Noncommutative Schur Functions

K. Luoto*, C. Bessenrodt, S. van Willigenburg

Department of Mathematics University of British Columbia

Banff International Research Station Workshop on Quasisymmetric Functions Nov. 18th, 2010

4 E N 4 E N E

Graded dual Hopf algebras

- Sym is self-dual
 - m_{λ} dual to h_{λ} (complete symmetric fcns)
 - s_λ dual to itself

QSym is dual to NSym, the noncommutative symmetric fcns

- M_{α} dual to \mathbf{h}_{α} (noncommutative complete symmetric fcns)
- F_{α} dual to \mathbf{r}_{α} (noncommutative ribbon Schurs)
- S_{α} dual to \mathbf{s}_{α} (noncommutative Schurs)[†]

$$\Delta S_{\gamma} = \sum_{\beta} S_{\gamma \parallel \beta} \otimes S_{\beta}$$
$$S_{\gamma \parallel \beta} = \sum_{\alpha} C_{\alpha,\beta}^{\gamma} S_{\alpha} \quad \Longleftrightarrow \quad \mathbf{s}_{\alpha} \mathbf{s}_{\beta} = \sum_{\gamma} C_{\alpha,\beta}^{\gamma} \mathbf{s}_{\gamma}$$

[†] not the same as Fomin & Greene's

Graded dual Hopf algebras

- Sym is self-dual
 - m_{λ} dual to h_{λ} (complete symmetric fcns)
 - s_λ dual to itself

QSym is dual to NSym, the noncommutative symmetric fcns

- M_{α} dual to \mathbf{h}_{α} (noncommutative complete symmetric fcns)
- F_{α} dual to \mathbf{r}_{α} (noncommutative ribbon Schurs)
- S_{α} dual to \mathbf{s}_{α} (noncommutative Schurs)[†]

$$\Delta S_{\gamma} = \sum_{\beta} S_{\gamma /\!\!/\beta} \otimes S_{\beta}$$
$$S_{\gamma /\!\!/\beta} = \sum_{\alpha} C_{\alpha,\beta}^{\gamma} S_{\alpha} \quad \Longleftrightarrow \quad \mathbf{s}_{\alpha} \mathbf{s}_{\beta} = \sum_{\gamma} C_{\alpha,\beta}^{\gamma} \mathbf{s}_{\gamma}$$

[†] not the same as Fomin & Greene's

K. Luoto*, C. Bessenrodt, S. van Willigenburg

QSym and NSym Schurs

Hopf algebra maps

Littlewood-Richardson reverse tableaux

 $w_{col}(T) = 9\,38\,157\,246 \qquad w_{col}(U_{4221}) = 1359\,248\,7\,6$ $RSK : \pi \iff (P(\pi), Q(\pi))$ $rect(T) := P(w_{col}(T))$

T is a LR standard reverse tableau if

$$rect(T) = \widetilde{U}_{\lambda}$$
 for some λ

Littlewood-Richardson reverse tableaux

 $w_{col}(T) = 9\,38\,157\,246$ $w_{col}(\widetilde{U}_{4221}) = 1359\,248\,7\,6$ $RSK : \pi \iff (P(\pi), Q(\pi))$ $rect(T) := P(w_{col}(T))$

T is a LR standard reverse tableau if

$$rect(T) = \widetilde{U}_{\lambda}$$
 for some λ

Littlewood-Richardson reverse tableaux

 $w_{col}(T) = 9\,38\,157\,246$ $w_{col}(\widetilde{U}_{4221}) = 1359\,248\,7\,6$ $RSK : \pi \iff (P(\pi), Q(\pi))$ $rect(T) := P(w_{col}(T))$

T is a LR standard reverse tableau if

$$rect(T) = \widetilde{U}_{\lambda}$$
 for some λ

Classical Littlewood-Richardson rule

Littlewood-Richardson coefficients $c_{\lambda,\mu}^{\nu}$

$$egin{array}{rcl} s_{
u/\mu} &=& \sum_{\lambda} c_{\lambda,\mu}^{
u} s_{\lambda} \ s_{\lambda} s_{\mu} &=& \sum_{
u} c_{\lambda,\mu}^{
u} s_{
u} \end{array}$$

Theorem (Littlewood-Richardson rule)

In the above expansions, $c_{\lambda,\mu}^{\nu}$ is the number of $T \in SRT(\nu/\mu)$ such that $rect(T) = \widetilde{U}_{\lambda}$.

