# Model reduction of nonlinear circuit equations 

Tatjana Stykel
Technische Universität Berlin

Joint work with T. Reis and A. Steinbrecher


BIRS Workshop, Banff, Canada, October 25-29, 2010

## Outline

- Differential-algebraic equations in circuit simulation
- Model order reduction problem
- PAssivity-preserving Balanced Truncation method for Electrical Circuits (PABTEC)
- Decoupling of linear and nonlinear parts
- Model reduction of linear equations
- Recoupling
- Numerical examples
- Conclusion


## Modified Nodal Analysis (MNA)


$\mathbf{A}=\left[A_{\mathcal{R}}, A_{\mathcal{C}}, A_{\mathcal{L}}, A_{\mathcal{V}}, A_{\mathcal{I}}\right]$

Kirchhoff's current law: $\quad \mathbf{A} j=0, j=\left[j_{\mathcal{R}}^{T}, j_{\mathcal{C}}^{T}, j_{\mathcal{L}}^{T}, j_{\mathcal{V}}^{T}, j_{\mathcal{I}}^{T}\right]^{T}$
Kirchhoff's voltage law: $\mathbf{A}^{T} \eta=v, v=\left[v_{\mathcal{R}}^{T}, v_{\mathcal{C}}^{T}, v_{\mathcal{L}}^{T}, v_{\mathcal{V}}^{T}, v_{\mathcal{I}}^{T}\right]^{T}$
Branch constitutive relations:
resistors: $\quad j_{\mathcal{R}}=g\left(v_{\mathcal{R}}\right), \quad \mathcal{G}\left(v_{\mathcal{R}}\right)=\frac{\partial g\left(v_{\mathcal{R}}\right)}{\partial v_{\mathcal{R}}}$
capacitors: $\quad j_{\mathcal{C}}=\frac{d q\left(v_{\mathcal{C}}\right)}{d t}, \quad \mathcal{C}\left(v_{\mathcal{C}}\right)=\frac{\partial q\left(v_{\mathcal{C}}\right)}{\partial v_{\mathcal{C}}}$
inductors: $\quad v_{\mathcal{L}}=\frac{d \phi\left(j_{\mathcal{L}}\right)}{d t}, \quad \mathcal{L}\left(j_{\mathcal{L}}\right)=\frac{\partial \phi\left(j_{\mathcal{L}}\right)}{\partial j_{\mathcal{L}}}$

## MNA circuit equations

Consider a linear DAE system

$$
\begin{aligned}
\mathcal{E}(x) \dot{x} & =\mathcal{A} x+f(x)+\mathcal{B} u \\
y & =\mathcal{B}^{T} x
\end{aligned}
$$

with

$$
\begin{aligned}
& \mathcal{E}(x)=\left[\begin{array}{ccc}
A_{\mathcal{C}} \mathcal{C}\left(A_{\mathcal{C}}^{T} \eta\right) A_{\mathcal{C}}^{T} & 0 & 0 \\
0 & \mathcal{L}\left(j_{\mathcal{L}}\right) & 0 \\
0 & 0 & 0
\end{array}\right], \quad \mathcal{A}=\left[\begin{array}{ccc}
0 & -A_{\mathcal{L}} & -A_{\mathcal{V}} \\
A_{\mathcal{L}}^{T} & 0 & 0 \\
A_{\mathcal{V}}^{T} & 0 & 0
\end{array}\right], \quad \mathcal{B}=\left[\begin{array}{cc}
-A_{\mathcal{I}} & 0 \\
0 & 0 \\
0 & -I
\end{array}\right], \\
& f(x)=\left[\begin{array}{c}
-A_{\mathcal{R}} g\left(A_{\mathcal{R}}^{T} \eta\right) \\
0 \\
0
\end{array}\right], \quad u=\left[\begin{array}{c}
j_{\mathcal{I}} \\
v_{\mathcal{V}}
\end{array}\right], \quad x=\left[\begin{array}{c}
\eta \\
j_{\mathcal{L}} \\
j_{\mathcal{V}}
\end{array}\right], \quad y=-\left[\begin{array}{c}
v_{\mathcal{I}} \\
j_{\mathcal{V}}
\end{array}\right], \\
& \eta \quad \text { - node potentials, } \\
& j_{\mathcal{L}}, j_{\mathcal{V}}, j_{\mathcal{I}} \text { - currents through inductors, voltage and current sources, } \\
& v_{\mathcal{V}}, v_{\mathcal{I}} \quad-\text { voltages at voltage and current sources, } \\
& A_{\mathcal{R}}, A_{\mathcal{C}}, A_{\mathcal{L}}, A_{\mathcal{V}}, A_{\mathcal{I}} \text { - incidence matrices of resistors, capacitors, inductors, }
\end{aligned}
$$

