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Main references:
V.H.L. and V. Mehrmann, J. Dyn. Diff. Equ., 2009;
V.H.L., V. Mehrmann, and E. Van Vleck, Adv. Comp. Math., 2010;
V.H.L. and V. Mehrmann, submitted for publication, 2010.
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Linear time-varying DAEs

I Linear differential-algebraic equations (DAEs) have the form

E(t)x ′ = A(t)x + f (t).

I They arise as linearization of nonlinear systems

F (t , x , x ′) = 0

around reference solutions.

I E(t) ( or ∂F/∂x ′ ) is singular. Other names: implicit systems,
generalized systems, or descriptor systems.
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Applications

I Mechanical multibody systems

I Electrical circuit simulation

I Mechatronical systems

I Chemical reactions

I Semidiscretized PDEs (Stokes, Navier-Stokes)

I Automatically generated coupled systems
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DAEs versus ODEs

I Initial conditions must be consistent.

I The solution may depend on the derivative(s) of the input,
sensitive to perturbation.

I The existence and uniqueness theory is more complicated.

I Solving DAEs may involve both integration and differentiation
(the latter is ill-posed problem !).

In fact, DAEs generalize ODEs !
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Index concepts

I ”Index” is a notion used in the theory of DAEs for measuring the
distance from a DAE to its related ODE.

I The index is a nonnegative integer that provides useful
information about how difficult a DAE is in both qualitative and
numerical aspects. In general, the higher index a DAE has, the
more difficult its analytical and numerical treatments are.

I There are different index definitions: Kronecker index (for linear
constant coefficient DAEs), differentiation index (Brenan et al.
1996), perturbation index (Hairer et al. 1996), tractability index
(Griepentrog et al. 1986), geometrical index (Rabier et.al. 2002,
Riaza 2008), strangeness index (Kunkel et al. 2006), (for general
DAEs). On simpler problems they are identical.
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Stability results for DAEs
I Lyapunov theory for regular constant coeff. DAEs Stykel 2002.
I Index 1 systems, index 2 systems in semi-explicit form

Ascher/Petzold 1993, Cao/Li/Petzold/Serban 2003.
I Mechanical systems Müller 1996.
I Systems of tractability index ≤ 2, Tischendorf 1994,

Hanke/Macana/März 1998.
I Systems with properly stated leading term,

Higueras/März/Tischendorf 2003, März 1998, März/Riazza
2002, Riazza 2002, Riazza/Tischendorf 2004, Balla/V.H.L. 2005.

I Exponential dichotomy in bound. val. problems, Lentini/März
1990.

I Lyapunov exponents and regularity, Cong/Nam 2003,2004.
I Exponential stability and Bohl exponents, Du/V.H.L. 2006, 2008.
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Aleksandr Mikhailovich Lyapunov 1857 - 1918
The general problem of the stability of motion,
Ph.D. thesis (in Russian), 1892.
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Lyapunov exponents

For the linear ODE ẋ = A(t)x with bounded coefficient function A(t)
and nontrivial solution x we define the upper and lower Lyapunov
exponents,

λu(x) = lim sup
t→∞

1
t

ln ||x(t)|| , λl (x) = lim inf
t→∞

1
t

ln ||x(t)|| .

Since A is bounded, the Lyapunov exponents are finite.

Theorem Lyapunov 1892/1907 If the maximal upper Lyapunov
exponent for all solutions ẋ = A(t)x is negative, then the system is
asymptotically stable. For A(t) ≡ A, the Lyapunov exponents are
exactly the real parts of the eigenvalues.
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Bohl exponents, Piers Bohl 1865-1921

Definiton Bohl 1913 Let x be a nontrivial solution of ẋ = A(t)x . The
(upper) Bohl exponent κu

B(x) of this solution is the greatest lower
bound of all those numbers ρ for which there exist numbers Nρ such
that

||x(t)|| ≤ Nρeρ(t−s) ||x(s)||

for any t ≥ s ≥ 0. If such numbers ρ do not exist, then one sets
κu

B(x) = +∞.
Similarly, the lower Bohl exponent κ`B(x) is the least upper bound of
all those numbers ρ′ for which there exist numbers N ′ρ such that

||x(t)|| ≥ N ′ρe
ρ′(t−s) ||x(s)|| , 0 ≤ s ≤ t .

