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Part 1

Historical Overview



Quasi-symmetric functions grew out of P-partitions. The basic
idea is due to MacMahon.

We want to count plane partitions:

a ≤ b

≥ ≥

c ≤ d

The set of solutions is the disjoint union of the solutions of

a ≤ b ≤ c ≤ d

and
a ≤ c < b ≤ d .

The strict inequalities occur in the descents.
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Little was done with this idea until 1970, when Donald Knuth
introduced P-partitions for an arbitrary naturally labeled poset,
and applied them to counting solid partitions.

Richard Stanley, in his 1971 Ph.D. thesis (published as an AMS
Memoir in 1972) studied the general case of P-partitions in
great detail.

Some of the basic ideas of P-partitions were independently
discovered by Germain Kreweras (1976, 1981).



Stanley considered a refined generating function for
P-partitions:

2

1

3

f (1) ≤ f (2), f (1) ≤ f (3)

∑
f (1)≤f (2)
f (1)≤f (3)

x f (1)
1 x f (2)

2 x f (3)
3
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(1− x3)(1− x2x3)(1− x1x2x3)

+
x2

(1− x2)(1− x2x3)(1− x1x2x3)



In my 1984 paper I substituted xj for Stanley’s x j
i . So the

quasi-symmetric generating function for the previous example
would be∑

f (1)≤f (2)
f (1)≤f (3)

xf (1)xf (2)xf (3) =
∑

f (1)≤f (2)≤f (3)

xf (1)xf (2)xf (3)

+
∑

f (1)≤f (3)<f (2)

xf (1)xf (2)xf (3)

= F(3) + F(2,1).



An advantage is that the information contained in this less
refined generating function is exactly the multiset of descent
sets of the linear extensions of the poset, and if this
quasi-symmetric generating function is actually symmetric, we
can use the tools of symmetric functions to extract information
from it.

As Peter McNamara pointed out, Stanley did briefly consider
the quasi-symmetric generating function for P-partitions.
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Quasi-symmetric functions also appear earlier for special cases
of P-partitions in the work of Glânffrwd Thomas, who related
them to Baxter algebras (1975, 1977).



Stanley (1984), in studying reduced decompositions of
elements of Coxeter groups, defined certain symmetric
functions as sums of the fundamental quasi-symmetric
functions.



In the mid-1990’s, Claudia Malvenuto (1993) and Malvenuto
and Christophe Reutenauer (1995), and independently
Gelfand, Krob, Lascoux, Leclerc, Retakh, and Thibon (1995)
introduced a coproduct on quasi-symmetric functions making
QSym into a Hopf algebra, and described the dual Hopf
algebra, which Gelfand, Krob, Lascoux, Leclerc, Retakh, and
Thibon called the Hopf algebra of noncommutative symmetric
functions.

Ehrenborg (1996) introduced the quasi-symmetric generating
function for a poset, encoding the flag f -vector.
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Part 2

Descents, Peaks, and Shuffles of
Permutations

and Noncommutative Symmetric
Functions



Shuffles

If π and σ are disjoint permutations, let S(π, σ) be the set of all
shuffles of π and σ.
Example:

π = 1 4 2 σ = 3 7 5 8

1 4 2
3 7 5 8

1 4 3 7 5 2 8

We want to study permutation statistics that are compatible with
shuffles.
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Permutation statistics

An example

The descent set D(π) of π = π1 · · ·πm is { i : πi > πi+1 }.

Theorem (Stanley). The number of permutations in S(π, σ) with
descent set A depends only on D(π), D(σ), and A.

Therefore the descent set is an example of a permutation
statistic that is shuffle-compatible.
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Two permutations are equivalent if they have the same
standardization:

132 ≡ 253 ≡ 174.

A permutation statistic is a function defined on permutations
that takes the same value on equivalent permutations.

For example if f is a permutation statistic then

f (132) = f (253) = f (174).

A permutation statistic stat is shuffle-compatible if it has the
property that the the multiset { stat(τ) : τ ∈ S(π, σ) } depends
only on stat(π) and stat(σ) (and the lengths of π and σ).



