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Fault model

Additive LTI fault model

y(λ) = Gu(λ)u(λ) + Gd(λ)d(λ) + Gw (λ)w(λ) + Gf (λ)f(λ),

where λ = s for continuous-time (Laplace transform)
λ = z for discrete-time (Z-transform)

y(t) ∈ Rp – system output (measurable)
u(t) ∈ Rmu – control input (measurable)
d(t) ∈ Rmd – disturbance input (unknown)
w(t) ∈ Rmw – noise input (unknown)
f (t) ∈ Rmf – fault input (unknown)

Note: No restrictions on the transfer-function matrices (TFMs)
Gu(λ), Gd(λ), Gw (λ), Gf (λ) (improper OK!)



FDI problems Model matching Enhanced model matching Computational issues Example Conclusions

Exact fault detection and isolation problem (EFDIP)

Determine a stable and proper residual generator

r(λ) = Q(λ)

[
y(λ)
u(λ)

]
and a stable and proper diagonal filter specification Mr (λ) such
that ∀ u(t), d(t), and for w(t) ≡ 0

r(λ) = Mr (λ)f (λ)
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Algebraic conditions for EFDIP

Residual generation system:

r(λ) = Ru(λ)u(λ) + Rd(λ)d(λ) + Rw (λ)w(λ) + Rf (λ)f(λ)

where

[Ru(λ)|Rd(λ)|Rw (λ)|Rf (λ) ] := Q(λ)

[
Gu(λ) Gd(λ) Gw (λ) Gf (λ)

Imu 0 0 0

]
Synthesis goal: Choose appropriate Mr (λ) to ensure that

Ru(λ)=0, Rd(λ)=0, Rf (λ)=Mr (λ)

⇔ Q(λ)

[
Gu(λ) Gd(λ) Gf (λ)

Imu 0 0

]
= [0 0 Mr (λ) ]
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Approximate fault detection and isolation problem (AFDIP)

Determine a stable and proper residual generator

r(λ) = Q(λ)

[
y(λ)
u(λ)

]
and a stable and proper diagonal filter specification Mr (λ) such
that ∀ u(t), d(t), w(t)

r(λ) ≈ Mr (λ)f(λ)

Synthesis goals: Choose appropriate Mr (λ) to ensure that

Ru(λ) = 0, Rd(λ) = 0, Rw (λ) ≈ 0, Rf (λ) ≈ Mr (λ)

with Rf (λ) and Rw (λ) stable and proper.
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Interpretation of d(t) and w(t)

Disturbance input d(t): includes all additive effects from
which exact decoupling of the residuals is presumably possible
and is targeted in the detector synthesis.

Noise input w(t): contains everything else, i.e., proper random
noise, or “ordinary” disturbances in excess of those which may
be exactly decoupled, or fictive inputs which model the effect of
parametric uncertainties in the process model.

Advantage: This distinction between d(t) and w(t) allows to
address the solution of both exact and approximate fault
detection problems using a unique computational framework.
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Solvability conditions

Theorem 1: An Mr (λ) exists such that EFDIP is solvable iff

rank [Gf (λ) Gd(λ) ] = mf + rank Gd(λ) (1)

Corollary 1: If md = 0, an Mr (λ) exists such that EFDIP is
solvable iff

rank Gf (λ) = mf (2)

Theorem 2: An Mr (λ) exists such that AFDIP is solvable iff (1)
is fulfilled.

Corollary 2: If md = 0, an Mr (λ) exists such that AFDIP is
solvable iff (2) is fulfilled.
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H2-optimal model-matching approach

Solve r(λ) ≈ Mr (λ)f(λ) by minimizing the H2-norm of

R(λ) := F (λ)−Q(λ)G(λ),

with
F (λ) = [Mr (λ) O O O ],

G(λ) =

[
Gf (λ) Gw (λ) Gd(λ) Gu(λ)

0 0 0 Imu

]
Approach: Rewrite R(λ) as the transfer function matrix of a
generalized plant P(λ) with Q(λ) as feedback controller and
determine the optimal Q(λ) using standard H2 synthesis tools
(e.g., h2syn of ML).
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H2-optimal synthesis setting

Underlying equations:

e(λ) = r(λ)−Mr (λ)f(λ)
y(λ) = Gf (λ)f(λ) + Gw (λ)w(λ)+

Gd(λ)d(λ) + Gu(λ)u(λ)

r(λ) = Q(λ)

[
y(λ)
u(λ)

]
 te tw

 td
 tu

 ty

 tu
 P

 Q

 tr

 tf

Generalized plant:

P(λ) =

[
P11(λ) P12(λ)

P21(λ) P22(λ)

]
:=

 −Mr (λ) 0 0 0 I
Gf (λ) Gw (λ) Gd(λ) Gu(λ) 0

0 0 0 I 0
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Difficulties with standard tools

Main limitations
1 Technical assumptions may prevent computation of a

solution even if exists!
proper system
stabilizability of realization of P(λ)
lack of zeros P21(λ) on the extended imaginary axis