The interval [κ`B(x), κu
B(x)] is called the Bohl interval of the solution.
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Mark Grigorievich Krein 1907 - 1989
Stability of solutions of differential equations in Banach spaces,
AMS book (jointly with Daleckii), 1974.
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Formulas for Bohl exponents

Theorem Daleckii/Krein 1974

κ`B(x) ≤ λ`(x) ≤ λu(x) ≤ κu
B(x).

The Bohl exponents are given by

κu
B(x) = lim sup

s,t−s→∞

ln ||x(t)|| − ln ||x(s)||
t − s

, κ`B(x) = lim inf
s,t−s→∞

ln ||x(t)|| − ln ||x(s)||
t − s

.

If A(t) is integrally bounded, i.e., if

sup
t≥0

∫ t+1

t
||A(s)|| ds <∞,

then the Bohl exponents are finite.
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Relation between Lyapunov and Bohl exponents

I Bohl exponents characterize the uniform growth rate of
solutions, while Lyapunov exponents simply characterize the
growth rate of solutions departing from t = 0.

I If the least upper bound of upper Lyapunov exponents for all
solutions ẋ = A(t)x is negative, then the system is
asymptotically stable. If the same holds for the least upper
bound of the upper Bohl exponents then the system is
(uniformly) exponentially stable.

I Bohl exponents are stable without any extra assumption (which
is not true in the case of Lyapunov exponents).
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Sacker-Sell spectrum

Definition The fundamental matrix solution X of Ẋ = A(t)X is said to
admit an exponential dichotomy if there exist a projector
P : Rn×n → Rn×n and constants α, β > 0, as well as K ,L ≥ 1, such
that ∣∣∣∣X (t)PX−1(s)

∣∣∣∣ ≤ Ke−α(t−s), t ≥ s,∣∣∣∣X (t)(I − P)X−1(s)
∣∣∣∣ ≤ Leβ(t−s), t ≤ s.

The Sacker-Sell (or exponential-dichotomy) spectrum ΣS for is given
by those values λ ∈ R such that the shifted system

ẋλ = [A(t)− λI]xλ

does not have exponential dichotomy. The complement of ΣS is
called the resolvent set.
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Sacker-Sell spectrum

Theorem Sacker/Sell 1978

The property that a system posseses an exponential dichotomy
as well as the exponential dichotomy spectrum are preserved
under kinematic similarity transformations.

ΣS is the union of at most n disjoint closed intervals, and it is
stable.

Furthermore, the Sacker-Sell intervals contain the Lyapunov
intervals, i.e.

ΣL ⊆ ΣS.
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Numerical methods for computing spectra

Idea: find an orthogonal transformation to bring the system into
triangular form.

I Discrete QR algorithm

I Continuous QR algorithm

I Others: SVD algorithms, Spatial integration and hybrid methods

References: Benettin et.al. 1980, Greene & Kim 1987, Geist et.al.
1990, Dieci & Van Vleck 1995-2009, Oliveira & Stewart 2000, Bridges
& Reich 2001, Beyn & Lust 2009
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A crash course in DAE Theory

We put E(t)ẋ = A(t)x + f (t) and its derivatives up to order µ into a
large DAE

Mk (t)żk = Nk (t)zk + gk (t), k ∈ N0

for zk = (x , ẋ , . . . , x (k)).

M2 =

 E 0 0
A− Ė E 0

Ȧ− 2Ë A− Ė E

 , N2 =

 A 0 0
Ȧ 0 0
Ä 0 0

 , z2 =

 x
ẋ
ẍ

 .
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Theorem, Kunkel/Mehrmann 1996

Under some constant rank assumptions, for a square regular linear
DAE there exist integers µ, a, d such that:

1. rank Mµ(t) = (µ+ 1)n − a on I, and there exists a smooth matrix
function Z2 with Z T

2 Mµ(t) = 0.

2. The first block column Â2 of Z ∗2 Nµ(t) has full rank a so that there
exists a smooth matrix function T2 such that Â2T2 = 0.

3. rank E(t)T2 = d = n − a and there exists a smooth matrix
function Z1 of size (n,d) with rank Ê1 = d , where Ê1 = Z T

1 E .
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Reduced problem - Strangeness-free form

I The quantity µ is called the strangeness-index. It describes the
smoothness requirements for the inhomogeneity.

I It generalizes the usual differentiation index to general DAEs
(and counts slightly differently).

I We obtain a numerically computable strangeness-free
formulation of the equation with the same solution.

