & Mehrmann ’08 )
Consider the linear quadratic DAE optimal control problem with a
consistent initial condition. Suppose that the system is strangeness-
free as a behavior system. If (x , u) ∈ X× U is a solution to this optimal
control problem, then there exists a Lagrange multiplier function
ζ ∈ C1

E+E(I, Rn) with

C1
E+E(I, Rn) =

{
x ∈ C0(I, Rn) | E+Ex ∈ C1(I, Rn)

}
.

such that (x , ζ, u) satisfy the optimality boundary value problem

E d
dt (E

+Ex) + (A− E d
dt (E

+E))x + Bu = f , (E+Ex)(t0) = 0,

−ET d
dt (EE+ζ) + Wx + Su + (A− EE+Ė)T ζ = 0, (EE+ζ)(tf ) = 0,

ST x + Ru + BT ζ = 0.
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Optimal Control of DAE Systems Continuous-time Linear-Quadratic Optimal Control Problem

The differential-algebraic operator

If the coefficients are sufficiently smooth then the
differential-algebraic operator corresponding to the boundary
value problem is given by 0 E(t) 0

−ET (t) 0 0
0 0 0

 d
dt

+

 0 A(t) B(t)
AT (t)− ĖT (t) W (t) S(t)

BT (t) ST (t) R(t)

 .

The associated DAE operator is formally self-adjoint in L2.
Analogous linear operators are obtained for higher order optimal
control problems.
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Optimal Control of DAE Systems Discrete-time Linear-Quadratic Optimal Control Problem

Discrete-time Linear-Quadratic Optimal Control
Problem
Minimize the cost functional

J (x , u) =
1
2

∞∑
j=0

(
xT

j Wxj + 2xT
j Suj + uT

j Ruj

)
subject to

Exj+1 + Axj + Buj = 0, j = 0, 1, . . .

with given starting value x0 ∈ Rn and coefficient matrices
W = W T ∈ Rn,n, S ∈ Rn,m, R = RT ∈ Rm,m and E , A ∈ Rn,n, B ∈ Rn,m.

Classical case: R̂ =

[
W S
ST R

]
symm.pos.def., E nonsingular.

Discrete-time H∞ control: R̂ indefinite or singular.
Descriptor system: E singular.
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Optimal Control of DAE Systems Discrete-time Linear-Quadratic Optimal Control Problem

Maximum Principle

Introducing Lagrange multipliers mj = [−νT
j − ν̃T

j ]T with νj ∈ Rn

and ν̃j ∈ R(k−1)n and applying the Pontryagin maximum principle.
This leads to the two-point boundary value problem 0 E 0

AT 0 0
BT 0 0

 mj+1
xj+1
uj+1

 +

 0 A B
ET W S
0 ST R

 mj
xj
uj

 = 0,

with original initial condition and terminal condition lim
j→∞

ET mj = 0.
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Optimal Control of DAE Systems Discrete-time Linear-Quadratic Optimal Control Problem

Transformation into Palindromic form
Shift the first block row one step downwards and introduce
another boundary value x−1 = 0 to obtain 0 0 0

AT 0 0
BT 0 0

 mj+1
xj+1
uj+1

 +

 0 E 0
ET W S
0 ST R

 mj
xj
uj


+

0 A B
0 0 0
0 0 0

 mj−1
xj−1
uj−1

 = 0.

This can be extended to variable coefficients 0 0 0
AT

j 0 0
BT

j 0 0

 mj+1
xj+1
uj+1

 +

 0 Ej 0
ET

j Wj Sj

0 ST
j Rj

 mj
xj
uj


+

0 Aj−1 Bj−1
0 0 0
0 0 0

 mj−1
xj−1
uj−1

 = 0.

This corresponds to a self-adjoint difference operator in `2.
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Linear DAE operators
Consider a linear k -th order differential-algebraic operator

L : X → Y, x 7→ Lx =
k∑

i=0

Ai(t)x (i),

on I = [t0, tf ] with sufficiently smooth matrix-valued functions
Ai ∈ C(I, Rn,n) for i = 0, . . . , k acting on the Hilbert space

L2(I, Rn) :=

{
x : I → Rn

∣∣∣∣∫
I
‖x(t)‖2dt exists and is finite

}
with standard L2-inner product

〈x , y〉 =

∫ tf

t0
xT (t)y(t)dt for all x , y ∈ L2(I, Rn).

and function spaces X ⊂ L2(I, Rn) (domain of L), Y ⊆ L2(I, Rn).
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Reduced Form
Assume that the matrix pencil

(Ak (t), Ak−1(t), . . . , A0(t))

is regular (i.e. det(P(λ)) does not vanish identically) and given in
reduced form


Ak ,1(t)

0
...