Posets \mathcal{L}_{Y} and \mathcal{L}_{c}

- \mathcal{L}_{Y} : Partitions, partially ordered by containment: Cover by
 - appending 1
 - incrementing first (leftmost) $k \mapsto k + 1$

examples:

- $(2,1,1) \leq_Y (2,1,1,1)$
- $(2,1,1) \leq_Y (2,2,1)$
- (2, 1, 1) ≤_Y (3, 1, 1)
- \mathcal{L}_c : Partial order on compositions: Cover by
 - prepending 1
 - incrementing first (leftmost) $k \mapsto k+1$

examples:

•
$$(1,2,1) \leq_c (1,1,2,1)$$

•
$$(1, 2, 1) \leq_c (2, 2, 1)$$

▶ $(1, 2, 1) \leq_c (1, 3, 1)$

Posets \mathcal{L}_{Y} and \mathcal{L}_{c}

- \mathcal{L}_{Y} : Partitions, partially ordered by containment: Cover by
 - appending 1
 - incrementing first (leftmost) $k \mapsto k + 1$

examples:

- $(2,1,1) <_Y (2,1,1,1)$
- $(2,1,1) \leq_Y (2,2,1)$
- (2, 1, 1) ≤_Y (3, 1, 1)
- \mathcal{L}_c : Partial order on compositions: Cover by
 - prepending 1
 - incrementing first (leftmost) $k \mapsto k + 1$

examples:

- $(1,2,1) \leq_c (1,1,2,1)$
- $(1,2,1) \leq_c (2,2,1)$
- $(1,2,1) \leq_c (1,3,1)$

⇒ ↓ ≡ ↓ ≡ |= √Q ∩

Fix $\mu = \widetilde{\beta}$.

$$SRT(-/\mu) \quad \stackrel{\rho}{\longleftrightarrow} \quad SCT(-//\beta)$$

*	*	
*	*	*
*		

 $\mu = (3, 2, 1) \quad \leftarrow \mathsf{base} \rightarrow \quad \beta = (2, 3, 1)$

Fix $\mu = \widetilde{\beta}$.

$$SRT(-/\mu) \quad \stackrel{\rho}{\longleftrightarrow} \quad SCT(-//\beta)$$

*	*	
*	*	*
*	9	

 $\mu = (\mathbf{3}, \mathbf{2}, \mathbf{1}) \quad \leftarrow \mathsf{base} \rightarrow \quad \beta = (\mathbf{2}, \mathbf{3}, \mathbf{1})$

Fix $\mu = \widetilde{\beta}$.

$$SRT(-/\mu) \quad \stackrel{\rho}{\longleftrightarrow} \quad SCT(-//\beta)$$

*	*	8
*	*	*
*	9	

 $\mu = (3, 2, 1) \quad \leftarrow \mathsf{base} \rightarrow \quad \beta = (2, 3, 1)$

Fix $\mu = \widetilde{\beta}$.

$$SRT(-/\mu) \quad \stackrel{\rho}{\longleftrightarrow} \quad SCT(-/\!/\beta)$$

*	*	8	7
*	*	*	
*	9		

 $\mu = (3, 2, 1) \quad \leftarrow \mathsf{base} \rightarrow \quad \beta = (2, 3, 1)$

Fix $\mu = \widetilde{\beta}$.

$$SRT(-/\mu) \quad \stackrel{\rho}{\longleftrightarrow} \quad SCT(-/\!/\beta)$$

6			
*	*	8	7
*	*	*	
*	9		

 $\mu = (3, 2, 1) \quad \leftarrow \mathsf{base} \rightarrow \quad \beta = (2, 3, 1)$