A permutation statistic is a descent statistic if it depends only
on the descent set. Some important descent statistics:

I the descent set D(π)

I the descent number des(π) = #D(π)

I the major index maj(π) =
∑

i∈D(π) i
I the comajor index comaj(π) =

∑
i∈D(π)(n − i), where π has

length n
I the peak set P(π) = { i : π(i − 1) < π(i) > π(i + 1)

I the peak number pk(π) = #P(π)

I the ordered pair (des,maj)

An important permutation statistic that is not a descent statistic
is the number of inversions.



All of the above descent statistics are shuffle-compatible. This
was proved by Richard Stanley, using P-partitions for des, maj,
and (des,maj), and by John Stembridge, using enriched
P-partitions, for the peak set and the peak number.



Algebras

Note that for any shuffle-compatible permutation statistic stat
we get an algebra Astat:

First we define an equivalence relation ≡stat on permutations by
π ≡stat σ if π and σ have the same length and stat(π) = stat(σ).
We define Astat by taking as a basis all equivalence classes of
permutations, with multiplication defined as follows: To multiply
two equivalence classes, choose disjoint representatives π and
σ of the equivalence classes [π] and [σ] and define their
product to be

[π][σ] =
∑

τ∈S(π,σ)

[τ ].

By the definition of a shuffle-compatible permutation statistic,
this product is well-defined.



As a simple example, we consider the major index. It is known
(from the theory of P-partitions) that if |π| = m and |σ| = n then∑

τ∈S(π,σ)

qmaj(τ) = qmaj(π)+maj(σ)

[
m + n

m

]
.

It follows that the map

[π]→ qmaj(π) xm

m!q
, where m = |π|,

is an isomorphism from the maj algebra Amaj to an algebra of
polynomials (more precisely, polynomials in x whose
coefficients are certain rational functions of q).
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Big Question: Can we describe all shuffle-compatible
permutation statistics and their algebras?

Or some of them?

Or at least say something interesting?

To make the problem a little easier, we consider only
shuffle-compatible descent statistics.

Any shuffle-compatible descent statistic algebra will be a
quotient algebra of the descent set algebra.

So let’s look at the descent set algebra.
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The descent set algebra is isomorphic to the algebra of
quasi-symmetric functions. These are formal power series in
infinitely many variables that are more general than symmetric
functions.Two important bases, indexed by compositions
L = (L1,L2, . . . ,Lk ) where each Li is a positive integer.

The monomial basis:

ML =
∑

i1<i2<···<ik

xL1
i1

xL2
i2
· · · xLk

ik
.

Example:
M(3,2,3) =

∑
i<j<k

x3
i x2

j x3
k .

The fundamental basis: Example:

F(3,2,3) =
∑

xi1xi2 · · · xi8

where
i1 ≤ i2 ≤ i3︸ ︷︷ ︸

3

< i4 ≤ i5︸ ︷︷ ︸
2

< i6 ≤ i7 ≤ i8︸ ︷︷ ︸
3

.
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There is a bijection between compositions of n and subsets of
[n − 1] = {1,2, . . . ,n − 1}:

(L1, . . . ,Lk ) 7→ {L1,L1 + L2, . . . ,L1 + · · ·+ Lk−1}.

The inverse map is

{j1 < j2 < · · · < jk−1} 7→ (j1, j2 − j1, . . . , jk−1 − jk−2,n − jk−1).

If π is a permutation, the descent composition of π is the
composition corresponding to the descent set of π; it is the
sequence of lengths of the increasing runs of π:

Example:
The descent composition of 1 4 7•2 8•3 6 9 is (3,2,3).



Theorem. Let cL
J,K be the number of permutations with descent

composition L among the shuffles of a permutation with
descent composition J and a permutation with descent
composition K . Then

FJFK =
∑

L

cL
J,K FL.

Thus the descent set statistic algebra Ades is isomorphic to the
algebra QSym of quasi-symmetric functions.

So all descent statistic algebras are quotient algebras of QSym
(but not conversely).
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Now let’s look at the descent number algebra. The equivalence
classes here correspond to ordered pairs (n, i) where
1 ≤ i ≤ n. Let d (n,k)

(l,i),(m,j), where l + m = n, be the number of
permutations with i descents obtained by shuffling a
permutation of length l with i − 1 descents and a permutation of
length m with j − 1 descents.