Ê1(t)ẋ = Â1(t)x + f̂1(t), d differential equations
0 = Â2(t)x + f̂2(t), a algebraic equations

(1)

where Â1 = Z T
1 A, f̂1 = Z T

1 f , and f̂2 = Z T
2 gµ.

I The reduced system is strangeness-free. This is a Remodeling!
For the theory we assume that this has been done.
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Essentially underlying implicit ODE

Lemma Consider a strangeness-free homogeneous DAE system of
the form (1) with continuous coefficients E ,A. Let U ∈ C1(I,Rn×d ) be
an arbitrary orthonormal basis of the solution subspace of (1). Then
there exists a matrix function P ∈ C(I,Rn×d ) with pointwise
orthonormal columns such that by the change of variables x = Uz
and multiplication of both sides of (1) from the left by PT , one obtains
the system

E ż = Az, (2)

where E := PT EU, A := PT AU − PT EU̇ and E is upper triangular.
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Relation between DAEs and EUODEs

I one-one relation between solutions: z = UT x and
Uz = UUT x = x , (UUT is a projection onto the solution
subspace!).

I The EUODEs possess the same spectral properties as the DAE.

I Different bases U and scaling functions P may give different
EUODEs. However, the spectral properties are invariant.

I U,P, and the EUODE can be constructed numerically (QR and
SVD algorithms for DAEs).
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Fundamental solution matrices

Definition

A matrix function X ∈ C1(I,Rn×k ), d ≤ k ≤ n, is called
fundamental solution matrix of E(t)Ẋ = A(t)X if each of its
columns is a solution to E(t)ẋ = A(t)x and rank X (t) = d , for all
t ≥ 0.

A fundamental solution matrix is said to be maximal if k = n and
minimal if k = d , respectively.

Every fundamental solution matrix has exactly d linearly
independent columns and a minimal fundamental matrix solution
can be easily made maximal by adding n − d zero columns.
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Lyapunov exponents for DAEs

Definition For a fundamental solution matrix X of a strangeness-free
DAE system E(t)ẋ = A(t)x , and for d ≤ k ≤ n, we introduce

λu
i = lim sup

t→∞

1
t

ln ||X (t)ei || and λ`i = lim inf
t→∞

1
t

ln ||X (t)ei || , i = 1,2, ..., k .

The columns of a minimal fundamental solution matrix form a normal
basis if Σd

i=1λ
u
i is minimal. The λu

i , i = 1,2, ...,d , belonging to a
normal basis are called (upper) Lyapunov exponents and the
intervals [λ`i , λ

u
i ], i = 1,2, ...,d , are called Lyapunov spectral intervals.
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Normal basis and Lyapunov spectrum

Theorem Let Z be a minimal fundamental solution matrix for the
strangeness-free DAE E(t)ẋ = A(t)x such that the upper Lyapunov
exponents of its columns are ordered decreasingly. Then there exists
a nonsingular upper triangular matrix C ∈ Rd×d such that the
columns of X (t) = Z (t)C form a normal basis.

Theorem Let X be a normal basis for (1). Then the Lyapunov
spectrum of the DAE (1) and that of the ODE (2) are the same. If E ,A
are as in (2) and if E−1A is bounded, then all the Lyapunov exponents
of (1) are finite. Furthermore, the spectrum of (2) does not depend on
the choice of the basis U and the scaling function P.
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Further concepts and results

I Lyapunov regularity for DAEs and their adjoint DAEs.

I Perron’s identity for the Lyapunov exponents of a DAE and those
of its adjoint DAE.

I Essential differences between the spectral theory of DAEs and
that of ODEs do exist. Spectral properties that are well-known
for ODEs hold true for DAEs under more restrictive conditions
(since the dynamics of DAEs is constrained).

Vu Hoang Linh linhvh@vnu.edu.vn

Approximation of spectral intervals and associated leading directions for linear DAEs via smooth SVDs*



Introduction Lyapunov and Sacker-Sell spectral intervals Leading directions and subspaces SVD-based methods

Perturbed DAE systems

In order to study this sensitivity for DAEs, we consider the specially
perturbed system

[E(t) + F (t)]ẋ = [A(t) + H(t)]x , t ∈ I, (3)

where

F (t) =

[
F1(t)

0

]
, H(t) =

[
H1(t)
H2(t)

]
,

and where F1 and H1,H2 are assumed to have the same order of
smoothness as E1 and A1,A2, respectively. Perturbations of this
structure are called admissible.
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Stability of Lyapunov exponents

The DAE (1) is said to be robustly strangeness-free if it stays
strangeness-free under all sufficiently small admissible perturbations.