Fix $\mu = \widetilde{\beta}$.

$$SRT(-/\mu) \quad \stackrel{\rho}{\longleftrightarrow} \quad SCT(-/\!/\beta)$$

 $\mu = (\mathbf{3}, \mathbf{2}, \mathbf{1}) \quad \leftarrow \mathsf{base} \rightarrow \quad \beta = (\mathbf{2}, \mathbf{3}, \mathbf{1})$

Fix $\mu = \widetilde{\beta}$.

$$SRT(-/\mu) \quad \stackrel{\rho}{\longleftrightarrow} \quad SCT(-/\!/\beta)$$

 $\mu = (3, 2, 1) \quad \leftarrow \mathsf{base} \rightarrow \quad \beta = (2, 3, 1)$

Fix $\mu = \widetilde{\beta}$.

$$SRT(-/\mu) \quad \stackrel{\rho}{\longleftrightarrow} \quad SCT(-//\beta)$$

 $\mu = (\mathbf{3}, \mathbf{2}, \mathbf{1}) \quad \leftarrow \mathsf{base} \rightarrow \quad \beta = (\mathbf{2}, \mathbf{3}, \mathbf{1})$

Fix $\mu = \widetilde{\beta}$.

$$SRT(-/\mu) \quad \stackrel{\rho}{\longleftrightarrow} \quad SCT(-//\beta)$$

 $\mu = (3, 2, 1) \quad \leftarrow \mathsf{base} \rightarrow \quad \beta = (2, 3, 1)$

Fix $\mu = \widetilde{\beta}$.

$$SRT(-/\mu) \quad \stackrel{\rho}{\longleftrightarrow} \quad SCT(-//\beta)$$

 $\mu = (\mathbf{3}, \mathbf{2}, \mathbf{1}) \quad \leftarrow \mathsf{base} \rightarrow \quad \beta = (\mathbf{2}, \mathbf{3}, \mathbf{1})$

Canonical and LR SCT

$$U_{2412} = \begin{array}{|c|c|c|c|} 2 & 1 \\ \hline 6 & 5 & 4 & 3 \\ \hline 7 \\ \hline 9 & 8 \end{array}$$

$$w_{col}(T) = 6\,25\,149\,378$$

 $w_{col}(U_{2412}) = 2679\,158\,4\,3$

Image: A matrix

$$rect(T) := P(w_{col}(T))$$

T is a LR SCT if

$$rect(T) = U_{\alpha}$$
 for some α

Noncommutative Littlewood-Richardson rule (new)

Noncommutative Littlewood-Richardson coefficients $C_{\alpha,\beta}^{\gamma}$

$$\begin{aligned} \mathcal{S}_{\gamma /\!\! /\!\! /\beta} &=& \sum_{\alpha} \mathcal{C}^{\gamma}_{\alpha,\beta} \, \mathcal{S}_{\alpha} \\ \mathbf{s}_{\alpha} \, \mathbf{s}_{\beta} &=& \sum_{\gamma} \mathcal{C}^{\gamma}_{\alpha,\beta} \, \mathbf{s}_{\gamma} \end{aligned}$$

Theorem (Noncommutative Littlewood-Richardson rule) In the above expansions, $C_{\alpha,\beta}^{\gamma}$ is the number of $T \in SCT(\gamma // \beta)$ such that $rect(T) = U_{\alpha}$.

Note: If
$$\lambda = \widetilde{\alpha}$$
, and $\mu = \widetilde{\beta}$, then $c_{\lambda,\mu}^{\nu} = \sum_{\widetilde{\gamma}=\nu} C_{\alpha,\beta}^{\gamma}$.

