Pattern Avoidance and Affine Permutations Joint work with Sara Billey

Andrew Crites

Department of Mathematics University of Washington Seattle, WA 98195-4350

acrites@uw.edu

November 15, 2010

Definition of Affine Permutations

Definition

The group of affine permutations, \widetilde{S}_n is the group of all bijections $\sigma : \mathbb{Z} \to \mathbb{Z}$ such that the following properties hold:

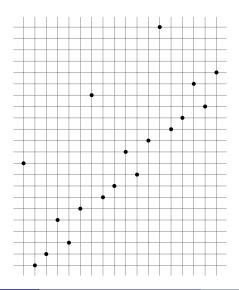
•
$$\sigma(i+n) = \sigma(i) + n$$
 for all $i \in \mathbb{Z}$,
• $\sum_{i=1}^{n} \sigma(i) = \binom{n+1}{2}$.

We will represent an affine permutation in its one-line notation as the infinite string

$$\cdots \sigma(-1), \sigma(0) [\sigma(1), \ldots, \sigma(n)] \sigma(n+1), \sigma(n+2) \cdots$$

Example of an Affine Permutation

$$\sigma = [8, -1, 0, 3, 1, 4] \in \widetilde{S}_6.$$



Coxeter Groups

As a Coxeter group, S_n is generated by the simple reflections $S = \{s_0, s_1, \ldots, s_{n-1}\}$, where s_i interchanges i + kn and i + 1 + kn for all $k \in \mathbb{Z}$ and leaves all other integers fixed. The relations amongst these generators is summarized in the Coxeter graph.

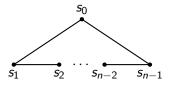


Figure: Coxeter graph for \widetilde{S}_n .

Affine Permutations and Symmetric Functions

Affine permutations show up when studying

- affine Stanley symmetric functions,
- k-Schur functions and dual k-Schur functions,
- Macdonald polynomials,
- Schubert bases for (co)homology of the affine Grassmannian.

(See, e.g., work of Lam, Lapointe, Morse, Shimozono.)

Definition of Pattern Avoidance

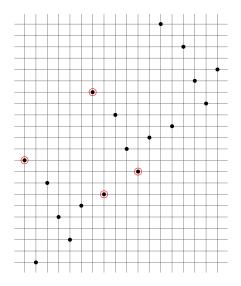
Mimicking the notion of pattern avoidance for non-affine permutations, we make the following definition.

Definition

Let $\sigma \in \widetilde{S}_n$ and $p \in S_m$. We say σ contains the pattern p if there exist indices $i_1 < \cdots < i_m$, such that the values $\sigma(i_1), \ldots, \sigma(i_m)$ are in the same relative order as the values $p(1), \ldots, p(m)$. Otherwise, we say σ avoids the pattern p.

Example of Pattern Avoidance

$$\sigma = [8, -1, 6, 3, 1, 4]$$
 contains $p = 3412$.



Enumerating Pattern Avoidance

Definition

For a given pattern
$$p\in S_m$$
, let $\widetilde{S}_n(p)=\#\left\{\sigma\in\widetilde{S}_n:\sigma ext{ avoids }p
ight\}.$

Since \widetilde{S}_n is an infinite group, $\widetilde{S}_n(p)$ may be infinite.

Theorem (Crites 2010)

 $\widetilde{S}_n(p)$ is finite if and only if p avoids 321.

Enumeration Results

Theorem (Crites 2010)

• If
$$\ell(p) = 0$$
, then $\widetilde{S}_n(p) = 0$.

2) If
$$\ell(p) = 1$$
, then $S_n(p) = 1$.

3 For $p \in \{231, 312, 1342, 1423, 2314, 3124\}$, $\widetilde{S}_n(p) = \binom{2n-1}{n}$.

Conjecture

$$\widetilde{S}_n(3142) = \widetilde{S}_n(2413) = \sum_{k=0}^{n-1} \frac{(n-k)}{n} \binom{n-1+k}{k} 2^k$$
$$\widetilde{S}_n(3412) = \widetilde{S}_n(4123) = \widetilde{S}_n(2341) = \frac{1}{3} \sum_{p+q+r=n} \binom{n}{p,q,r}^2$$

Affine Permutation Matrices

Write $\sigma(i) = a_i + b_i n$, where $1 \le a_i \le n$. Since σ is a bijection, Property 1 guarantees that $\{a_1, \ldots, a_n\} = \{1, \ldots, n\}$. Property 2 shows that $b_1 + \cdots + b_n = 0$.

Definition

Let $e_{\sigma} = (m_{ij})_{i,j=1}^{n}$ be the matrix with $m_{i,a_i} = t^{b_i}$ for $1 \le i \le n$, and all other entries 0. Such a matrix is called an *affine permutation matrix*.