## Index

## Assumptions

- $A_{V}$ has full column rank (= no V-loops)
- $\left[A_{\mathcal{C}}, A_{\mathcal{L}}, A_{\mathcal{R}}, A_{\mathcal{V}}\right]$ has full row rank (= no l-cutsets)
- $\mathcal{C}, \mathcal{L}, \mathcal{G}$ are symmetric, positive definite


## Index characterization

[Estévez Schwarz/Tischendorf'00]
Index $=0 \Leftrightarrow$ no voltage sources and every node has a capacitive path to a reference node

Index $=1 \Leftrightarrow$ no CV-loops except for C-loops and no LI-cutsets
Index = 2, otherwise

## Model reduction problem

Given a large-scale system $\mathcal{E}(x) \dot{x}=\mathcal{A} x+f(x)+\mathcal{B} u$ $y=\mathcal{C} x$
with $x \in \mathbb{R}^{n}$ and $u, y \in \mathbb{R}^{m}$,
find a reduced-order system

$$
\begin{aligned}
\widetilde{\mathcal{E}}(\widetilde{x}) \dot{\tilde{x}} & =\widetilde{\mathcal{A}} \widetilde{x}+\widetilde{f}(\widetilde{x})+\widetilde{\mathcal{B}} u \\
\widetilde{y} & =\widetilde{\mathcal{C}} \widetilde{x}
\end{aligned}
$$

with $\tilde{x} \in \mathbb{R}^{r}, u, \widetilde{y} \in \mathbb{R}^{m}, r \ll n$.

- preservation of passivity and stability
- small approximation error $\|\widetilde{y}-y\| \leq t o l\|u\|$ for all $u \in \mathcal{U}$
$\hookrightarrow$ need for computable error bounds
- numerically stable and efficient methods


## Model reduction techniques

- Linear circuit equations
- Krylov subspace methods (moment matching)

SyPVL for RC, RL, LC circuits
[ Freund et al.'96,'97]
PRIMA, SPRIM for RLC circuits
[ Odabasioglu et al.'96,'97; Freund'04,'05]
Positive real interpolation

- Balancing-related model reduction methods LyaPABTEC for RC, RL circuits
[Reis/S.'10] PABTEC for RLC circuits
- Nonlinear circuit equations
- Proper orthogonal decomposition (POD)
- Trajectory piece-wise linear approach (TPWL)
[Rewieński'03]
- (Quadratic) bilinearization + balanced truncation [Benner/Breiten'10]


## PABTEC Tool



## Decoupling



## Large linear RLC circuits arise in

- modelling transmission lines and pin packages
- modelling circuits elements by Maxwell's equations via partial element equivalent circuits (PEEC)

Assume that

$$
\begin{aligned}
& A_{\mathcal{C}}=\left[A_{\mathcal{G}}, A_{\mathcal{C}_{n}}\right], \quad A_{\mathcal{L}}=\left[A_{\mathcal{L}_{l}}, A_{\mathcal{L}_{n}}\right], \quad A_{\mathcal{R}}=\left[A_{\mathcal{R}_{l}}, A_{\mathcal{R}_{n}}\right], \\
& \mathcal{C}\left(A_{\mathcal{C}}^{T} \eta\right)=\left[\begin{array}{cc}
\mathcal{C}_{l} & 0 \\
0 & \mathcal{C}_{n}\left(A_{\mathcal{C}_{n}}^{T} \eta\right)
\end{array}\right], \quad \mathcal{L}\left(j_{\perp}\right)=\left[\begin{array}{cc}
\mathcal{L}_{l} & 0 \\
0 & \mathcal{L}_{n}\left(j_{\mathcal{L}_{n}}\right)
\end{array}\right], \quad g\left(A_{\mathcal{R}}^{T} \eta\right)=\left[\begin{array}{c}
\mathcal{G}_{l} A_{\mathcal{R}_{l}}^{T} \eta \\
g_{n}\left(A_{\mathcal{R}_{n}}^{T} \eta\right)
\end{array}\right] .
\end{aligned}
$$

## Replacement of nonlinear elements


$\rightarrow \mid \sim$

:-( Ll-cutsets may arise

:-)