K. Luoto*, C. Bessenrodt, S. van Willigenburg

QSym and NSym Schurs

Noncommutative Littlewood-Richardson rule (new)

Noncommutative Littlewood-Richardson coefficients $C_{\alpha,\beta}^{\gamma}$

$$\begin{aligned} \mathcal{S}_{\gamma /\!\! /\!\! /\beta} &=& \sum_{\alpha} \mathcal{C}^{\gamma}_{\alpha,\beta} \, \mathcal{S}_{\alpha} \\ \mathbf{s}_{\alpha} \, \mathbf{s}_{\beta} &=& \sum_{\gamma} \mathcal{C}^{\gamma}_{\alpha,\beta} \, \mathbf{s}_{\gamma} \end{aligned}$$

Theorem (Noncommutative Littlewood-Richardson rule) In the above expansions, $C_{\alpha,\beta}^{\gamma}$ is the number of $T \in SCT(\gamma // \beta)$ such that $rect(T) = U_{\alpha}$.

Note: If
$$\lambda = \widetilde{\alpha}$$
, and $\mu = \widetilde{\beta}$, then $c_{\lambda,\mu}^{\nu} = \sum_{\widetilde{\gamma}=\nu} C_{\alpha,\beta}^{\gamma}$.

• Dual equivalent SRT: $T \sim T'$ if T, T' same skew shape and $w_{col}(T) \stackrel{Q}{\sim} w_{col}(T')$

• (Haiman '92) Equivalence classes are *complete*:

bijection $w_{col} : [T] \rightarrow [w_{col}(T)]_Q$

$$shape(rect(T)) = \lambda \implies s_{\lambda} = \sum_{T' \sim T} F_{Des(T')}$$

LR (skew) tableaux {T ∈ SRT : rect(T) = U_λ for some λ} is a transversal of ~

• Dual equivalent SRT: $T \sim T'$ if T, T' same skew shape and $w_{col}(T) \stackrel{Q}{\sim} w_{col}(T')$

• (Haiman '92) Equivalence classes are *complete*:

bijection $w_{col} : [T] \rightarrow [w_{col}(T)]_Q$

$$shape(rect(T)) = \lambda \implies s_{\lambda} = \sum_{T' \sim T} F_{Des(T')}$$

LR (skew) tableaux {T ∈ SRT : rect(T) = U_λ for some λ} is a transversal of ~

• Dual equivalent SRT: $T \sim T'$ if T, T' same skew shape and $w_{col}(T) \stackrel{Q}{\sim} w_{col}(T')$

• (Haiman '92) Equivalence classes are *complete*:

bijection $w_{col} : [T] \rightarrow [w_{col}(T)]_Q$

$$shape(rect(T)) = \lambda \implies s_{\lambda} = \sum_{T' \sim T} F_{Des(T')}$$

LR (skew) tableaux {T ∈ SRT : rect(T) = U_λ for some λ} is a transversal of ~

• Dual equivalent SRT: $T \sim T'$ if T, T' same skew shape and $w_{col}(T) \stackrel{Q}{\sim} w_{col}(T')$

• (Haiman '92) Equivalence classes are *complete*:

bijection
$$w_{col} : [T] \rightarrow [w_{col}(T)]_Q$$

$$shape(rect(T)) = \lambda \implies s_{\lambda} = \sum_{T' \sim T} F_{Des(T')}$$

LR (skew) tableaux {T ∈ SRT : rect(T) = U_λ for some λ} is a transversal of ~

• *C*-equivalent permutations: $\pi \stackrel{c}{\sim} \sigma$ if $\pi \stackrel{Q}{\sim} \sigma$ and *C*-shape($P(\pi)$) = *C*-shape($P(\sigma)$)

• *C*-equivalent SCT: $T \stackrel{c}{\sim} T'$ if

T, T' same skew shape and $w_{col}(T) \stackrel{c}{\sim} w_{col}(T')$

• (BLvW '10) Equivalence classes are *complete* :

bijection $w_{col} : [T]_c \rightarrow [w_{col}(T)]_c$

$$C\text{-shape}(rect(T)) = \alpha \implies S_{\alpha} = \sum_{T' \stackrel{\circ}{\sim} T} F_{Des(T')}$$

• LR SCT {
$$T \in SCT : rect(T) = U_{\alpha}$$
 for some α }
is a transversal of $\stackrel{C}{\sim}$