0

 ,


Ak−1,1(t)
Ak−1,2(t)

0
...
0

 , . . . ,


A0,1(t)
A0,2(t)

...
A0,k+1(t)




with pointwise nonsingular matrix

Ak ,1(t)
Ak−1,2(t)

...
A0,k+1(t)

 .
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

The Adjoint Operator

Definition
For a linear differential operator L : X → Y the adjoint operator
L∗ : Y∗ → X∗ is the operator with domain

Y∗ = D(L∗) = {y ∈ Y | ∃ z ∈ X∗ with 〈Lx , y〉 = 〈x , z〉 ∀x ∈ X},

i.e., for all y ∈ Y∗ we define L∗y such that

〈Lx , y〉 = 〈x ,L∗y〉 for all x ∈ X.

An operator L is said to be self-adjoint if Y∗ = X and L∗ = L.

Lemma
The adjoint operator is unique and (L∗)∗ = L.
L1, L2 self-adjoint, λ ∈ R =⇒ L1 + L2 and λL1 self-adjoint.
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Integration by Parts
For x ∈ X and y ∈ Y∗ we have

〈Lx , y〉 =

∫
I

k∑
i=0

(x (i))T AT
i y dt =

k∑
i=0

∫
I
(x (i))T AT

i y dt .

Integration by parts of the terms (x (i))T AT
i y yields∫

I
(x (i))T AT

i y dt =bi(x , y) + (−1)i
∫

I
xT (AT

i y)(i) dt

with boundary term

bi(x , y) =
i−1∑
j=0

(−1)j(x (i−j−1))T (AT
i y)(j)

∣∣∣tf
t0

.

Thus, formally the adjoint operator is given by

L∗y =
k∑

i=0

(−1)i d i

dt i (A
T
i y).
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Boundary Conditions

The domain X defines boundary conditions for L, while Y∗ defines
adjoint boundary conditions for L∗.

=⇒ Define X, Y∗ such that the boundary terms bi(x , y) vanish.

we consider the function spaces

X = {x ∈ C0(I, Rn) |A+
i Aix ∈ C i(I, Rn), Bi(x , t0) = 0, i = 1, . . . , k},

Y = C0(I, Rn),

with homogeneous boundary conditions

Bi(x , t0) = 0, i = 1, . . . , k ,

27 / 53



Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

The Adjoint Operator

Theorem
A linear operator L : X → Y with regular matrix tuple (Ak , . . . , A0) in
reduced form and boundary conditions

Bi(x , t0) = {(A+
i Ai)

(`)x (i−j−1)|t0 = 0, for j = 0, . . . , i − 1, ` = 0, . . . , j},

has a unique adjoint operator L∗ : Y∗ → X∗ with

X∗ = C0(I, Rn),

Y∗ = {y ∈ C0(I, Rn) |AiA+
i y ∈ C i(I, Rn), B∗i (y , tf ) = 0, i = 1, . . . , k}

and boundary terms

B∗i (y , tf ) = {(AiA+
i )(`)y (j−`)|tf = 0, for j = 0, . . . i − 1, ` = 0 . . . , j}

that is given by L∗y =
∑k

i=0(−1)i d i

dt i (AT
i y).

28 / 53



Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Example

Considering a linear first order differential-algebraic operator

Lx = A1ẋ + A0x ,

with sufficiently smooth matrix-valued functions A1, A0 ∈ C(I, Rn,n)

and homogeneous initial condition

(A+
1 A1x)(t0) = 0.

Then, the adjoint operator is of the form

L∗x = − d
dt

(AT
1 y) + AT

0 y = −AT
1 ẏ + (AT

0 − ȦT
1 )y ,

with homogeneous end condition

(A1A+
1 y)(tf ) = 0.
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Self-adjoint DAE Operators

The adjoint operator L∗ can be written as

L∗y =
k∑

i=0

(−1)i d i

dt i (A
T
i y) =

k∑
i=0

(−1)i
i∑

j=0

(
i
j

)
(AT

i )(j)y (i−j).