Then(
λ+ l − i

l

)(
λ+ m − j

m

)
=
∑

k

d (n,k)
(l,i),(m,j)

(
λ+ n − k

n

)
.

Note that both sides are polynomials in λ and that{(
λ+ n − k

n

)}
k=1,...,n

is a basis for the polynomials in λ of degree at most k that
vanish at 0. So the structure constants d (n,k)

(l,i),(m,j) describe the
expansion of a product of two of these basis elements in these
basis elements.
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We can look at this algebra in another way. The generating
function in λ for the basis polynomial

(
λ+n−k

n

)
is

∞∑
λ=0

(
λ+ n − k

n

)
tλ =

tk

(1− t)n+1 .

So
∞∑
λ=0

(
λ+ l − i

l

)(
λ+ m − j

m

)
tλ =

∑
k d (n,k)

(l,i),(m,j)t
k

(1− t)n+1 ,

where n = l + m.

Let us define the Hadamard product f ∗ g of
two power series f and g in t by(∑

i

ai t i
)
∗
(∑

j

bj t j
)

=
∑

i

aibi t i .

Then we may rewrite our formula as

t i

(1− t)l+1 ∗
t j

(1− t)m+1 =
∑

k

d (n,k)
(l,i),(m,j)

tk

(1− t)n+1
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The peak number algebra

We can describe the peak number algebra in a similar, but
somewhat more complicated way. Instead of the rational
functions tk/(1− t)n+1, we have the rational functions

P(n,j)(t) = 22j−1 t j(1 + t)n−2j+1

(1− t)n+1

=
1
2

(1 + t)n+1

(1− t)n+1

(
4t

(1 + t)2

)j

,

for 1 ≤ j ≤ b(n + 1)/2c, corresponding to permutation of length
n with j − 1 peaks. More precisely, the coefficients in the
expansion of Pl,i(t) ∗ Pm,j(t) as a linear combination of Pl+m,k
are the structure constants for the peak number algebra
(Stembridge).



Peaks and descents

Our main result is a common generalization of the descent
number algebra and the peak number algebra:

The ordered pair (des,pk) is shuffle-compatible.

There exists a permutation of length n > 0 with j − 1 peaks and
k − 1 descents if and only if 1 ≤ j ≤ (n + 1)/2 and
j ≤ k ≤ n + 1− j . For such n, j , k let

PDn,j,k (t , y) =
t j(y + t)k−j(1 + yt)n−j−k+1(1 + y)2j−1

(1− t)n+1

Then the structure constants for the (des,pk) algebra are the
same as the structure constants for the rational functions
PDn,j,k under the operation of Hadamard product in t .
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Let’s see how this result specializes to the known results for
descents and peaks separately.

PDn,j,k (t , y) =
t j(y + t)k−j(1 + yt)n−j−k+1(1 + y)2j−1

(1− t)n+1

If we set y = 0, we get

PDn,j,k (t ,0) =
tk

(1− t)n+1

and if we set y = 1, we get

PDn,j,k (t ,1) =
t j(1 + t)n−2j+122j−1

(1− t)n+1



How might we prove such a formula?

Possible approaches are:
I construct the appropriate homomorphism from

quasi-symmetric functions by making a substitution for the
variables (using Stembridge’s enriched P-partitions)

I use noncommutative symmetric functions

I will use noncommutative symmetric functions, which were
introduced by Malvenuto (1993), Malvenuto and Reutenauer
(1995), and Gelfand, Krob, Lascoux, Leclerc, Retakh, and
Thibon (1995).
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Let X1,X2, . . . be noncommuting indeterminates, and define

hn =
∑

i1≤i2≤···≤in

Xi1Xi2 · · ·Xin ,

with h0 = 1. The algebra NSym of noncommutative symmetric
functions is the algebra generated by the hn. Alternatively, we
could define the hn to be noncommuting indeterminates.

Later on, we’ll want to work with noncommutative symmetric
functions with coefficients in some algebra over the rationals.