Example of an Affine Permutation Matrix

$$\sigma = \begin{bmatrix} 8, -1, 6, 3, 1, 4 \end{bmatrix}$$

$$a_i : 2 5 6 3 1 4$$

$$b_i : 1 -1 0 0 0 0$$

$$\downarrow$$

$$\begin{bmatrix} 0 t 0 0 0 0 t^{-1} 0 \\ 0 0 0 0 0 t^{-1} 0 \\ 0 0 1 0 0 0 \\ 1 0 0 0 0 0 \end{bmatrix}$$

Affine Schubert Varieties

Let

$$\widetilde{G} = \operatorname{GL}_n\left(\mathbb{C}[[t]][t^{-1}]\right),$$

and let

$$\widetilde{B} = \{ b \in \operatorname{GL}_n(\mathbb{C}[[t]]) : b|_{t=0} \text{ is upper triangular} \}.$$

Definition

 $\widetilde{X} := \widetilde{G}/\widetilde{B}$ is an ind-variety called the *complete affine flag variety*. The corresponding affine Weyl group is \widetilde{S}_n .

Affine Schubert Varieties (cont.)

By putting elements of \widetilde{G} in column echelon form, we have the Bruhat decomposition

$$\widetilde{X} = \bigsqcup_{\sigma \in \widetilde{S}_n} \widetilde{B} \sigma \widetilde{B} / \widetilde{B}.$$

Definition

- The Schubert cell corresponding to $\sigma \in \widetilde{S}_n$ is $C_{\sigma} = \widetilde{B}\sigma\widetilde{B}/\widetilde{B}$.
- **2** The Schubert variety corresponding to σ is $\widetilde{X}_{\sigma} = \overline{C}_{\sigma}$.

Example of a Schubert Cell

The Schubert cell C_{σ} , for $\sigma = [8, -1, 6, 3, 1, 4]$:

$$\begin{bmatrix} a+bt & t & c & d & et^{-1}+f & g \\ 0 & 0 & 0 & 0 & t^{-1} & 0 \\ h & 0 & i & j & k & 1 \\ \ell & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

The number of free variables in row i is

$$\# \{j : i < j \text{ and } \sigma(i) > \sigma(j) \}.$$

Affine Schubert Varieties (cont.)

As in the classical case, we have the following properties:

$$egin{aligned} \widetilde{X}_{ au} &= igcup_{\sigma \leq au} \widetilde{X}_{\sigma}, \ \dim \widetilde{X}_{\sigma} &= \ell(\sigma) = \# \left\{ (i,j) : 1 \leq i \leq n, i < j, \sigma(i) > \sigma(j)
ight\}. \end{aligned}$$

Main Result

Theorem (Billey-Crites 2010)

The affine Schubert variety \widetilde{X}_{σ} is rationally smooth if and only if either σ avoids 3412 and 4231, or σ is a twisted spiral variety.

Since smoothness implies rational smoothness, we also get the following result.

Corollary

If σ contains 3412 or 4231, then X_{σ} is not smooth.

Rational Smoothness

Definition

The *Poincaré polynomial* for $au \in \widetilde{S}_n$ is given by

$${\it P}_{ au}(q) = \sum_{\sigma \leq au} q^{\ell(\sigma)}.$$

Definition

A variety X is rationally smooth if, for each $x \in X$, the singular cohomology $H^i(X, X \setminus \{x\}, \mathbb{Q}) = 0$ for $i \neq 2 \dim X$, and is one-dimensional when $i = 2 \dim X$.

Theorem (Carrell-Peterson)

 \widetilde{X}_{σ} is rationally smooth if and only if $P_{\sigma}(\mathsf{q})$ is palindromic.

Spiral Permutations

Definition

Pick any $1 \le i \le n$. Starting at s_i , proceed clockwise or counterclockwise k(n-1) steps, building a word from right to left at each step. The resulting affine permutation is called a *spiral permutation*.

Example

$$\sigma = s_2 s_1 s_0 s_3 s_2 s_1 s_0 s_3 s_2 = [-2, 11, 0, 1] \in \widetilde{S}_4.$$

Twisted Spiral Permutations

Definition

A twisted spiral permutation is obtained by taking a spiral permutation starting at s_i , and multiplying on the right by the long element of the maximal parabolic subgroup generated by $S \setminus \{s_i\}$.

Example

$$\sigma \cdot s_3 s_0 s_3 s_1 s_0 s_3 = [-3, -4, 15, 2].$$

Comparison with Classical Case

For non-affine permutations, smoothness and rational smoothness are equivalent.

Theorem (Lakshmibai-Sandhya)

Let $\sigma \in S_n$. Then X_{σ} is (rationally) smooth if and only if σ avoids 3412 and 4231.

Conjecture

Let $\sigma \in \widetilde{S}_n$. Then \widetilde{X}_{σ} is smooth if and only if σ avoids 3412 and 4231.