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The workshop was organized with an intent to extend to sparse and combinatorial structures the benefits
that random matrix theory has had on continuous and dense systems. We brought together researchers work-
ing across the breadth of science and academia on applications involving random structures as they arose in
the context of random graphs, networks, compressed sensing, sparse matrices, and low rank approximation
theory. Many of the participants initially remarked that they were “the only one studying this at the work-
shop” only to find that others at the workshop, coming from different research communities were studying
similar objects with an entirely different perspective. As the workshop progressed this led to increasingly
robust conversations on mutual interests and broadened the community of researchers that each participant
could now access for future efforts in this exciting and increasingly relevant area.

1 Presentation Highlightss
The underlying theme of this work was sparsity and randomness in all its computational and theoretical man-
ifestations. As organizers, we were inspired by the observation that more often than noticed, a computational
trick can also be a theoretical trick. Thus researchers working at the interface of computational mathematics
with an eye towards exploiting sparsity (or the concept of few amongst many) have much in common with
theoreticians who exploit sparsity to distill a complex problem into its analytical essence.

While there are a number of outstanding references on random structures available to practitioners want-
ing to address a new problem they might encounter, the goal of this workshop was to making this rich body of
knowledge accessible to the non-specialist so that they might jump-start the discovery of new applications of
this theory. Introducing mathematicians across many research communities to a set of related applied prob-
lems can lead to the development of newer and more powerful techniques. We believe that bringing together
the practitioners and the mathematicians will jump start research in the area of sparse random structures.

To that end, the workshop was a resounding successes. We were able to involve many young researchers
so that they might benefit from the interplay of disciplines represented so as to obtain breakthroughs that are
so valuable in this area.

Since the workshop brought together researchers from many different traditional areas under the umbrella
of a still-nascent and developing area of sparse random structures, we will jump past a formal description
of the “area”. Instead we provide a fuller description of the presentations with the goal of exposing the
intertwining lines of inquiry. Then we will point out some of the more promising future directions.
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2 Presentation Highlights
Since the workshop brought together researchers from quite different communities there were a wide variety
of talks. The speakers brought into sharp focus the different notions of sparsity encountered in their respective
areas and the role of random matrices in it. There was an explicit effort made to point out open problems
and possible future directions. We now highlight some of the presentations with an emphasis on identifying
connections between different areas made during the meeting and opportunities for creative application of
the theory of random matrices for solving, as yet, unsolved problems.

2.1 Combinatorial techniques
Combinatorial techniques play an important role in the theory of random matrices in the enumeration of
quantities such as the moments and free cumulants. The presentations of McKay, Mingo and Novak focused
on new techniques that could facilitate the analysis of increasingly complicated sparse random structures and
the computation of precise bounds for combinatorial quantities of interest.

McKay gave a tutorial overview of the method of switchings [14], and showed how an estimate of the
ratio of the sizes of a family of sets may be estimated from the relations between the sets. Such an analysis
can yield useful precise estimates in the settings where the digraph of sets and relations is a path; in a
more complicated setting useful tail bounds can be obtained. In the context of the theme of the workshop,
McKay showed how this method is a particularly powerful tool for obtaining the best known results for sparse
enumeration.

Mingo build on this general theme by discussing how sharp bounds for sums associated with graphs of
matrices [19] may be obtained. Novak exposed the connection between combinatorial identities arising out
of the study of restricted permutation matrices and Mehta’s integral in random matrix theory [20].

McKay’s presentation triggered a lot of informal discussion since the techniques he presented were not
well known to researchers in random matrix theory. What emerged was a hope that these techniques could
be employed to yield tighter bounds in random matrix theoretic settings.

2.2 Random graph models and analysis
One of the areas emphasized in the workshop was the study of real-world networks and graphs using tech-
niques from random matrix theory. To that end, the presentations of Davis and Lescovec highlighted the
progress made and the significant challenges that remain in the bridging the gap between the development of
models for random graph that are analytically tractable and that capture the characteristics observed in real-
world graphs and networks. Davis’ talk described the University of Florida Sparse Matrix Collection which
is a large, widely available and actively grow set of sparse matrices that arise in real applications as diverse as
electromagnetics, semiconductor devices, thermodynamics, computer graphics/vision and networks to name
a few. The collection [9] is widely used by the sparse matrix algorithms community for the development
and performance evaluation of sparse matrix algorithm and Davis’ talk led to discussions on how such an
accessible database may be used to develop analytical models.

Lescovec’s talk picked up on this theme by surveying some of the analytical models in the literature
that attempt to capture various aspects of network structure and highlighted their advantages in terms of
analytical tractability and their shortcomings in terms of their ability to predict the sorts of features that arise
when studying real-world data sets. The breakthrough work by Lescovec was the development of a generative
analytical sparse random network/graph model called the Kronecker graph model that is analytical tractable
and is able to accurately capture features that arise in real-world data sets. Lescovec described the class
of binomial attribute graphs, which are an extension of the Kronecker graph model, that accounts for the
heterogeneity in the population of nodes [18, 17].