K. Luoto*, C. Bessenrodt, S. van Willigenburg

⇒ ↓ ≡ ↓ ≡ |= √Q ∩

- *C*-equivalent permutations: $\pi \stackrel{c}{\sim} \sigma$ if $\pi \stackrel{Q}{\sim} \sigma$ and *C*-shape($P(\pi)$) = *C*-shape($P(\sigma)$)
- *C*-equivalent SCT: $T \stackrel{c}{\sim} T'$ if T, T' same skew shape and $w_{col}(T) \stackrel{c}{\sim} w_{col}(T')$
- (BLvW '10) Equivalence classes are complete :

bijection $w_{col} : [T]_c \rightarrow [w_{col}(T)]_c$

$$C\text{-shape}(rect(T)) = \alpha \implies S_{\alpha} = \sum_{T' \stackrel{\circ}{\sim} T} F_{Des(T')}$$

• LR SCT {
$$T \in SCT : rect(T) = U_{\alpha}$$
 for some α }
is a transversal of $\stackrel{C}{\sim}$

K. Luoto*, C. Bessenrodt, S. van Willigenburg

5 · · 5 · 5 5 · 0 0 0

- *C*-equivalent permutations: $\pi \stackrel{c}{\sim} \sigma$ if $\pi \stackrel{Q}{\sim} \sigma$ and *C*-shape($P(\pi)$) = *C*-shape($P(\sigma)$)
- *C*-equivalent SCT: $T \stackrel{c}{\sim} T'$ if T, T' same skew shape and $w_{col}(T) \stackrel{c}{\sim} w_{col}(T')$
- (BLvW '10) Equivalence classes are complete :

bijection $w_{col} : [T]_c \rightarrow [w_{col}(T)]_c$

$$C\text{-shape}(rect(T)) = \alpha \implies S_{\alpha} = \sum_{T' \stackrel{\circ}{\sim} T} F_{Des(T')}$$

• LR SCT {
$$T \in SCT : rect(T) = U_{\alpha}$$
 for some α }
is a transversal of $\stackrel{C}{\sim}$

K. Luoto*, C. Bessenrodt, S. van Willigenburg

- *C*-equivalent permutations: $\pi \stackrel{c}{\sim} \sigma$ if $\pi \stackrel{Q}{\sim} \sigma$ and *C*-shape($P(\pi)$) = *C*-shape($P(\sigma)$)
- *C*-equivalent SCT: $T \stackrel{c}{\sim} T'$ if T, T' same skew shape and $w_{col}(T) \stackrel{c}{\sim} w_{col}(T')$
- (BLvW '10) Equivalence classes are complete :

bijection $w_{col} : [T]_c \rightarrow [w_{col}(T)]_c$

$$C\text{-shape}(rect(T)) = \alpha \implies S_{\alpha} = \sum_{T' \stackrel{\circ}{\sim} T} F_{Des(T')}$$

• LR SCT {
$$T \in SCT : rect(T) = U_{\alpha}$$
 for some α }
is a transversal of $\stackrel{C}{\sim}$

K. Luoto*, C. Bessenrodt, S. van Willigenburg

- *C*-equivalent permutations: $\pi \stackrel{c}{\sim} \sigma$ if $\pi \stackrel{Q}{\sim} \sigma$ and *C*-shape($P(\pi)$) = *C*-shape($P(\sigma)$)
- *C*-equivalent SCT: $T \stackrel{c}{\sim} T'$ if T, T' same skew shape and $w_{col}(T) \stackrel{c}{\sim} w_{col}(T')$
- (BLvW '10) Equivalence classes are complete :

bijection
$$w_{col} : [T]_c \rightarrow [w_{col}(T)]_c$$

$$C\text{-shape}(rect(T)) = \alpha \implies S_{\alpha} = \sum_{T' \stackrel{\circ}{\sim} T} F_{Des(T')}$$