It happens iff Ē =

[
E1
A2

]
is boundedly invertible.

Definition The upper Lyapunov exponents λu
1 ≥ ... ≥ λu

d of (1) are
said to be stable if for any ε > 0, there exists δ > 0 such that the
conditions supt ||F (t)|| < δ, supt ||H(t)|| < δ, and supt

∣∣∣∣∣∣Ḣ2(t)
∣∣∣∣∣∣ < δ on

the perturbations imply that the perturbed DAE system (3) is
strangeness-free and

|λu
i − γu

i | < ε, for all i = 1,2, ...,d ,

where the γu
i are the ordered upper Lyapunov exponents of the

perturbed system (3).
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Necessity of boundedness condition
Example Consider the system

ẋ1 = x1
0 = x2

. (4)

This DAE is robustly strangeness-free, Lyapunov regular, and it has
only one Lyapunov exponent λ = 1. Now, we consider the perturbed
DAE

(1 + ε2 sin 2nt) ẋ1 − ε cos nt ẋ2 = x1,
0 = −2ε sin nt x1 + x2,

(5)

where ε is a small perturbation parameter and n is a given integer.
We have

ẋ1 = (1 + nε2 + nε2 cos 2nt) x1.

The only Lyapunov exponent λ̂ = 1 + nε2 is calculated.
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Integral separation

Definition A minimal fundamental solution matrix X for a
strangeness-free DAE is called integrally separated if for
i = 1,2, ...,d − 1 there exist b > 0 and c > 0 such that

||X (t)ei ||
||X (s)ei ||

· ||X (s)ei+1||
||X (t)ei+1||

≥ ceb(t−s),

for all t , s with t ≥ s ≥ 0.

If a DAE system has an integrally separated minimal fundamental
solution matrix, then we say it has the integral separation property.
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Criterion for the stability of exponents

By using a global kinematic equivalence transformation, (1) can
always be transformed to a block-triangular form, where the block A21
becomes zero.

Theorem Consider (1) with A21 = 0. Suppose that the matrix Ē is
boundedly invertible and that E−1

11 A11, A12A−1
22 and the derivative of

A22 are bounded on [0,∞). Then, the upper Lyapunov exponents of
(1) are distinct and stable if and only if the system has the integral
separation property.
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Exponential Dichotomy

Definition The DAE (1) is said to have exponential dichotomy if for
any minimal fundamental solution X there exist a projection P ∈ Rd×d

and positive constants K and α such that

||X (t)PX+(s)|| ≤ Ke−α(t−s), t ≥ s,
||X (t)(Id − P)X+(s)|| ≤ Keα(t−s), s > t ,

(6)

where X+ denotes the generalized Moore-Penrose inverse of X .

Since X = UZ and X+ = Z−1UT , we have
Theorem The DAE (1) has exponential dichotomy if and only if its
corresponding EUODE (2) has exponential dichotomy.
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Shifted DAE and shifted ODE

In order to extend the concept of exponential dichotomy spectrum to
DAEs, we need shifted DAE systems

E(t)ẋ = [A(t)− λE(t)]x , t ∈ I, (7)

where λ ∈ R. By using the same transformation as for EUODE, we
obtain the corresponding shifted EUODEs for (7)

E ż = (A− λE)z. (8)
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Sacker-Sell spectrum

Definition

I The Sacker-Sell (or exponential dichotomy) spectrum of a
strangeness-free DAE system is defined by

ΣS := {λ ∈ R, the shifted DAE does not have an exponential dichotomy} .

I The complement of ΣS is called the resolvent set, denoted by
ρ(E ,A).

I The Sacker-Sell spectrum of a DAE system does not depend on
the choice of the orthogonal basis and the corresponding
EUODE system.
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Sacker-Sell spectrum

Theorem The Sacker-Sell spectrum of (1) is exactly the Sacker-Sell
spectrum of its EUODE (2). Further, the Sacker-Sell spectrum of (1)
consists of at most d closed intervals.

Under the boundedness conditions of coefficient matrices, unlike the
Lyapunov spectrum, the Sacker-Sell spectrum of the DAE (1) is
stable with respect to admissible perturbations.
We can assume that ΣS consists of m ≤ d pairwise disjoint spectral
intervals, i.e., ΣS = ∪d

i=1[ai ,bi ], and bi < ai+1 for all 1 ≤ i ≤ m. This
can be easily achieved by combining overlapping spectral intervals to
larger intervals.
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Initial-condition subspace and solution subspace

I Let us denote by S0 the space of consistent initial vectors of (1).
This is a d-dimensional subspace in Rn.