:-( LI- or I-cutsets may arise

## Replacement of nonlinear elements


:-| additional variables

:-)

:-( CV- or V-loops may arise

## Replacement of nonlinear elements


:-| additional variables

:-)

:-| additional variables

## Decoupled system

Linear RLC equations: $\quad E \dot{x}_{l}=A x_{l}+B u_{l}$

$$
y_{l}=B^{T} x_{l}
$$

with

$$
\begin{aligned}
& E=\left[\begin{array}{ccc}
A_{C} \mathcal{C} A_{C}^{T} & 0 & 0 \\
0 & L & 0 \\
0 & 0 & 0
\end{array}\right], \quad A=\left[\begin{array}{ccc}
-A_{R} G A_{R}^{T} & -A_{L} & -A_{V} \\
A_{L}^{T} & 0 & 0 \\
A_{V}^{T} & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{cc}
-A_{I} & 0 \\
0 & 0 \\
0 & -I
\end{array}\right], \\
& A_{C}=\left[\begin{array}{c}
A_{\mathcal{C}_{l}} \\
0
\end{array}\right], \quad A_{L}=\left[\begin{array}{c}
A_{\mathcal{L}_{l}} \\
0
\end{array}\right], \quad A_{R}=\left[\begin{array}{ccc}
A_{\mathcal{R}_{l}} & A_{\mathcal{R}_{n}, 1} & A_{\mathcal{R}_{n}, 2} \\
0 & -I & I
\end{array}\right], \quad A_{I}=\left[\begin{array}{ccc}
A_{\mathcal{I}} & A_{\mathcal{R}_{n}, 2} & A_{\mathcal{L}_{n}} \\
0 & I & 0
\end{array}\right], \\
& A_{V}=\left[\begin{array}{cc}
A_{\mathcal{V}} & A_{\mathcal{C}_{n}} \\
0 & 0
\end{array}\right], \quad G=\left[\begin{array}{ccc}
\mathcal{G}_{l} & 0 & 0 \\
0 & G_{1} & 0 \\
0 & 0 & G_{2}
\end{array}\right], \quad x_{l}^{T}=\left[\begin{array}{ll}
\eta^{T} & \eta_{z}^{T}\left|j_{\mathcal{L}_{l}}^{T}\right| j_{\mathcal{V}}^{T}
\end{array} j_{\mathcal{C}_{n}}^{T}\right], \\
& u_{l}^{T}=\left[\begin{array}{ll}
j_{\mathcal{I}}^{T} & j_{z}^{T}\left|j_{\mathcal{L}_{n}}^{T}\right| u_{\mathcal{V}}^{T} \\
u_{\mathcal{C}_{n}}^{T}
\end{array}\right] ;
\end{aligned}
$$

Nonlinear equations: $\quad \mathcal{C}_{n}\left(v_{\mathcal{C}_{n}}\right) \frac{d}{d t} u_{\mathcal{C}_{n}}=j_{\mathcal{C}_{n}}, \quad \mathcal{L}_{n}\left(j_{\mathcal{L}_{n}}\right) \frac{d}{d t} j_{\mathcal{L}_{n}}=A_{\mathcal{L}_{n}}^{T} \eta$,

$$
j_{z}=\left(G_{1}+G_{2}\right) G_{1}^{-1} g_{n}\left(A_{\mathfrak{R}_{n}}^{T} \eta\right)-G_{2} A_{\mathfrak{R}_{n}}^{T} \eta
$$

## Balanced truncation

System $\boldsymbol{G}=(E, A, B, C)$ is balanced if the controllability and observability Gramians $X$ and $Y$ satisfy

$$
X=Y=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right) .
$$

Idea: balance the system, i.e., find an equivalence transformation $(\hat{E}, \hat{A}, \hat{B}, \hat{C})=\left(W_{b} E T_{b}, W_{b} A T_{b}, W_{b} B, C T_{b}\right)$

$$
=\left(\left[\begin{array}{ll}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right],\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[C_{1}, C_{2}\right]\right)
$$

such that $\hat{X}=\hat{Y}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and truncate the states corresponding to small $\sigma_{j} \hookrightarrow \widetilde{G}=\left(E_{11}, A_{11}, B_{1}, C_{1}\right)$.