• LR SCT $\{T \in SCT : rect(T) = U_{\alpha} \text{ for some } \alpha\}$ is a transversal of $\stackrel{C}{\sim}$

Symmetric skew quasisymmetric Schur fcns

$$s_{(3,3,1)/(2,1)} = S_{(4,4,2)/(3,2,1)}$$

K. Luoto*, C. Bessenrodt, S. van Willigenburg

QSym and NSym Schurs

BIRS QSym Workshop 12 / 24

Symmetric skew quasisymmetric Schur fcns

(3, 3, 3, 2, 4, 2, 4) // (2, 4, 1, 3)

Conjecture

 $S_{\gamma / \! / \! / \! \beta}$ is symmetric if and only if $\gamma / \! / \! \beta$ is "uniform".

K. Luoto*, C. Bessenrodt, S. van Willigenburg

・ 同 ト ・ 日 ト ・ 日 ト

K. Luoto*, C. Bessenrodt, S. van Willigenburg

K. Luoto*, C. Bessenrodt, S. van Willigenburg

4

$$\phi(\boldsymbol{U}*\boldsymbol{V}) = \phi(\boldsymbol{V})\phi(\boldsymbol{U})$$

(Note: ϕ is <u>not</u> a Hopf morphism)

12

(B)

- set of *colors* (*palette?*) $B = \{1, 2, \dots, N\}$
- alphabet $\mathcal{A} = \mathbb{Z}_+ \times B$, lex ordered; $\mathcal{A}^b = \mathbb{Z}_+ \times \{b\}$
- $X^b = \{x_{1,b}, x_{2,b}, x_{3,b}, \ldots\}, \quad X = \bigcup_{b \in B} X^b$
- $\bar{k} = (k, 2), \quad \bar{k} = (k, 3), \quad \bar{x}_{\bar{k}} = x_{k,2}, \quad \bar{x}_{\bar{k}} = x_{k,3}$

 $Sym^{(B)} := Sym^{\otimes N} \cong Sym(X^1) \cdots Sym(X^N)$

- colored partitions $\lambda = (\lambda^1, \dots, \lambda^N)$ (multiset in \mathcal{A})
- (Specht) colored / wreath product Schur functions

$$s_{\lambda} = s_{\lambda^1}(X^1) \cdots s_{\lambda^N}(X^N)$$

K. Luoto*, C. Bessenrodt, S. van Willigenburg

• set of *colors* (*palette?*) $B = \{1, 2, ..., N\}$

- alphabet $\mathcal{A} = \mathbb{Z}_+ \times B$, lex ordered; $\mathcal{A}^b = \mathbb{Z}_+ \times \{b\}$
- $X^b = \{x_{1,b}, x_{2,b}, x_{3,b}, \ldots\}, \quad X = \bigcup_{b \in B} X^b$
- $\bar{k} = (k, 2), \quad \bar{k} = (k, 3), \quad \bar{x}_{\bar{k}} = x_{k,2}, \quad \bar{x}_{\bar{k}} = x_{k,3}$

 $Sym^{(B)} := Sym^{\otimes N} \cong Sym(X^1)\cdots Sym(X^N)$

- colored partitions $\lambda = (\lambda^1, \dots, \lambda^N)$ (multiset in \mathcal{A})
- (Specht) colored / wreath product Schur functions

$$s_{\lambda} = s_{\lambda^1}(X^1) \cdots s_{\lambda^N}(X^N)$$

• set of colors (palette?)
$$B = \{1, 2, ..., N\}$$

• alphabet $\mathcal{A} = \mathbb{Z}_+ \times B$, lex ordered; $\mathcal{A}^b = \mathbb{Z}_+ \times \{b\}$
• $X^b = \{x_{1,b}, x_{2,b}, x_{3,b}, ...\}, \quad X = \bigcup_{b \in B} X^b$
• $\bar{k} = (k, 2), \quad \bar{\bar{k}} = (k, 3), \quad \bar{x}_k = x_{k,2}, \quad \bar{x}_{\bar{k}} = x_{k,3}$
 $Sym^{(B)} := Sym^{\otimes N} \cong Sym(X^1) \cdots Sym(X^N)$