I The solutions of (1) also form a d-dimensional subspace of
functions in C1(I,Rn). We denote it by S(t).

I For x0 ∈ S0 let us denote by x(t ; x0) the (unique) solution of (1)
that satisfies x(0; x0) = x0.
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Filtration property

For j = 1, . . .d , define

Wj =
{

w ∈ S0 : χu (x(·; w)) ≤ λu
j
}
, j = 1, . . . ,d . (9)

Proposition Let dj be the largest number of linearly independent
solutions x of (1) such that lim supt→∞

1
t ln ||x(t)|| = λu

j . Then Wj is a
dj dimensional linear subspace of S0. Furthermore, the spaces Wj
form a filtration of S0, i.e., if p is the number of distinct upper
Lyapunov exponents of the system, then we have

S0 = W1 ⊃W2 ⊃ · · · ⊃Wp ⊃Wp+1 = {0} .

Vu Hoang Linh linhvh@vnu.edu.vn

Approximation of spectral intervals and associated leading directions for linear DAEs via smooth SVDs*



Introduction Lyapunov and Sacker-Sell spectral intervals Leading directions and subspaces SVD-based methods

Leading directions

I It follows that lim supt→∞
1
t ln ||x(t ; w)|| = λu

j if and only if
w ∈Wj\Wj+1. Moreover, if we have d distinct upper Lyapunov
exponents, then each Wj , j = 1, . . . ,d , has dimension (d − j + 1).

I If Vj is defined as the orthogonal complement of Wj+1 in Wj , i.e.,

Wj = Wj+1 ⊕ Vj , Vj ⊥Wj+1,

then S0 = V1 ⊕ V2 ⊕ · · · ⊕ Vp, and

lim sup
t→∞

1
t

ln ||x(t ; w)|| = λu
j if and only if w ∈ Vj .

It follows that if we have m = d distinct Lyapunov exponents,
then dim(Vj ) = 1 for all j = 1, . . . ,d .
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Stable and unstable sets
Consider now the resolvent set ρ(E ,A). For µ ∈ ρ(E ,A), let us define
the following stable and unstable sets, respectively.

Sµ =
{

w ∈ S0 : limt→∞ e−µt ||x(t ; w)|| = 0
}
,

Uµ =
{

w ∈ S0 : limt→∞ e−µt ||x(t ; w)|| = +∞
}
∪ {0} . (10)

By definition, it is clear that Sµ ∩ Uµ = {0} for µ ∈ ρ(E ,A).
Furthermore, for µ1, µ2 ∈ ρ(E ,A), µ1 < µ2, we have Sµ1 ⊆ Sµ2 and
Uµ1 ⊇ Uµ2 .
The sets (10) are related with

Sd
µ =

{
v ∈ Rd : lim

t→∞
e−µt ||Z (t)v || = 0

}
,

Ud
µ =

{
v ∈ Rd : lim

t→∞
eµt
∣∣∣∣Z (t)−T v

∣∣∣∣ = 0
}
. (11)

which are stable and unstable sets associated with (2).
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Characterization of stable and unstable sets

Now choose a set of values µ0 < µ1 < · · · < µm, such that
µj ∈ ρ(E ,A) and ΣS ∩ (µj−1, µj ) = [aj ,bj ] for j = 1, . . . ,m. In other
words, we have

µ0 < a1 ≤ b1 < µ1 < · · · < µj−1 < aj ≤ bj < µj < · · · < am ≤ bm < µm.

Consider the intersections

N d
j = Sd

µj
∩ Ud

µj−1
, j = 1, . . . ,m. (12)

Let U be an orthonormal basis of the solution subspace for (1) and
introduce the sets

Nj = U(0)N d
j =

{
w ∈ S0 : w = U(0)v , v ∈ N d

j
}
, j = 1, . . . ,m. (13)
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Characterization of Nj

Proposition Consider the EUODE (2) associated with (1), and the
sets Nj defined in (13), j = 1, . . . ,m. If w ∈ Nj and

lim sup
t→∞

1
t

ln ||x(t ; w)|| = χu, lim inf
t→∞

1
t

ln ||x(t ; w)|| = χ`,

then χ`, χu ∈ [aj ,bj ].