DAEs: $\boldsymbol{G}(s)=C(s E-A)^{-1} B=\boldsymbol{G}_{s p}(s)+\mathbf{P}(s) \Rightarrow \widetilde{\boldsymbol{G}}(s)=\tilde{\boldsymbol{G}}_{s p}(s)+\mathbf{P}(s)$

## Projected Lur'e equations

- If $G=(E, A, B, C)$ is passive, then there exist matrices $X=X^{T} \geq 0, J_{c}, K_{c}$ and $Y=Y^{T} \geq 0, J_{o}, K_{o}$ that satisfy the projected Lur'e equations

$$
\begin{aligned}
& (A-B C) X E^{T}+E X(A-B C)^{T}+2 P_{l} B B^{T} P_{l}^{T}=-2 K_{c} K_{c}^{T}, \quad X=P_{r} X P_{r}^{T}, \\
& E X C^{T}-P_{l} B M_{0}^{T}=-K_{c} J_{c}^{T}, \quad I-M_{0} M_{0}^{T}=J_{c} J_{c}^{T},
\end{aligned}
$$

$(A-B C)^{T} Y E+E^{T} Y(A-B C)+2 P_{r}^{T} C^{T} C P_{r}=-2 K_{o}^{T} K_{o}, \quad Y=P_{l}^{T} Y P_{l}$, $-B^{T} Y E+M_{0}^{T} C P_{r}=-J_{o}^{T} K_{o}, \quad I-M_{0}^{T} M_{0}=J_{o}^{T} J_{o}$,
where $M_{0}=I-2 \lim _{s \rightarrow \infty} C(s E-A+B C)^{-1} B, P_{r}$ and $P_{l}$ are the spectral projectors onto the left and right deflating subspaces of the pencil $\lambda E-A+B C$ corresponding to the finite eigenvalues.

- $0 \leq X_{\text {min }} \leq X \leq X_{\text {max }}, \quad 0 \leq Y_{\text {min }} \leq Y \leq Y_{\text {max }}$
$X_{\min }$ - controllability Gramian, $\quad Y_{\min }$ - observability Gramian


## Passivity-preserving BT method

Given a passive system $G=(E, A, B, C)$.

1. Compute $P_{r}, P_{l}, M_{0}$.
2. Compute $X_{\min }=R R^{T}, Y_{\min }=L L^{T}$ (= solve the Lur'e equations).
3. Compute the SVD $\quad L^{T} E R=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Pi_{1} & \\ & \Pi_{2}\end{array}\right]\left[\begin{array}{l}\left.V_{1}, V_{2}\right]^{T} \text {. } \\ \\ \end{array}\right.$
4. Compute the reduced-order model

$$
\begin{aligned}
& \widetilde{E}=\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right], \quad \widetilde{A}=\left[\begin{array}{cc}
2 W^{T} A T & \sqrt{2} W^{T} B C_{\infty} \\
-\sqrt{2} B_{\infty} C T & 2 I-B_{\infty} C_{\infty}
\end{array}\right], \\
& \widetilde{B}=\left[\begin{array}{c}
W^{T} B \\
-B_{\infty} / \sqrt{2}
\end{array}\right], \quad \widetilde{C}=\left[\begin{array}{ll}
C T & C_{\infty} / \sqrt{2}
\end{array}\right]
\end{aligned}
$$

with $\quad I-M_{0}=C_{\infty} B_{\infty}, \quad W=L U_{1} \Pi_{1}^{-1 / 2}$ and $T=R V_{1} \Pi_{1}^{-1 / 2}$.

## Properties

- $\widetilde{G}=(\widetilde{E}, \widetilde{A}, \widetilde{B}, \widetilde{C})$ is passive
- $\widetilde{\boldsymbol{G}}=(\widetilde{E}, \widetilde{A}, \widetilde{B}, \widetilde{C})$ is reciprocal $\left(\widetilde{\boldsymbol{G}}(s)=\Sigma \widetilde{\boldsymbol{G}}^{T}(s) \Sigma\right)$
- Error bounds:

$$
\|\boldsymbol{G}\|_{\mathbb{H}_{\infty}}:=\sup _{\omega \in \mathbb{R}}\|\boldsymbol{G}(i \omega)\|_{2}
$$

- If $2\|I+\boldsymbol{G}\|_{\mathbb{H}_{\infty}}\left(\pi_{\ell_{f}+1}+\ldots+\pi_{n_{f}}\right)<1$, then

$$
\|\widetilde{\boldsymbol{G}}-\boldsymbol{G}\|_{H_{\infty}} \leq 2\|I+\boldsymbol{G}\|_{\mathbb{H}_{\infty}}^{2}\left(\pi_{\ell_{f}+1}+\ldots+\pi_{n_{f}}\right) .
$$