colored partitions λ = (λ¹,...,λ^N) (multiset in A)
 (Specht) colored / wreath product Schur functions

$$s_{\lambda} = s_{\lambda^1}(X^1) \cdots s_{\lambda^N}(X^N)$$

K. Luoto*, C. Bessenrodt, S. van Willigenburg

• set of *colors* (*palette?*) $B = \{1, 2, ..., N\}$ • alphabet $\mathcal{A} = \mathbb{Z}_+ \times B$, lex ordered; $\mathcal{A}^b = \mathbb{Z}_+ \times \{b\}$ • $X^b = \{x_{1,b}, x_{2,b}, x_{3,b}, ...\}, \quad X = \bigcup_{b \in B} X^b$ • $\bar{k} = (k, 2), \quad \bar{\bar{k}} = (k, 3), \quad \bar{x}_k = x_{k,2}, \quad \bar{x}_{\bar{k}} = x_{k,3}$

$$Sym^{(B)} := Sym^{\otimes N} \cong Sym(X^1) \cdots Sym(X^N)$$

colored partitions λ = (λ¹,...,λ^N) (multiset in A)
 (Specht) colored / wreath product Schur functions

$$s_{\lambda} = s_{\lambda^1}(X^1) \cdots s_{\lambda^N}(X^N)$$

K. Luoto*, C. Bessenrodt, S. van Willigenburg

- set of colors (palette?) $B = \{1, 2, ..., N\}$ • alphabet $\mathcal{A} = \mathbb{Z}_+ \times B$, lex ordered; $\mathcal{A}^b = \mathbb{Z}_+ \times \{b\}$ • $X^b = \{x_{1,b}, x_{2,b}, x_{3,b}, ...\}, \quad X = \bigcup_{b \in B} X^b$ • $\bar{k} = (k, 2), \quad \bar{\bar{k}} = (k, 3), \quad \bar{x_k} = x_{k,2}, \quad \bar{\bar{x_k}} = x_{k,3}$ $Sym^{(B)} := Sym^{\otimes N} \cong Sym(X^1) \cdots Sym(X^N)$
- colored partitions $\lambda = (\lambda^1, \dots, \lambda^N)$ (multiset in \mathcal{A})
- (Specht) colored / wreath product Schur functions

$$s_{\lambda} = s_{\lambda^1}(X^1) \cdots s_{\lambda^N}(X^N)$$

Colored quasisymmetric functions

- cf. Poirier, Hsiao, Petersen, Baumann, Hohlweg, et al.
- colored composition = finite sequence in A.

$$\alpha = ((a_1, b_1), \ldots, (a_k, b_k))$$

• colored monomial quasisymmetric functions:

$$M_{lpha} := \sum_{(i_1,b_1) < \cdots < (i_k,b_k)} x_{i_1,b_1}^{a_1} \cdots x_{i_k,b_k}^{a_k}$$

• E.g.
$$\alpha = \bar{1}21$$
, $M_{\alpha} = \bar{x}_1 x_2^2 x_3 + \bar{x}_1 x_2^2 x_4 + \bar{x}_2 x_3^2 x_4 + \cdots$
• $QSym^{(B)} = span\{M_{\alpha}\}$

K. Luoto*, C. Bessenrodt, S. van Willigenburg

Mantaci-Reutenauer algebra

- $NSym^{(B)} =$ graded Hopf dual of $QSym^{(B)}$
- Isomorphic to Mantaci-Reutenauer algebra
- Colored noncommutative symmetric functions (?)
- Freely generated by $\{\mathbf{h}_{(n,b)}\}_{(n,b)\in\mathcal{A}}$; deg $h_{(n,b)} = n$

Colored analogs (known)