This means that Nj is the subspace of initial conditions associated
with solutions whose upper and lower Lyapunov exponents are
located inside [aj ,bj ].
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Uniform exponential growth of solutions

Theorem Consider the EUODE (2) associated with (1), and the sets
Nj defined in (13), j = 1, . . . ,m. Then w ∈ Nj\ {0} if and only if

1
Kj−1

eaj (t−s) ≤ ||x(t ; w)||
||x(s; w)||

≤ Kjebj (t−s), for all t ≥ s ≥ 0, (14)

and positive Kj−1,Kj .
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Additional characterization of Nj

Corollary Consider the EUODE (2) associated with (1) and the sets
Nj defined in (13). Then for all j = 1, . . . ,m, we have

(i) w ∈ Nj\ {0} if and only if

aj ≤ κ`(x(·; w)) ≤ κu(x(·; w)) ≤ bj ,

where κ`, κu are the Bohl exponents.

(ii) Sµj = U(0)Sd
µj

, Uµj = U(0)Ud
µj

Nj = Sµj ∩ Uµj−1 , j = 1, . . . ,m.

Vu Hoang Linh linhvh@vnu.edu.vn

Approximation of spectral intervals and associated leading directions for linear DAEs via smooth SVDs*



Introduction Lyapunov and Sacker-Sell spectral intervals Leading directions and subspaces SVD-based methods

Remarks
I An alternative way to characterize the unstable set Ud

µ is as{
v ∈ Rd : limt→∞ eµt ||Z (t)v || = +∞

}
∪ {0} for µ ∈ ρ(E ,A).

Furthermore, we have

Sµj = {w ∈ S0 : κu(x(·; w)) ≤ bj} ∪ {0} ,
Uµj−1 =

{
w ∈ S0 : κ`(x(·; w)) ≥ aj

}
∪ {0} ,

as well.

I Under the integral separation assumption, Lyapunov and
Sacker-Sell spectral intervals can be approximated by QR
(L.-Mehrmann 09, L.-Mehrmann-Van Vleck 10) or SVD
algorithms (L.-Mehrmann 10).

I The leading directions associated with the spectral intervals (the
one dimensional Vj and Nj ) can be approximated as well by
SVD algorithms.
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Numerical methods
I Discrete and continuous methods based on smooth QR and

SVD have been extended for DAEs.
I In the discrete methods the fundamental solution matrix X and

its triangular factor R (or the diagonal factor Σ in the SVD) are
indirectly evaluated by a reorthogonalized integration of the DAE
system (1) via an appropriate QR factorization (and the product
SVD algorithm).

I In the continuous counterparts, we derive DAEs for the factor Q
(or U) and the scalar ODEs for the logarithms of the diagonal
elements of R (or Σ) elementwise. (For integrating Q or U, use
appropriate DAE orthogonal integrators.)

I Error and perturbation analysis has been carried out for the QR
methods.

I In the continuous SVD method the (exponential) convergence
rate of factor V is established.
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Smooth SVDs

Let X be a minimal fundamental matrix solution, X ∈ C1(I,Rn×d ).
Suppose

X (t) = U(t)Σ(t)V T (t), t ≥ 0, (15)

where U ∈ C1(I,Rn×d ), V ,Σ ∈ C1(I,Rd×d ),
UT (t)U(t) = V T (t)V (t) = Id for all t ∈ I, and
Σ(t) = diag(σ1(t), . . . , σd (t)).
We assume that U,Σ, and V possess the same smoothness as X .
This holds, e.g., if X (t) is analytic or if the singular values of X (t) are
distinct for all t .
The adaptation of the discrete SVD algorithm to DAEs is
straightforward. However, this method is less competitive because of
the growth of the fundamental solution and the very large memory
requirement of the product SVD algorithm.

Vu Hoang Linh linhvh@vnu.edu.vn

Approximation of spectral intervals and associated leading directions for linear DAEs via smooth SVDs*



Introduction Lyapunov and Sacker-Sell spectral intervals Leading directions and subspaces SVD-based methods

Derivation of the continuous SVD

Differentiating X in (15), we obtain

EU̇ΣV T + EUΣ̇V T + EUΣV̇ T = AUΣV T ,

or equivalently, using the orthogonality of V ,

EU̇Σ + EUΣ̇ + EUΣV̇ T V = AUΣ.