- If $2\|I+\widetilde{\boldsymbol{G}}\|_{\mathbb{H}_{\infty}}\left(\pi_{\ell_{f}+1}+\ldots+\pi_{n_{f}}\right)<1$, then

$$
\|\widetilde{\boldsymbol{G}}-\boldsymbol{G}\|_{\mathbb{H}_{\infty}} \leq 2\|I+\widetilde{\boldsymbol{G}}\|_{\mathbb{H}_{\infty}}^{2}\left(\pi_{\ell_{f}+1}+\ldots+\pi_{n_{f}}\right) .
$$

## Application to circuit equations

$$
E=\left[\begin{array}{ccc}
A_{C} \mathcal{C} A_{C}^{T} & 0 & 0 \\
0 & L & 0 \\
0 & 0 & 0
\end{array}\right], A-B C=\left[\begin{array}{ccc}
-A_{R} G A_{R}^{T}-A_{I} A_{I}^{T} & -A_{L} & -A_{V} \\
A_{L}^{T} & 0 & 0 \\
A_{V}^{T} & 0 & -I
\end{array}\right], B=\left[\begin{array}{cc}
-A_{I} & 0 \\
0 & 0 \\
0 & -I
\end{array}\right]=C^{T}
$$

- Compute $P_{r}$ and $P_{l}$ using the canonical projectors technique [März'96]

$$
\hookrightarrow \quad P_{r}=\left[\begin{array}{ccc}
H_{5}\left(H_{4} H_{2}-I\right) & H_{5} H_{4} A_{\llcorner } H_{6} & 0 \\
0 & H_{6} & 0 \\
-A_{\mathcal{V}}^{T}\left(H_{4} H_{2}-I\right) & -A_{\mathcal{V}}^{T} H_{4} A_{\mathcal{L}} H_{6} & 0
\end{array}\right]
$$

with $H_{1}=Z_{C R I V}^{T} A_{L} L^{-1} A_{L}^{T} Z_{C R I V}, H_{2}=\ldots, H_{3}=Z_{C}^{T} H_{2} Z_{C}, H_{4}=Z_{C} H_{3}^{-1} Z_{C}^{T}$,

$$
H_{5}=Z_{C R I V} H_{1}^{-1} Z_{C R I V}^{T} A_{L} L^{-1} A_{L}^{T}-I, \quad H_{6}=I-L^{-1} A_{L}^{T} Z_{C R I V} H_{1}^{-1} Z_{C R I V}^{T} A_{L},
$$

$Z_{C}$ and $Z_{C R I V}$ are basis matrices for ker $A_{C}^{T}$ and $\operatorname{ker}\left[A_{C}, A_{R}, A_{I}, A_{V}\right]^{T}$.
$\hookrightarrow \quad P_{l}=S P_{r}^{T} S^{T}$ with $S=\operatorname{diag}\left(I_{n_{\eta}},-I_{n_{L}},-I_{n_{V}}\right)$

## Application to circuit equations

$$
E=\left[\begin{array}{ccc}
A_{C} \mathcal{C} A_{C}^{T} & 0 & 0 \\
0 & L & 0 \\
0 & 0 & 0
\end{array}\right], A-B C=\left[\begin{array}{ccc}
-A_{R} G A_{R}^{T}-A_{I} A_{I}^{T} & -A_{L} & -A_{V} \\
A_{L}^{T} & 0 & 0 \\
A_{V}^{T} & 0 & -I
\end{array}\right], B=\left[\begin{array}{cc}
-A_{I} & 0 \\
0 & 0 \\
0 & -I
\end{array}\right]=C^{T}
$$

- Compute $P_{r}$ and $P_{l}=S P_{r}^{T} S^{T}$ with $S=\operatorname{diag}\left(I_{n_{R}},-I_{n_{L}},-I_{n_{V}}\right)$.
- Compute $M_{0}=I-2 \lim _{s \rightarrow \infty} C(s E-A+B C)^{-1} B$

$$
\hookrightarrow \quad M_{0}=\left[\begin{array}{rr}
I-2 A_{I}^{T} Z H_{0}^{-1} Z^{T} A_{I} & 2 A_{I}^{T} Z H_{0}^{-1} Z^{T} A_{V} \\
-2 A_{V}^{T} Z H_{0}^{-1} Z^{T} A_{I} & -I+2 A_{V}^{T} Z H_{0}^{-1} Z^{T} A_{V}
\end{array}\right]
$$

where $H_{0}=Z^{T}\left(A_{R} G A_{R}^{T}+A_{I} A_{I}^{T}+A_{V} A_{V}^{T}\right) Z, \quad Z=Z_{C} Z_{R I V-C}^{\prime}$,
$Z_{R I V-C}$ is a basis matrix for $\operatorname{ker}\left[A_{R}, A_{I}, A_{V}\right]^{T} Z_{C}$ and
[ $Z_{R I V-C}, Z_{R I V-C}^{\prime}$ ] is nonsingular.