- colored words, permutations, standardizations, descents
- refinement of colored compositions
- colored Young tableaux (CSSRT, CSRT) T = (T¹,...,T^N), descents
- Knuth and dual Knuth equivalence
- RSK correspondence

$$\overline{162345} \quad \mapsto \quad \left[P = \left(\underbrace{5}_{2}, \underbrace{6}_{3} \underbrace{4}_{3} \right), \ Q = \left(\underbrace{4}_{1}, \underbrace{6}_{3} \underbrace{5}_{2} \right) \right]$$
$$s_{\lambda} = \sum_{T \in CSSRT(\lambda)} \mathbf{x}^{T} = \sum_{T \in CSRT(\lambda)} F_{Des(T)}$$

The Change

Poset of colored compositions: cover by

- prepending (1, b) for any $b \in B$
- incrementing first (leftmost) $(k, b) \mapsto (k + 1, b)$

• colored composition tableaux (CSSCT, CSRT)

315

A B F A B F

The Change

- Poset of colored compositions: cover by
 - prepending (1, b) for any $b \in B$
 - incrementing first (leftmost) $(k, b) \mapsto (k + 1, b)$
- colored composition tableaux (CSSCT, CSRT)

12

(B)

The Hope

$$\begin{split} \mathcal{S}_{\gamma /\!\! /\!\! /\beta} &= \sum_{T \in CSCRT(\gamma /\!\! /\!\! /\beta)} \mathbf{x}^T = \sum_{T \in CSCT(\gamma /\!\! /\!\! /\beta)} F_{Des(T)} \\ \Delta \mathcal{S}_{\gamma} &= \sum_{\beta} \mathcal{S}_{\gamma /\!\! /\!\! /\beta} \otimes \mathcal{S}_{\beta} \\ \mathbf{s}_{\lambda} &= \sum_{\widetilde{\alpha} = \lambda} \mathcal{S}_{\alpha} \implies \chi(\mathbf{s}_{\alpha}) = \mathbf{s}_{\widetilde{\alpha}} \end{split}$$

Conjecture

In the expansion

$$\mathcal{S}_{\gamma /\!\!/ eta} = \sum_lpha \mathcal{C}^\gamma_{lpha,eta} \, \mathcal{S}_lpha,$$

 $C_{\alpha,\beta}^{\gamma}$ is the number of $T \in SCT(\gamma / \! / \beta)$ such that $rect(T) = U_{\alpha}$.

Noncommutative characters are pre-images of characters under θ .

QSym and NSym Schurs

$$\bigoplus_{n \ge 0} \Sigma \cong NSym \longrightarrow \bigoplus_{n \ge 0} \mathbb{C}S_n$$

$$\begin{array}{c} \chi \\ \downarrow \\ \bigoplus_{n \ge 0} Cl(S_n) \cong Sym \end{array}$$

K. Luoto*, C. Bessenrodt, S. van Willigenburg

BIRS QSym Workshop 22 / 24

The $\{\mathbf{s}_{\alpha}\}$ are irreducible noncommutative characters.

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ ≤ Ξ = のへの

The $\{\mathbf{s}_{\alpha}\}$ are irreducible noncommutative characters.

K. Luoto*, C. Bessenrodt, S. van Willigenburg

BIRS QSym Workshop 22/24

< 17 ▶

The colored $\{\mathbf{s}_{\alpha}\}$ are irreducible noncommutative characters.

Further directions

- Other representation theoretical interpretations?
- Geometric interpretations?
- Properties of skew QS Schurs that are symmetric?
- Extension of Sami's machinery for QS positivity?
- Analogous bases for other algebras?

For Further Reading I

- J. Haglund, K. Luoto, S. Mason, S. van Willigenburg Quasisymmetric Schur functions J. of Comb. Theory, Series A, *to appear*
- C. Bessenrodt, K. Luoto, S. van Willigenburg Skew quasisymmetric Schur functions and noncommutative Schur functions

Adv. Math, accepted

- D. Blessenohl, M. Schocker
 Noncommutative character theory of the symmetric groups Imperial College Press, (2005)
- P. Baumann, C. Hohlweg A Solomon descent theory for the wreath products $G \wr S_n$ TAMS, 360(3):1475-1538(2008)