For any composition L = (L1, . . . ,Lk ), let hL be hL1 · · ·hLk . Then
the hL for L a composition of n form a basis for the
noncommutative symmetric functions homogeneous of
degree n.
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functions with coefficients in some algebra over the rationals.

For any composition L = (L1, . . . ,Lk ), let hL be hL1 · · ·hLk . Then
the hL for L a composition of n form a basis for the
noncommutative symmetric functions homogeneous of
degree n.



We can define a coproduct ∆ on NSym (a map
NSym→ NSym⊗NSym satisfying certain properties) by

1. ∆hn =
∑n

i=0 hi ⊗ hn−i

2. ∆fg = (∆f )(∆g)

For example,

∆h1h1 = (∆h1)(∆h1) = (1⊗ h1 + h1 ⊗ 1)(1⊗ h1 + h1 ⊗ 1)

= 1⊗ h2
1 + 2 h1 ⊗ h1 + h2

1 ⊗ 1.

Property 2 means that NSym with the product and coproduct is
a bialgebra (in fact it is a Hopf algebra). The coproduct is useful
combinatorially, but the product is useful in computing the
coproduct.



The dual of any algebra, as a vector space, is a coalgebra in a
natural way.

Lemma. (Malvenuto-Reutenauer, Gelfand-Krob-Lascoux-
Leclerc-Retakh-Thibon) The dual of the algebra QSym of
quasi-symmetric functions is the coalgebra NSym of
noncommutative symmetric functions, and the basis ML of
QSym is dual to the basis hL of noncommutative symmetric
functions.

What does this mean? It means that the structure coefficients
are the same: The numbers cL

J,K defined by

MJMK =
∑

L

cL
J,K ML

also satisfy
∆hL =

∑
J,K

cL
J,K hJ ⊗ hK .
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This is useful because quotient algebras correspond to
subcoalgebras of their duals. So a quotient algebra of QSym
corresponds to a subalgebra of NSym.

In order to use this, we need to find the basis for NSym dual to
the fundamental basis for QSym. This is the basis of ribbons
defined (by example) by

r(3,2,3) =
∑

Xi1Xi2 · · ·Xi8

where
i1 ≤ i2 ≤ i3︸ ︷︷ ︸

3

> i4 ≤ i5︸ ︷︷ ︸
2

> i6 ≤ i7 ≤ i8︸ ︷︷ ︸
3

.

Recall, for comparison, that F(3,2,3) =
∑

xi1xi2 · · · xi8 where
i1 ≤ i2 ≤ i3︸ ︷︷ ︸

3

< i4 ≤ i5︸ ︷︷ ︸
2

< i6 ≤ i7 ≤ i8︸ ︷︷ ︸
3

.
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Now let stat be a descent statistic. Then stat gives an
equivalence relation on compositions. To show that stat is
descent-compatible, we show that the sums

∑
L rL over

equivalence classes of compositions span a subcoalgebra of
NSym:

Lemma. Let stat be a descent statistic. For each equivalence
class α of stat let

rα =
∑
L∈α

rL.

Suppose that for every equivalence class α,

∆rα =
∑
β,γ

Cα
β,γ rβ ⊗ rγ

for some constants Cα
β,γ . Then stat is shuffle compatible and

the Cα
β,γ are the structure constants for Astat.



Now let stat be a descent statistic. Then stat gives an
equivalence relation on compositions. To show that stat is
descent-compatible, we show that the sums

∑
L rL over

equivalence classes of compositions span a subcoalgebra of
NSym:

Lemma. Let stat be a descent statistic. For each equivalence
class α of stat let

rα =
∑
L∈α

rL.

Suppose that for every equivalence class α,

∆rα =
∑
β,γ

Cα
β,γ rβ ⊗ rγ

for some constants Cα
β,γ . Then stat is shuffle compatible and

the Cα
β,γ are the structure constants for Astat.



A nonzero element g of a coalgebra is called grouplike if
∆g = g ⊗ g. If the coalgebra is a bialgebra, then products of
grouplike elements are grouplike, as are inverses of grouplike
elements.

We can use grouplike elements of NSym to study
shuffle-compatible permutation statistics.
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For the next lemma we work with noncommutative symmetric
functions with coefficient in some Q-algebra R; i.e., we work in
R ⊗Q NSym.