2 Choice of appropriate Mr (λ) not supported!

Proposed enhanced general approach
1 No technical assumptions
2 Choice of appropriate Mr (λ) fully supported
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Modified H2-optimal model-matching

Choose appropriate M(λ) (i.e., stable, proper, diagonal,
invertible) and determine stable and proper Q(λ) to minimize
‖R(λ)‖2, where

R(λ) = M(λ)F (λ)−Q(λ)G(λ),

with
F (λ) = [Mr (λ) O O O ],

G(λ) =

[
Gf (λ) Gw (λ) Gd(λ) Gu(λ)

0 0 0 Imu

]
and Mr (λ) a given reference model (i.e., stable, proper,
diagonal, invertible).
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Enhanced H2-optimal model-matching (1)

Step 1: Ru(λ) = 0, Rd(λ) = 0⇒ Q(λ) = Q1(λ)Nl(λ), where
Q1(λ) is free (to be determined) and

Nl(λ)

[
Gd(λ) Gu(λ)

0 Imu

]
= 0

Nl(λ) can be chosen stable and proper (e.g., a rational left
nullspace basis) such that

[Nf (λ) Nw (λ) ] := Nl(λ)

[
Gf (λ) Gw (λ)

0 0

]
are proper and stable, and [Nf (λ) Nw (λ) ] has full row rank.

Solvability check: rank Nf (λ) = mf
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Enhanced H2-optimal model-matching (2)

Choose appropriate M(λ) (i.e., stable, proper, diagonal,
invertible) and determine stable and proper Q1(λ) to minimize
‖R1(λ)‖2, where

R1(λ) = M(λ)F (λ)−Q1(λ)G(λ),

with
F (λ) := [Mr (λ) O ],

G(λ) := [Nf (λ) Nw (λ) ],

and Mr (λ) a given reference model (i.e., stable, proper,
diagonal, invertible).

Note: ‖R1(λ)‖2 = ‖R(λ)‖2.
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Enhanced H2-optimal model-matching (3)

Step 2.1: Compute a quasi-co-outer-inner factorization

G(λ) = [Go,1(λ) 0 ]

[
Gi,1(λ)
Gi,2(λ)

]
:= Go(λ)Gi(λ),

where
Gi(λ) is inner (i.e., G∗i (s) := GT

i (−s)) or G∗i (z) := GT
i (1/z))

Go,1(λ) is invertible (with possible zeros on the boundary of
the stability domain).
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Enhanced H2-optimal model-matching (4)

Step 2.2: Choose Q1(λ) = Q2(λ)G−1
o,1(λ) and define

R2(λ) = R1(λ)G∗i (λ) =
[

M(λ)F1(λ)−Q2(λ) M(λ)F2(λ)
]
,

where
F1(λ) := [Mr (λ) O ]G∗i,1(λ)
F2(λ) := [Mr (λ) O ]G∗i,2(λ)

Updated H2 synthesis problem: Choose appropriate M(λ)
and determine stable and proper Q2(λ) to minimize
‖R2(λ)‖2 = ‖R1(λ)‖2.
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Enhanced H2-optimal model-matching (4)

Step 3: Take
Q2(λ) = M(λ)[F1(λ)]+,

where [·]+ denotes the stable part and M(λ) is a stable, proper,
diagonal and invertible TFM chosen to ensure that

Q(λ) := M(λ)[F1(λ)]+G−1
o,1(λ)Nl(λ)

is proper and stable, and [M(λ)F1(λ)−Q(λ) M(λ)F2(λ) ] is
strictly proper.

Solution of the modified H2 synthesis problem:

‖R(λ)‖2 = ‖R2(λ)‖2 = ‖[M(λ)F1(λ)−Q2(λ) M(λ)F2(λ) ]‖2
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Enhanced H2-optimal model-matching (5)

Expressions for Rf (λ) and Rw (λ):

[Rf (λ) Rw (λ) ] = M(λ)[Mr (λ) 0 ]

[
Gi,1(λ)
Gi,2(λ)

]
= M(λ)Mr (λ)Gi,1(λ)

⇒ Rf (λ) and Rw (λ) are stable and proper.
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Integrated general computational algorithm

Key features:
exploiting properties of intermediary results in the
successive steps
using detector updating techniques→ least order detector
relying on descriptor representations and computational
techniques
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Computational issues (1)

Underlying regular descriptor system representation:

Eλx(t) = Ax(t)+Buu(t)+Bdd(t)+Bww(t)+Bf f (t)
y(t) = Cx(t)+Duu(t)+Ddd(t)+Dww(t)+Df f (t)

Gu(λ) = C(λE − A)−1Bu + Du

Gd(λ) = C(λE − A)−1Bd + Dd

Gw (λ) = C(λE − A)−1Bw + Dw

Gf (λ) = C(λE − A)−1Bf + Df

or, equivalently

[
Gu(λ) Gd(λ) Gw (λ) Gf (λ)

]
:=

[
A−λE Bu Bd Bw Bf

C Du Dd Dw Df

]
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Computational issues (2)

Step 1: Use rational nullspace method (V, 2008) based on
orthogonal pencil manipulation algorithms. The resulting
realizations have the form

[
Nl(λ) Nf (λ) Nw (λ)

]
=

[
Ã− λẼ B̃yu B̃f B̃w

C̃ D̃yu D̃f D̃w

]
,

where Ẽ is invertible (thus all TFMs are proper) and the pair
(Ã, Ẽ) has only finite generalized eigenvalues which can be
arbitrarily placed.