For self-adjointness we need L = L∗ and therefore the formal
conditions for self-adjointness are

A` =
k∑

i=0

(−1)i
(

i
i − `

)
(AT

i )(i−`) =
k∑

i=`

(−1)i
(

i
`

)
(AT

i )(i−`)

for ` = 0, . . . , k using that
(i

j

)
= 0 for j < 0.
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Self-adjoint DAE Operators

Theorem
A differential-algebraic operator L with regular matrix tuple (Ak . . . . , A0)
in reduced form, sufficiently smooth Ai ∈ C i(I, Rn,n) and

X = {x ∈ C0(I, Rn) |A+
i Aix ∈ C i(I, Rn), Bi(x , t0) = B∗i (x , tf ) = 0},

Y = C0(I, Rn),

is self-adjoint if and only if

A` =
k∑

i=`

(−1)i(i
`

)
(AT

i )(i−`) for ` = 0, . . . , k .

An operator with constant coefficients is formally self-adjoint if

A` = (−1)`AT
` for ` = 0, . . . , k .
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Self-adjoint DAE Operators
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Even/Odd Order Splitting

Theorem
Any formally self-adjoint operator Lx is a sum of operators of the form

L2νx = (P2νx (ν))(ν),

L2ν−1x =
1
2
[(Q2ν−1x (ν−1))(ν) + (Q2ν−1x (ν))(ν−1)],

with matrix valued functions
P2ν = PT

2ν ∈ Cν(I, Rn,n) and
Q2ν−1 = −QT

2ν−1 ∈ Cν(I, Rn,n) for ν = 0, . . . , µ,

whereby µ = k
2 if k is even and µ = k+1

2 if k is odd.

A self-adjoint operator is in canonical form if it is given by

Lx =

{∑r
ν=0 L2νx +

∑r
ν=1 L2ν−1x , if m is even, r = m

2 ,∑r−1
ν=0 L2νx +

∑r
ν=1 L2ν−1x , if m is odd, r = m+1

2 .
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Example

Consider a second order differential-algebraic operator

L2x = A2ẍ + A1ẋ + A0x ,

with boundary conditions

B1(x , t0) = A+
1 A1x |t0 = 0,

B2(x , t0) =
{

A+
2 A2ẋ |t0 = 0, A+

2 A2x |t0 = 0, (A+
2 A2)

(1)x |t0 = 0
}

.

Then the corresponding adjoint operator given by

L∗2y =
d2

dt2 (AT
2 y)− d

dt
(AT

1 y) + AT
0 y ,

with boundary conditions

B∗1(y , tf ) = A1A+
1 y |tf = 0,

B∗2(y , tf ) =
{

A2A+
2 y |tf = 0, A2A+

2 ẏ |tf = 0, (A2A+
2 )(1)y |tf = 0

}
.
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Linear Self-adjoint Operators Self-adjoint Differential-Algebraic Operators

Example (continued)

The operator is self-adjoint if and only if

A2 = AT
2 , A1 = (2Ȧ2 − A1)

T , and A0 = (Ä2 − Ȧ1 + A0)
T ,

and all of the above boundary conditions hold.
A self-adjoint second order operator L2 can be written as

L2x =
d
dt

(P2ẋ) + P0x +
1
2

d
dt

(Q1x) +
1
2

Q1ẋ ,

with
P2 = A2 = PT

2 ,
Q1 = A1 − Ȧ2 = −QT

1 , and
P0 = A0 − 1

2 Ȧ1 + 1
2 Ä2 = PT

0 .
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Difference Operators

Consider the Hilbert space

`2(Z) :=

{
(xi)i∈Z, xi ∈ Rn

∣∣∣∣∣ ∑
i∈Z

‖xi‖2 < ∞

}
,

with the inner product

〈x, y〉 =
∑
i∈Z

xT
i yi , for x = (xi)i∈Z, y = (yi)i∈Z.

Linear k th-order difference operator Ld : Xd → Yd is given by

Ldx =
k∑

j=0

Aj(i)xi+j = 0, for all i ∈ I ⊂ Z

with Aj(i) ∈ Rn,n for all i ∈ I0 = {0, 1, . . . , N} ⊂ I and function
spaces Xd , Yd ⊂ `2(Z).
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Adjoint Difference Operator

The adjoint is defined via the relation 〈Ldx, y〉 = 〈x,L∗dy〉, and the
operator is self-adjoint if 〈Ldx, y〉 = 〈x,Ldy〉.
Since, formally, the adjoint of a forward shift operator is always a
backward shift no difference operator of order k ≥ 1 defined in this
way can be self-adjoint.
Alternative: define linear difference operators of even order k = 2µ