## Application to circuit equations

- Compute $M_{0}, \quad P_{r}, \quad P_{l}=S P_{r}^{T} S^{T}$ with $S=\operatorname{diag}\left(I_{n_{R}},-I_{n_{L}},-I_{n_{V}}\right)$.
- Compute $X_{\min }=R R^{T}, Y_{\min }=F F^{T}$ (solve the projected Lur'e equations)

If $D_{0}=I-M_{0} M_{0}^{T}$ is nonsingular, then the projected Lur'e equations are equivalent to the projected Riccati equation

$$
\begin{aligned}
& (A-B C) X E^{T}+E X(A-B C)^{T}+2 P_{l} B B^{T} P_{l}^{T} \\
& \quad+2\left(E X C^{T}-P_{l} B M_{0}^{T}\right) D_{0}^{-1}\left(E X C^{T}-P_{l} B M_{0}^{T}\right)=0, \quad X=P_{r} X P_{r}^{T}
\end{aligned}
$$

$\hookrightarrow$ compute a low-rank approximation $X_{\min } \approx \widetilde{R} \widetilde{R}^{T}, \widetilde{R} \in \mathbb{R}^{n, k}, k \ll n$, using the generalized low-rank Newton method [Benner/St.'10]
$\hookrightarrow Y_{\text {min }}=S X_{\min } S^{T} \approx S \widetilde{R} \widetilde{R}^{T} S^{T}=\widetilde{F} \widetilde{F}^{T}$
$\hookrightarrow D_{0}$ is nonsingular, if the circuit contains neither CVI-loops except for C-loops nor LIV-cutsets except for L-cutsets

## Application to circuit equations

- Compute $M_{0}, \quad P_{r}, \quad P_{l}=S P_{r}^{T} S^{T}$ with $S=\operatorname{diag}\left(I_{n_{R}},-I_{n_{L}},-I_{n_{V}}\right)$.
- Compute $X_{\min } \approx \widetilde{R} \widetilde{R}^{T}, \quad Y_{\min }=S X_{\min } S^{T} \approx S \widetilde{R} \widetilde{R}^{T} S^{T}=\widetilde{F} \widetilde{F}^{T}$.
- Compute the SVD of $\widetilde{F}^{T} E \widetilde{R}$
$\hookrightarrow \widetilde{F}^{T} E \widetilde{R}=\widetilde{R}^{T} S E \widetilde{R}$ is symmetric
$\hookrightarrow$ compute the EVD $\widetilde{R}^{T} S E \widetilde{R}=\left[\begin{array}{ll}U_{1}, U_{2}\end{array}\right]\left[\begin{array}{ll}\Lambda_{1} & \\ & \Lambda_{2}\end{array}\right]\left[U_{1}, U_{2}\right]^{T}$ instead of the SVD
$\hookrightarrow W=S \widetilde{R} U_{1}\left|\Lambda_{1}\right|^{-1 / 2}$ and $T=\widetilde{R} U_{1}\left|\Lambda_{1}\right|^{-1 / 2} \operatorname{sign}\left(\Lambda_{1}\right)$ with

$$
\left|\Lambda_{1}\right|=\operatorname{diag}\left(\left|\lambda_{1}\right|, \ldots,\left|\lambda_{\ell_{f}}\right|\right), \quad \operatorname{sign}\left(\Lambda_{1}\right)=\operatorname{diag}\left(\operatorname{sign}\left(\lambda_{1}\right), \ldots, \operatorname{sign}\left(\lambda_{\ell_{f}}\right)\right)
$$

## Application to circuit equations

- Compute $M_{0}, \quad P_{r}, \quad P_{l}=S P_{r}^{T} S^{T}$ with $S=\operatorname{diag}\left(I_{n_{R}},-I_{n_{L}},-I_{n_{V}}\right)$.
- Compute $X_{\min } \approx \widetilde{R} \widetilde{R}^{T}$.
- Compute the EVD $\quad \widetilde{R}^{T} S E \widetilde{R}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Lambda_{1} & \\ & \Lambda_{2}\end{array}\right]\left[U_{1}, U_{2}\right]^{T}$ and

$$
W=S \widetilde{R} U_{1}\left|\Lambda_{1}\right|^{-1 / 2}, \quad T=\widetilde{R} U_{1}\left|\Lambda_{1}\right|^{-1 / 2} \operatorname{sign}\left(\Lambda_{1}\right) .
$$