The presentations by Sen and Dumitriu highlighted new analytical results for classical random graph
models. Sen considered the spectral distribution of the adjacency matrix for a wide variety of random trees
such as preferential attachment trees, random recursive trees, random binary trees, uniform random trees and
provided analytical results for the same [5]. Dumitriu discussed the asymptotic behavior of the spectrum and
eigenvectors of adjacency matrices of d-regular random n-graphs in various scaling regimes [12]. Rogers
surveyed the cavity approach [23] for analyzing sparse random matrices and showed how it can be used
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to rederive McKay’s law for d-regular random graphs. Biane described operator algebraic techniques for
analyzing non-Hermitaian techniques [6] while Bordenave emphasized analytical techniques that facilitate
the analysis of heavy-tailed random matrices [7].

An important outcome of the discussion that followed was the recognition that the prediction the eigen-
spectrum of the Kronecker graph and binomial attribute graph models is an important open question that
might be solved using the techniques from random matrix theory employed in the analysis of sparse and
non-Hermitian random matrices. This triggered discussions on the extensions needed to be able to analyze
the (complex) eigen and signular-spectrum Kronecker graph model.

2.3 Discovering structure in graphs
The sequence of talks by Djidvjev, Harding and Mahoney addressed the practically important question of
discovering structure in graphs. One way to analyze and understand the structure and the functioning of
large networks is to divide their nodes into communities/clusters (maximal groups of nodes with denser in-
cluster links and fewer links connecting nodes from different clusters). Djidjev showed how the problem
of finding a partition maximizing the modularity of a given network could be reduced to solving a number
of minimum weighted cut problems on a complete graph with the same vertices as the original network and
appropriately defined edge weights [11]. The resulting minimum cut problem could then be efficiently solved
using multi-level graph partitioning methods. Harding presented an alternate way of tackling this problem by
leveraging results on the moments of adjacency matrices from random matrix theory and by the employing
generalized method of moments (GMM) to uncover the underlying deterministic structure of linking within
various communities. Preciado extended this approach by considering the spectral moments of the Laplacian
matrix of the network and provided a complete characterization of what measurements are most relevant to
characterize the Laplacian spectrum from the point of view of community detection [22].

Mahoney presented a survey style talk where he discussed recent empirical results on the structural prop-
erties of large social and information networks and argued these networks are particularly ill-suited for anal-
ysis with many traditional machine learning and data analysis tools. Mahoney’s insight was that this has
to do with the fact that the relationship between structures that may be interpreted as geometric and struc-
tures that exhibit empirical signatures of quasirandomness is substantially more complex in large social and
information networks than it is in many more traditional classes of data.

2.4 Techniques for recovery with missing or corrupted data
Compressed sensing is an important new technique for acquiring and reconstructing a signal utilizing the
prior knowledge that it is sparse or compressible. Plan presented several novel theoretical results regarding
the recovery of a low-rank matrix from a sparse set of measurements consisting of linear combinations of
the matrix entries using sparse approximation techniques [8]. Kolda looked at the problem of producing a
factorization of a tensor structured data set in the setting where the data set has missing values. Kolda’s
presented an algorithm and showed results from a numerical simulations for settings showing that even when
a lot of data is discarded, the recovered factorization is still very accurate [1]. The discussions identified an
opportunity to utilize techniques from the analysis of matrix completion with missing data to analyze the
tensor factorization completion in the missing data setting.

Ward extends results in the literature about recovery of sparse trigonometric polynomials from few point
samples to the recovery of polynomials having a sparse expansion in Legendre basis. Vavasis showed how
NP-hard problems such as clique and biclique can be solved by nuclear norm minimization [2].

2.5 Computational aspects
Randomization has emerged as a powerful tool for speeding up computations. Gunnar-Martinsson spoke of
techniques for enabling very large-scale computations - random matrix theory plays a critical role here in
providing performance guarantees in the form of accuracy bounds. The underlying techniques use random-
ized sampling to reduce the effective dimensionality of the data while loosening communication constraints,
and maintaining, or even improving, the accuracy and robustness of existing deterministic techniques [13].
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Gilbert’s presentation dwelled on the role of linear algebra as a high-level algebraic primitive for com-
puting on matrices or matrix discretizations of operators. Gilbert’s talk triggered a spirited discussion on the
challenge of finding equivalent algebraic primitives for computation on large graphs.

2.6 Statistical applications
The notion of sparsity arises in statistical applications in the notion that the signal occupies a low rank
subspace relative to the noise. The presentations of Hero, Nadakuditi and Perry dealt with issues arising from
the discriminating between low rank signal in full rank noise and the fundamental limits of these techniques.
Hero spoke of the problem of screening a large number of variables for pairwise correlations; Nadakuditi
described random matrix theory based predictions for when principal component analysis fails while Perry
discussed issues related to identification of the signal subspace with cross-validation [21]. Virag presented an
operator theoretic derivation of the phase transition in distributions for the spiked Wishart model.

The discussions that followed identified an opportunity to use Nadakuditi’s linear algebraic to provide
an alternate derivation of the phase transition of spiked Wishart models. Kritchevskii discussed potential
extensions of the theory to finite rank perturbations of infinite dimensional stochastic operators.