Note: To guarantee [Nf (λ) Nw (λ) ] is full row rank, use
W (λ)Nl(λ) instead Nl(λ) (via minimal dynamic covers).
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Computational issues (3)

Step 2.1: The quasi-co-outer–inner factorization

[Nf (λ) Nw (λ) ] = [Go,1(λ) 0 ]Gi(λ)

is computed using the general orthogonal transformations
based numerically reliable algorithm of (Oara & V, 2000; Oara,
2005). The invertible quasi-co-outer factor Go,1(λ) is obtained
in the form

Go,1(λ) =

[
Ã− λẼ Bo

C̃ Do

]
, G∗i (λ) =

[
Ai − λEi Bi

Ci Di

]
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Computational issues (4)

Step 2.2: To compute N l(λ) := G−1
o,1(λ)Nl(λ), we can solve the

linear rational system of equations

Go,1(λ)N l(λ) = Nl(λ)

Explicit solution as a descriptor system realization:

N l(λ) =
[

0 I
] [ Ã− λẼ Bo

C̃ Do

]−1 [
B̃yu

D̃yu

]
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Computational issues (5)

Step 3: To compute a suitable M(λ) which guarantees that:
1 the final detector Q(λ) := M(λ)[F1(λ)]+N l(λ) is proper and

stable, and
2 ‖R(λ)‖2 = ‖[M(λ)(F1(λ)− [F1(λ)]+) M(λ)F2(λ) ]‖2 is

finite
we can solve (strict) proper coprime factorizations problems for
each row of the TFM [F1(λ)− [F1(λ)]+ F2(λ) ] using
state-space algorithms described in (V,1998).
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Illustrative example (1)

Parametric model with uncertainties recast as input noise:

A(δ1, δ2) =

 −0.8 0 0
0 −0.5(1 + δ1) 0.6(1 + δ2)
0 −0.6(1 + δ2) −0.5(1 + δ1)


Bu =

 1 1
1 0
0 1

 , Bd = 0, Bf =

 1 1
1 0
0 1

 , C =

[
0 1 1
1 1 0

]
Du = 0, Dd = 0, Df = 0.

⇒ A← A(0,0), Bw =

 0 0
0 1
1 0

 , Dw = 0

Problem: P21(λ) has zeros at∞ (strictly proper system).
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Illustrative example (2)

Step 1:

Nl(s) = [ I −Gu(s) ] =
[

A− sI 0 −Bu
C I −Du

]
; δ(Nl(s)) = 3

⇒ Nf (s) = Gf (s), Nw (s) = Gw (s)

Step 2:
Nf (s) invertible; [Nf (s) Nw (s) ] has two zeros at∞

⇒ Go,1(s) with zeros {∞,∞,−1.134}; Gi(s) with pole −1.134

⇒ N l(s)=G−1
o,1(s)Nl(s) with poles {∞,∞,−1.134}; δ(N l(s))=5

⇒ F1(s) and F2(s) proper with pole 1.134
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Illustrative example (3)

Step 3:

For Mr (s) = I2 ⇒ M(s) =

 10
s + 10

0

0
10

s + 10


Resulting FDI filter:

Q(s) = M(s)F1(∞)G−1
o,1(s)[ I −Gu(s) ]

Resulting least order: δ(Q(s)) = 3
Sum of order of factors: 2 + 0 + 5 + 3 = 10!
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Parametric step responses (original system)

−3

−2

−1

0

1

2
From: f

1

To
: r

1

0 5 10
−1.5

−1

−0.5

0

0.5

1

1.5

To
: r

2
From: f2

0 5 10

From: u1

0 5 10

From: u2

0 5 10

Step Response

Time (sec)

A
m

pl
itu

de



FDI problems Model matching Enhanced model matching Computational issues Example Conclusions

Conclusions

an integrated algorithm proposed to solve H2-optimal FDI
filter synthesis problems in the most general setting
all technical assumptions of standard tools completely
avoided
underlying algorithms based on descriptor system
representations and rely on orthogonal matrix pencil
reductions
similar approach has been recently developed (V, 2010) for
solving H∞-optimal FDI filter synthesis problems
software tools available for MATLAB in the DESCRIPTOR

SYSTEMS Toolbox (V,2000) and in the current version of
the FAULT DETECTION Toolbox (V,2006,2009).
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