Ldx =
k∑

j=0

Aj(i)xi−µ+j = 0, for all i ∈ I,

with Aj(i) ∈ Rn,n, j = 0, . . . , k defined for all i ∈ I0,
e.g. for k = 2:

Ldx = A2(i)xi+1 + A1(i)xi + A0(i)xi−1 = 0, for all i ∈ I.
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Summation by Parts

〈Ldx, y〉 =
N∑

i=0

k∑
j=0

xT
i−µ+jA

T
j (i)yi

=
N∑

i=0

xT
i

k∑
j=0

AT
k−j(i − µ + j)yi−µ+j + B(x, y) = 〈x,L∗dy〉,

With boundary term B(x, y) given by

B(x, y) =

µ−1∑
j=0

µ−1−j∑
i=0

xT
i−µ+jA

T
j (i)yi − xT

i AT
k−j(i − µ + j)yi−µ+j

+

N+µ−j∑
i=N+1

xT
i AT

k−j(i − µ + j)yi−µ+j − xT
i−µ+jA

T
j (i)yi

 .
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Linear Self-adjoint Operators Self-adjoint Difference Operators

The Adjoint Difference Operator

Theorem
Consider a difference operator Ld even order k = 2µ with regular
matrix tuple (Ak , . . . , A0) in reduced form and function spaces

Xd = {x = (xi)i∈I , xi ∈ Rn| Bj(x) = 0 for j = 0, . . . , µ− 1} ⊂ `2(Z),

Yd = {y = (yi)i∈I , yi ∈ Rn} ⊂ `2(Z),

where I = {−µ, . . . , N + µ} and

Bj(x) = {A+
k−j(i − µ + j)Ak−j(i − µ + j)xi = 0, i = N + 1, . . . , N + µ− j ,

A+
j (i)Aj(i)xi−µ+j = 0, i = 0, . . . , µ− 1− j}.
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Theorem (continued)
Then the adjoint operator L∗d with function spaces

X∗d = {(xi)i∈I , xi ∈ Rn} ,

Y∗d =
{

(yi)i∈I , yi ∈ Rn | B∗j (y) = 0 for j = 0, . . . , µ− 1
}

and

B∗j (y) = {Ak−j(i − µ + j)A+
k−j(i − µ + j)yi−µ+j = 0, i = 0, . . . , µ− 1− j ,

Aj(i)A+
j (i)yi = 0, i = N + 1, . . . , N + µ− j}

is given by

L∗dy =
k∑

j=0

AT
k−j(i − µ + j)yi−µ+j .
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Example

For a second order linear difference operator given by

Ldx = A2(i)xi+1 + A1(i)xi + A0(i)xi−1

with boundary conditions

B0(x) =
{

A+
2 (N)A2(N)xN+1 = 0, A+

0 (0)A0(0)x−1 = 0
}

the adjoint operator is given by

L∗dy = AT
0 (i + 1)yi+1 + AT

1 (i)yi + AT
2 (i − 1)yi−1.

with boundary conditions

B∗0(y) =
{

A2(−1)A+
2 (−1)y−1 = 0, A0(N + 1)A+

0 (N + 1)yN+1 = 0
}
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Self-adjoint difference operator

Theorem
An even order difference operator Ld is self-adjoint if and only if

Xd = {x = (xi)i∈I , xi ∈ Rn| Bj(x) = B∗j (x) = 0 for all j = 0, . . . , µ− 1}

and

Aj(i) = AT
k−j(i + j − µ) for all j = 0, . . . , k , i ∈ I0 = {0, . . . , N}.

=⇒ For constant coefficients the conditions for self-adjointness are

Aj = AT
k−j for j = 0, . . . , k

and a self-adjoint difference operator is given in palindromic form

Ldx = A0xi−µ + A1xi−µ+1 + · · ·+ Aµxi + · · ·+ AT
1 xi+µ−1 + AT

0 xi+µ.
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Self-adjoint difference operator

Theorem
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Example (cont.)

For a second order linear difference operator the conditions for
self-adjointness are for i = 0, . . . , N

A0(i) = AT
2 (i − 1),

A1(i) = AT
1 (i).