2.7 Condition number estimation
The presentations by Blake, Rudelson and Loh focused on aspects related to condition number estimation of
random matrices. Rudelson focused on random conjunction matrices [16] and highlighted how techniques,
borrowed from the analysis of high-dimensional convex bodies, were brought to bear on this problem. Blake
discussed aspects related to the condition number distribution of random matrices that arise in the context
of coding theory. Blake made several conjectures on the behavior of random matrices over finite fields. The
discussions that ensued highlighted an opportunity to extend techniques from matrix theory to verify these
conjectures.

2.8 Quantum information theory
An interesting connection that emerged in the workshop was the connection between random matrix theory,
quantum information theory and compressed sensing. Hayden presented a survey talk on applications and
desiderata for random matrices in quantum information theory. The role of random matrices arises naturally
because quantum mechanics is noncommutative and the random objects of study are invariably matrices.
Quantum information theory therefore provides a rich source of random matrix problems with applications
ranging from the best known codes for sending quantum data through noisy media to subroutines in quantum
algorithms and new encryption procedures.

In many of these applications random matrix theory plays an integral role in establishing existence the-
orems. In that respect, there are strong parallels to compressed sensing where random sampling matrices
satisfying the RIP facilitate exact reconstruction. In quantum information theory Haar-distributed unitary
matrices play an analogous role [15].

An important open problem identified in the workshop that can benefit from increased interaction be-
tween the random matrix theory, compressed sensing [10] and quantum information theory community is
to construction of efficient, constructible deterministic (i.e. non-random) of matrices that achieve the same
performance. Curran spoke about connections between quantum groups and free probability theory [3].

3 Outcome of the Meeting
Spirited discussions were held throughout the workshop. Since many of the attendees were from different
communities, the breakfast, lunch and dinner sessions at the Banff Centre led to many opportunities for
informal discussions in which open problems, opportunities for collaborations, areas of mutual interest and
possible future directions were discussed. In the following we list some of the major relevant problems
which were pointed out in this discussion meeting and in numerous other discussions between the participants
throughout the workshop.



5

1. McKay’s presentation triggered a lot of informal discussion since the techniques he presented were not
well known to researchers in random matrix theory. What emerged was a hope that these techniques
could be employed to yield tighter bounds in random matrix theoretic settings.

2. An important outcome of the discussion that followed was the recognition that the prediction the eigen-
spectrum of the Kronecker graph and binomial attribute graph models is an important open question
that might be within reach due to recent developments in operator valued free probability theory. This
triggered discussions on the extensions in operator valued free probability theory needed to be able to
analyze the Kronecker graph model.

3. Biane’s presentation on using tools from free probability to compute the Brown Measure led to a discus-
sion on the (close) relationship between the Brown Measure and the (complex) eigenvalue distribution
of non-Hermitian - random matrices. Bordenave, Rogers and Biane led discussions on how to make
the connection more precise in a rigorous manner that takes advantages of the breakthroughs of Tao
and Vu in proving the universality of Girko’s circular law.

4. Hayden identified an important open problem in the workshop that can benefit from increased inter-
action between the random matrix theory, compressed sensing and quantum information theory com-
munity. The challenge is to construct efficient, deterministic (i.e. non-random) matrices that achieve
(nearly the) same performance as their well-known random counterparts.

5. Blake’s presentation brought into sharp focus the open problem of characterizing the condition number
distributions of random matrices whose elements are drawn at random from a finite field.

6. Edelman revisited the connection between random matrices and random polytopes and alluded to the
impressive recent work in this area by Veryshynin, Rudelson, et al. An open problem is to find the
counterparts (if any) of the famous distributions arising in random matrix theory for random problems.

7. Loh’s presented a numerical linear algebraic perspective of Tao-Vu smallest singular value theorem.
He presented numerical evidence that indicated that the Tao-Vu theorem [24] is conservative in the
sense that it dramatically underestimates the rate of convergence of the smallest singular value of a
Gaussian random matrix.

8. Nadakuditi’s work [4] brought into sharp focus the connection between free probability and the thresh-
olds at which the phase transition in the eigenvalues and eigenvectors of low rank perturbations of large
random matrices sets in. An open problem is to rigorously extend this theory to the infinite dimensional
stochastic operator setting.

9. Dumitriu’s work provides new insights on the behavior of d-random regular graphs in different scaling
regimes. An open problem is to provide a complete analysis and characterization of any associated
localization/delocalization phenomenon in the eigenvectors.

10. Mahoney and Gilbert’s talks spelt out the challenge for finding the right algebraic primitives for com-
putational and statistical inference on graphs and networks.

11. Plan and Kolda’s work on matrix and tensor completion with missing data (respectively) brought
into focus the open problem of identifying the breakdown point of such completion analogous to the
Donoho-Tanner boundary in sparse approximation theory for the matrix and tensor setting.

12. Vavasis’ work on clique discovery using nuclear norm optimization revealed that a lot is less is known
on the robustness properties of these algorithms to adversarial attacks (such as edge deletions, etc.).
There are conjectured connections with Nadakuditi’s work [4] on the breakdown of subspace methods
that merit deeper understanding.
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