- Compute $B_{\infty}$ and $C_{\infty}$ such that $C_{\infty} B_{\infty}=I-M_{0}$
$\hookrightarrow\left(I-M_{0}\right) \Sigma$ with $\Sigma=\operatorname{diag}\left(I_{n_{I}},-I_{n_{V}}\right)$ is symmetric
$\hookrightarrow$ compute the EVD $\left(I-M_{0}\right) \Sigma=U_{0} \Lambda_{0} U_{0}^{T}$
$\hookrightarrow B_{\infty}=\operatorname{sign}\left(\Lambda_{0}\right)\left|\Lambda_{0}\right|^{1 / 2} U_{0}^{T} \Sigma$ and $C_{\infty}=U_{0}\left|\Lambda_{0}\right|^{1 / 2}$


## PABTECL algorithm

- Compute $M_{0}, \quad P_{r}, \quad P_{l}=S P_{r}^{T} S^{T}$ with $S=\operatorname{diag}\left(I_{n_{R}},-I_{n_{L}},-I_{n_{V}}\right)$.
- Compute $X_{\min } \approx \widetilde{R} \widetilde{R}^{T}$.
- Compute the EVD $\quad \widetilde{R}^{T} S E \widetilde{R}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Lambda_{1} & \\ & \Lambda_{2}\end{array}\right]\left[U_{1}, U_{2}\right]^{T}$ and

$$
W=S \widetilde{R} U_{1}\left|\Lambda_{1}\right|^{-1 / 2}, \quad T=\widetilde{R} U_{1}\left|\Lambda_{1}\right|^{-1 / 2} \operatorname{sign}\left(\Lambda_{1}\right) .
$$

- Compute the EVD $\left(I-M_{0}\right) \Sigma=U_{0} \Lambda_{0} U_{0}^{T}$ with $\Sigma=\operatorname{diag}\left(I_{n_{I}},-I_{n_{\nu}}\right)$ and $B_{\infty}=\operatorname{sign}\left(\Lambda_{0}\right)\left|\Lambda_{0}\right|^{1 / 2} U_{0}^{T} \Sigma, \quad C_{\infty}=U_{0}\left|\Lambda_{0}\right|^{1 / 2}$.
- Compute the reduced-order model

$$
\begin{aligned}
& \widetilde{E}=\left[\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right], \quad \widetilde{A}=\frac{1}{2}\left[\begin{array}{rr}
2 W^{T} A T & \sqrt{2} W^{T} B C_{\infty} \\
-\sqrt{2} B_{\infty} C T & 2 I-B_{\infty} C_{\infty}
\end{array}\right], \\
& \widetilde{B}=\left[\begin{array}{c}
W^{T} B \\
-B_{\infty} / \sqrt{2}
\end{array}\right], \quad \widetilde{C}=\left[C T, C_{\infty} / \sqrt{2}\right] .
\end{aligned}
$$

## Recoupling

Linear reduced-order model:

$$
\begin{aligned}
\widetilde{E}^{\dot{x}_{l}} & =\widetilde{A} \widetilde{x}_{l}+\left[\widetilde{B}_{1}, \widetilde{B}_{2}, \widetilde{B}_{3}, \widetilde{B}_{4}, \widetilde{B}_{5}\right] u_{l}, \\
\widetilde{y}_{l} & =\left[\begin{array}{c}
-A_{I}^{T} \eta \\
\widetilde{C}_{1} \\
\widetilde{C}_{2} \\
\widetilde{C}_{3} \\
\widetilde{C}_{4} \\
\widetilde{C}_{5}
\end{array}\right] \widetilde{x}_{l} \approx y_{l}=\left[\begin{array}{c}
-A_{\mathfrak{R}_{n}}^{T} \eta+G_{1}^{-1} g_{n}\left(A_{\mathfrak{R}_{n}}^{T} \eta\right) \\
-A_{\mathcal{L}_{n}}^{T} \eta \\
-j_{V} \\
-j_{C_{n}}
\end{array}\right]
\end{aligned}
$$