Using
A2U = 0, (16)

we obtain[
E1
A2

]
U̇Σ +

[
E1
A2

]
UΣ̇ +

[
E1
A2

]
UΣV̇ T V =

[
A1

−Ȧ2

]
UΣ. (17)
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We define

Ē =

[
E1
A2

]
, Ā =

[
A1

−Ȧ2

]
,

and the skew-symmetric matrix functions

H = UT U̇, K = V T V̇ .

Lemma There exists P ∈ C(I,Rn×d ), PT P = Id such that

PT Ē = EUT , (18)

where E is nonsingular and upper triangular with positive diagonal
entries. Further, the pair P, E is unique.
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Conditioning of the EUODE

Note that PT EU = PT ĒU = E holds, so that P can be used to
produce an EUODE of the form (2).
The conditioning of this EUODE is not worse than that of the original
DAE.
Proposition Consider the matrix function P defined via (18). Then

||E|| ≤
∣∣∣∣Ē∣∣∣∣ , ∣∣∣∣E−1

∣∣∣∣ ≤ ∣∣∣∣Ē−1
∣∣∣∣ .

Consequently, cond E ≤ cond Ē .
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Multiplying both sides of (17) with PT from the left, we obtain

EHΣ + EΣ̇ + EΣK T = PT ĀUΣ.

With
G = PT ĀU and C = E−1G, (19)

we then arrive at
HΣ + Σ̇ + ΣK T = CΣ,

where

hi,j =
ci,jσ

2
j + cj,iσ

2
i

σ2
j − σ2

i
, for i > j , and hi,j = −hj,i for i < j ;

ki,j =
(ci,j + cj,i )σiσj

σ2
j − σ2

i
, for i > j , and ki,j = −kj,i for i < j . (20)
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Differential equations for the SVD’s factors

We get immediately the differential equation for the diagonal
elements of Σ

σ̇i = ci,iσi , i = 1, . . . ,d , (21)

and that for the V -factor,
V̇ = VK . (22)

We also obtain the equation for the U-factor as

EU̇ = EU(H − C) + AU. (23)

The latter (23) is a strangeness-free (non-linear) matrix DAE, that is
linear with respect to the derivative. Furthermore, the algebraic
constraint is also linear and the same as that of (1).
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Assumptions and auxiliary results
Assume that C in (19) is uniformly bounded on I. Furthermore, the
functions σi are integrally separated, i.e., there exist constants k1 > 0
and k2, 0 < k2 ≤ 1, such that

σj (t)
σj (s)

σj+1(s)

σj+1(t)
≥ k2ek1(t−s), t ≥ s ≥ 0, j = 1,2, . . . ,d − 1. (24)

Proposition The following statements hold.

(a) There exists t̄ ∈ I, such that for all t ≥ t̄ ,

σj (t) > σj+1(t), j = 1,2, . . . ,d − 1.

(b) The skew-symmetric matrix function K (t) converges
exponentially to 0 as t →∞.

(c) The orthogonal matrix function V (t) converges exponentially to
a constant orthogonal matrix V̄ as t →∞.
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Obtaining spectral intervals
Theorem System (1) has distinct and stable Lyapunov exponents if
and only if for any fundamental matrix solution X , the singular values
of X are integrally separated. Moreover, if X is a fundamental
solution, then

λu
j = lim sup

t→∞

1
t

lnσj (t), λ`j = lim inf
t→∞

1
t

lnσj (t), j = 1,2, . . . ,d . (25)

Theorem Suppose that (1) has distinct and stable Lyapunov
exponents. Then, the Sacker-Sell spectrum of (1) is the same as that
of the diagonal system

Σ̇(t) = diag(C(t))Σ(t).

Furthermore, this Sacker-Sell spectrum is given by the union of the
Bohl intervals associated with the scalar equations σ̇i (t) = ci,i (t)σi (t),
i = 1,2, . . . ,d .
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Obtaining leading directions

Theorem Suppose that (1) has distinct and stable Lyapunov
exponents. Let X (t) = U(t)Σ(t)V (t)T be a smooth SVD of an
arbitrary fundamental solution. Let V̄ = [v̄1, . . . , v̄d ] be the limit of the
factor V (t) as t →∞. Then

χu(X (·)v̄j ) = λu
j , χ`(X (·)v̄j ) = λ`j , j = 1,2, . . . ,d .

Theorem Suppose that (1) has distinct and stable Lyapunov
exponents and let ΣS =

⋃m
j=1[aj ,bj ]. Then Nj = Û(0)span{v̄k , . . . , v̄l},

where the integers k , l , k < l are such that

λu
l+1 < aj ≤ λ`l , λu

k ≤ bj < λ`k−1.