Second order self-adjoint difference operator:

Ldx = AT
0 (i + 1)xi+1 + A1(i)xi + A0(i)xi−1,

with A1(i) = AT
1 (i) for all i ∈ I0 and boundary conditions

B0(x) = {A0(N + 1)A+
0 (N + 1)xN+1 = 0, A+

0 (0)A0(0)x−1 = 0}

43 / 53



Linear Self-adjoint Operators Self-adjoint Difference Operators

Is this the right definition of self-adjointness?

Our definition corresponds to the case of self-adjoint difference
equations of the form

Ldx = ∆[Pi∆xi−1] + Qixi = 0, Pi = PT
i , Qi = QT

i

with forward difference operator ∆xi = xi+1 − xi .
In our case we also have that L∗∗d = Ld .
Drawback: for odd order difference operators there exists no
self-adjoint operator corresponding to the above definition.
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Alternative Formulation for Odd Order
Consider the Hilbert space of sequences with index set
B = {. . . ,−1,−1

2 , 0, 1
2 , 1, . . . }

`2(B) =
{
(xb)b∈B, xb ∈ Rn |

∑
b∈B

‖xb‖2 < ∞
}
,

with the inner product 〈x, y〉 =
∑

b∈B xT
b yb for all x, y ∈ `2(B).

As before we have

Ldx =
k∑

j=0

Aj(i)xi− k
2 +j , L∗dy =

k∑
j=0

AT
k−j(i − k

2 + j)yi− k
2 +j ,

and a difference operator Ld is self-adjoint if and only if

Aj(i) = AT
k−j(i + j − k

2 ).

i.e. for k = 1 a self-adjoint operator is given by

Ldx = AT
0 (i + 1

2)xi+ 1
2

+ A0(i)xi− 1
2
.
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Operators in the Optimal Control Setting

Theorem
If the coefficient matrices are sufficiently smooth then, under the
additional condition that

(EE+ζ)(t0) = 0 and (EE+x)(tf ) = 0,

the differential-algebraic operator associated with the necessary
optimality system for the linear-quadratic optimal control problem is
self-adjoint.
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Linear Self-adjoint Operators Self-adjoint Difference Operators

Operators in the Optimal Control Setting

Theorem
Under the condition that

x−1 = 0 and mN+1 = 0,

the linear difference operator corresponding to the boundary value
problem of the optimality system for the discrete-time optimal control
problem is formally self-adjoint in `2.
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Structure Preserving Discretization

Central Finite Differences

The nth-order central difference is given by

δn[x ](t) =
n∑

j=0

(−1)j(n
j

)
x(t + (n

2 − j)h)

for some discretization stepsize h such that

dnx(t)
dtn =

δn[x ](t)
hn + O(h2).

For odd n in the central difference h is multiplied by non-integers.
This problem may be avoided by taking the average of δn[x ](t − h

2)

and δn[x ](t + h
2). We denote this average by

δ̄n[x ](t) =
1
2

(
δn[x ](t − h

2) + δn[x ](t + h
2)

)
.
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Structure Preserving Discretization

Finite Differences Discretization
Theorem
Consider a self-adjoint differential operator in canonical form (i.e. as
sum of even/odd order operators). A discretization using δ̄n[.](ti) for
odd derivatives of order n and δn[.](ti) for even derivatives of order n
leads to a self-adjoint difference operator of even order.

Proof:
E.g. for a self-adjoint second order operator given in canonical form

L2x = d
dt (P1ẋ) + 1

2

[ d
dt (Q1x) + Q1ẋ

]
+ P0x ,

with P1 = PT
1 , Q1 = −QT

1 , P0 = PT
0 we get the discretized system

L2x(ti) ≈ δ̄[P1δ̄[x ]](ti) + 1
2

[
δ̄[Q1x ](ti) + Q1(ti)δ̄[x ](ti)

]
+ P0(ti)x(ti)

=1
4

{
P1,i+1xi+2 + [Q1,i+1 + Q1,i ]xi+1 + [4P0,i − P1,i+1 − P1,i−1]xi

+[−Q1,i−1 −Q1,i ]xi−1 + P1,i−1xi−2
}

.
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Conclusion

Conclusions and open problems

Linear quadratic optimal control problems lead to self-adjoint DAE
operators.
Self-adjointness of a systems is a more appropriate structure that
can also be dealt with in the variable coefficient or singular case.
We have given a proper definition of self-adjointness of differential
and difference operators.
In order to preserve the structure continuous-time systems should
be discretized in such a way that self-adjointness is preserved.
What is the right discretization of continuous time self-adjoint
operators that yield discrete time self-adjoint operators?
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Conclusion

Thank you very much
for your attention.
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