Nonlinear equations: $\quad \mathcal{C}_{n}\left(v_{\mathcal{C}_{n}}\right) \frac{d}{d t} u_{\mathcal{C}_{n}}=j_{\mathcal{C}_{n}}$,

$$
\begin{aligned}
& \mathcal{L}_{n}\left(j_{\mathcal{L}_{n}}\right) \frac{d}{d t} j_{\mathcal{L}_{n}}=A_{\mathcal{L}_{n}}^{T} \eta, \\
& j_{z}=\left(G_{1}+G_{2}\right) G_{1}^{-1} g_{n}\left(A_{\mathbb{R}_{n}}^{T} \eta\right)-G_{2} A_{\mathbb{R}_{n}}^{T} \eta
\end{aligned}
$$

## Reduced-order nonlinear system

We obtain the reduced-order system

$$
\begin{aligned}
\widetilde{\mathcal{E}}(\widetilde{x}) \dot{\tilde{x}} & =\widetilde{\mathcal{A}} \widetilde{x}+\widetilde{f}(\widetilde{x})+\widetilde{\mathcal{B}} u \\
\widetilde{y} & =\widetilde{\mathcal{C}} \widetilde{x}
\end{aligned}
$$

with

$$
\begin{aligned}
& \widetilde{\mathcal{E}}(\widetilde{x})= {\left[\begin{array}{cccc}
\widetilde{E} & 0 & 0 & 0 \\
0 & \mathcal{L}_{n}\left(\widetilde{j}_{\mathcal{L}_{n}}\right) & 0 & 0 \\
0 & 0 & \mathcal{C}_{n}\left(\widetilde{u}_{C_{n}}\right) & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \widetilde{\mathcal{A}}=\left[\begin{array}{cccc}
\widetilde{A}+\widetilde{B}_{2}\left(G_{1}+G_{2}\right) \widetilde{C}_{2} & \widetilde{B}_{3} & \widetilde{B}_{5} & \widetilde{B}_{2} G_{1} \\
-\widetilde{C}_{3} & 0 & 0 & 0 \\
-\widetilde{C}_{5} & 0 & 0 & 0 \\
-G_{1} \widetilde{C}_{2} & 0 & 0 & -G_{1}
\end{array}\right], } \\
& \widetilde{\mathcal{B}}=\left[\begin{array}{cc}
\widetilde{B}_{1} & \widetilde{B}_{4} \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right], \quad \widetilde{f}(\widetilde{x})=\left[\begin{array}{c}
0 \\
0 \\
0 \\
g_{n}\left(\widetilde{u}_{C_{n}}\right)
\end{array}\right], \quad \widetilde{x}=\left[\begin{array}{c}
\widetilde{x}_{l} \\
\widetilde{j}_{L_{n}} \\
\widetilde{u}_{C_{n}} \\
u_{R_{n}}
\end{array}\right] .
\end{aligned}
$$

Remark: If $n_{\mathcal{C}_{n}}=0$ and $n_{\mathcal{L}_{n}}=0$, then passivity is preserved and under some additional topological conditions we have the error bound $\|\widetilde{y}-y\|_{2} \leq c\left(\pi_{\ell_{f}}+\ldots+\pi_{n_{f}}\right)\left(\|u\|_{2}+\|\widetilde{y}\|_{2}\right) . \quad$ [Heinkenschloss/Reis'09]

## Example: linear RLC circuit

- $n=127869, m=1$

85246 resistors
42623 inductors

## 42623 capacitors

- $X_{\min } \approx \widetilde{R} \widetilde{R}^{T}, \widetilde{R} \in \mathbb{R}^{n, 84}$
- Reduced model: $r=24$





## Example: nonlinear circuit

2000 linear capacitors 1990 linear resistors 991 linear inductors
10 nonlinear inductors
10 diodes
1 voltage source

|  | original <br> system | reduced <br> system |
| :--- | :---: | :---: |
| Dimension | 4003 | 203 |
| Simulation time | 4557 | 67 |

Model reduction time
822
Error in the output
$4.4 \mathrm{e}-05$




## Conclusions and future work

- Model reduction of nonlinear circuit equations
- topology based partitioning
- balancing-related model reduction of linear subsystems with preservation of passivity and computable error bounds
- Exploiting the structure of MNA matrices $E, A, B, C$
- use graph algorithms for computing the basis matrices
- use modern numerical linear algebra algorithms for solving large-scale projected Riccati/Lyapunov equations
$\hookrightarrow$ MATLAB Toolbox PABTEC
- Preservation of passivity and error bounds for general circuits
- Numerical solution of large-scale Lur'e equations