Lemma. Let stat be a descent statistic. As before, for each
equivalence class α, let rα =

∑
L∈α rL. Suppose that there exist

linearly independent (over Q) uα ∈ R such that
∑

α uαrα is
grouplike and that there exist constants Cα

β,γ such that

uβuγ =
∑
α

Cα
β,γuα

Then stat is shuffle compatible and the Cα
β,γ are the structure

constants for the algebra Astat; so Astat is isomorphic to the
subalgebra of R spanned by the uα.
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Let h(x) =
∞∑

n=0
hnxn. Then h(x) is grouplike since

∆h(x) =
∞∑

n=0

∆hn(x)

=
∞∑

n=0

∑
i+j=n

hi ⊗ hj xn

=
∞∑

i,j=0

hix i ⊗ hjx j

= h(x)⊗ h(x)

How do we use this?



Let h(x) =
∞∑

n=0
hnxn. Then h(x) is grouplike since

∆h(x) =
∞∑

n=0

∆hn(x)

=
∞∑

n=0

∑
i+j=n

hi ⊗ hj xn

=
∞∑

i,j=0

hix i ⊗ hjx j

= h(x)⊗ h(x)

How do we use this?



As a simple example, we’ll see how to show that comaj is
shuffle compatible.

We start with the formula

K :=
∞∏

i=0

h(qix) =
∞∑

n=0

∑
|L|=n

qcomaj(L)rL
xn

(q)n
,

where (q)n = (1− q) · · · (1− qn). which can be proved, for
example, using P-partitions. Here each equivalence class α
may be represented by a pair (n, i), where α consists of
compositions (L1, . . . ,Lk ) of n with comajor index i .Then in the
notation of the lemma uα = qixn/(q)n so the structure
constants for Acomaj are the coefficients in the expansion of

qi x l

(q)l
qj xm

(q)m

as a linear combination of qkx l+m/(q)l+m.
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example, using P-partitions. Here each equivalence class α
may be represented by a pair (n, i), where α consists of
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Since
qi

(q)l

qj

(q)m
= qi+j

[
l + m

l

]
1

(q)l+m
,

the structure constants are coefficients of q-binomial
coefficients.



Where do the Hadamard products come from?



To count permutations by descent number we use the formula

Kdes := (1− t h(x))−1 =
1

1− t
+
∞∑

n=1

xn
∑
|L|=n

rL
tdes(L)+1

(1− t)n+1 ,

Unfortunately, Kdes is not grouplike. But if we expand it in
powers of t ,

Kdes =
∞∑

k=0

tkh(x)k ,

the coefficient of tk is grouplike, so

∆Kdes =
∞∑

k=0

tk h(x)k ⊗ h(x)k .
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If we work in the algebra of quasi-symmetric functions with
coefficients in the algebra of power series in t with
multiplication by the Hadamard product, then we have

Kdes ⊗ Kdes =

( ∞∑
j=0

t jh(x)j
)
⊗
( ∞∑

k=0

tkh(x)k
)

=
∑
j,k

t jh(x)j ⊗ tkh(x)k

=
∑

k

tk h(x)k ⊗ h(x)k = ∆Kdes

Thus in this algebra, Kdes is grouplike so the descent number
algebra is isomorphic to the algebra spanned by

t j

(1− t)n+1 xn, 1 ≤ j ≤ n

where multiplication is the Hadamard product in t .



For the algebra A(des,pk) we have a completely analogous
formula. The key is

(
1− t h(−yx)−1h(x)

)−1
=

1
1− t

+
∞∑

n=1

xn

×
∑

1≤j≤(n+1)/2
j≤k≤n+1−k

Wn,j,k
t j(y + t)k−j(1 + yt)n−j−k+1(1 + y)2j−1

(1− t)n+1 ,

where Wn,j,k is the sum of rL over all compositions L of n with
pk(L) = j − 1 and des(L) = k − 1. Just as with Ades, this tells
us that A(pk,des) is the span of the rational functions

t j(y + t)k−j(1 + yt)n−j−k+1(1 + y)2j−1

(1− t)n+1 xn,

where multiplication is the Hadamard product in t .