Remark We also have [aj ,bj ] =
⋃l

i=k [κ`(X (·)v̄i ), κ
u(X (·)v̄i )] for

j = 1, . . . ,m.
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Obtaining the IS fundamental solution

Theorem Suppose that the DAE system (1) has distinct and stable
Lyapunov exponents. Let X (t) = U(t)Σ(t)V (t)T be a smooth SVD of
an arbitrary fundamental solution and let V̄ = [v̄1, . . . v̄d ] be the limit of
V (t) as t →∞. Then starting from X (0)V̄ leads to an integral
separated fundamental solution, i.e., X (t)V̄ is integrally separated.

This improves a recent result of Dieci & Elia (2006).
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Implementation issues

I Numerical computation of the scaling factor P.

I Computation of the singular values σi (t) in a more stable
manner (avoiding the risk of overflow).

I Efficient integration of the nonlinear matrix DAE for U.
Half-explicit methods are useful.
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Numerical experiment I
Lyapunov exponents computed via continuous SVD algorithm with
half-explicit Euler integrator for a Lyapunov-regular DAE with
λ1 = 1, λ2 = −1

T h λ1 λ2
CPU-time

in s
CPU-time

in s, ` = 1
500 0.1 0.9539 -0.9579 3.0156 2.7344
500 0.05 0.9720 -0.9760 5.9375 5.4375
500 0.01 0.9850 -0.9890 29.5781 27.0625
1000 0.1 0.9591 -0.9592 5.9531 5.5000
1000 0.05 0.9772 -0.9773 11.7969 10.7969
1000 0.01 0.9902 -0.9903 58.7500 54.5000
2000 0.05 0.9801 -0.9805 23.4844 21.5938
2000 0.01 0.9932 -0.9936 117.4531 107.5156
5000 0.01 0.9952 -0.9955 294.1250 268.4531

10000 0.01 0.9960 -0.9962 586.9219 537.9375
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Exponential convergence of V
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Figure: Graph of V11(t) and V21(t) for different λis.
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Numerical experiment II
Lyapunov spectral intervals computed via continuous SVD algorithm
with half-explicit Euler integrator for a DAE with the exact Lyapunov
spectral intervals [−1,1] and [−6,−4].

T τ̃ h [λl
1, λ

u
1] [λl

2, λ
u
2]

CPU-time
in s

1000 100 0.10 [-1.0332 0.5704] [ -5.9311 -4.6909] 6.25
5000 100 0.10 [ -1.0332 0.9851] [ -5.9311 -4.3592] 31.54
10000 100 0.10 [ -1.0332 0.9851] [ -5.9311 -3.9980] 61.89
10000 100 0.05 [ -1.0183 0.9946] [ -5.9421 -4.0107] 123.25
20000 100 0.10 [ -1.0332 0.9851] [ -5.9311 -3.9746] 123.65
20000 100 0.05 [ -1.0183 0.9946] [ -5.9421 -3.9882] 248.79
50000 100 0.05 [-1.0183 0.9946] [ -5.9421 -3.9882] 619.23
50000 500 0.05 [ -0.9935 0.9946] [ -5.9421 -3.9882] 627.00

100000 100 0.05 [ -1.0183 0.9946] [ -5.9421 -3.9882] 1283.3
100000 500 0.05 [-1.0087 0.9946] [ -5.9421 -3.9882] 1243.4
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Conclusions

I The classical theory of Lyapunov/Bohl/Sacker-Sell has been
extended to linear DAEs with variable coefficients.

I Strangeness-free formulations and EUODEs are the key tools.

I Leading directions and solution subspaces are characterized.

I Methods based on smooth QR and SVD are available for
approximating spectral intervals and associated leading
directions. They are expensive ! However, in some cases, we
need not all, but only few dominant exponents.

The exponents and the leading directions generalize the concepts of
eigenvalues and eigenvectors from time-invariant systems
(generalized eigenvalue problems) to time-varying systems.
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Work in progress and future work

I Pseudospectrum, conditioning, distance to
non-exponential-dichotomy.

I Spectral analysis of nonlinear DAEs.

I Block version of algorithms

I Efficient implementation of QR and SVD algorithms.

I Real applications: semi-discretized Navier-Stokes system, etc.

I Extension to operator DAEs/PDEs.
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