Spherical Unitary dual for quasisplit real groups

Dan Barbasch

(joint work with Dan Ciubotaru)

Banff

July 2010

Notation

NOTATION

- G is the real points of a linear connected reductive group.
- $\mathfrak{g}_0 := Lie(G), \ \theta$ Cartan involution, $\mathfrak{g}_0 = \mathfrak{k}_0 + \mathfrak{s}_0, \ \mathfrak{g} := (\mathfrak{g}_0)_{\mathbb{C}},$ K maximal compact subgroup, $\mathfrak{g} = \mathfrak{k} + \mathfrak{s},$
- P = MN minimal parabolic subgroup, $\theta(M) = M$, and A is the split part of the center of M; then $M \cap K := C_K(A)$, and $M = M \cap K \cdot A$.
- $W := N_K(A)/M \cap K$ the Weyl group.
- $\lambda \in \widehat{K}$ a K-type, then W acts on $V_{\lambda}^{M \cap K}$.

Problem

Compute the representation of W on $V_{\lambda}^{M \cap K}$

More generally if $\chi \in \widehat{M \cap K}$, compute the representation of W_{χ} (the centralizer of χ in W) on $\operatorname{Hom}_{M \cap K}[\chi, V_{\lambda}]$.

Motivation

(1) For $G = GL(n, \mathbb{C})$, K = U(n) and M is the diagonal torus, and $W = S_n$. Kostka-Foulkes polynomials encode information about V_{λ}^M .

(2) Spherical unitary dual.

Spherical unitary representations

Let $\chi \in \widehat{M}$. The spherical principal series is

$$X(\chi) := Ind_P^G(\chi \otimes \delta_P^{-1/2} \otimes \mathbb{1}), \tag{1}$$

where χ is an unramified character, (*i.e.* $\chi \mid_{M \cap K} = triv$), and δ_P is the modulus function of P.

- $\operatorname{Hom}_{K}[Triv: X(\chi)] = 1, L(\chi)$ the unique irreducible subquotient containing the trivial K-type.
- Every spherical irreducible module is an $L(\chi)$ for some χ .
- $L(\chi) \cong L(\chi')$ if and only if there exists $w \in W$ such that $w\chi = \chi'$.
- $L(\chi)$ is hermitian if and only if there is $w \in W$ such that $w\chi = \overline{\chi^{-1}}$.

- For every $w \in W$ there is an intertwining operator $A_w(\chi) : X(\chi) \longrightarrow X(w\chi).$
- A_w gives rise to
 - $a_w(\chi,\lambda)$:

 $\operatorname{Hom}_{K}[V_{\lambda}, X(\chi)] \cong V_{\lambda}^{M \cap K} \longrightarrow \operatorname{Hom}_{K}[V_{\lambda} : X(w\chi)] \cong V_{\lambda}^{M \cap K},$

- A_w is normalized so that $a_w(\chi, triv) = id$; this makes A_w analytic for the region for which $\langle Re\chi, \alpha \rangle \ge 0$ for all roots of N,
- in the hermitian case $a_w(\chi, \lambda)$ gives rise to a hermitian form. $L(\chi)$ is unitary iff $a_w(\chi, \lambda)$ positive semidefinite for all λ .
- if $w = s_1 \dots s_k$ is a reduced decomposition,

$$a_w = a_{s_1} \cdot \cdots \cdot a_{s_k},$$

and each a_{s_i} is induced from a corresponding operator on a real rank one group.

- A K-type will be called **single petaled**, if $a_w(\chi, \lambda)$ only depends on the Weyl group representation V_{λ}^M . More precisely this is a condition on the $a_{s_i}(\chi, \lambda)$ so that they are as simple as possible. For example when a_{s_i} comes from $SL(2, \mathbb{R})$, it has the form

$$a_{s_{\alpha}}(2m,\chi) = \begin{cases} Id & \text{if } m = 0, \\ \prod_{0 < j \le m} \frac{2j - 1 - \langle \nu, \check{\alpha} \rangle}{2j - 1 + \langle \nu, \check{\alpha} \rangle} Id & \text{if } m \neq 0, \end{cases}$$

(2*m* parametrize the spherical K-types of SO(2)). For other real rank one groups there are similar formulas by [JW]. We require that m = 0, 1 only,

$$a_{s\alpha}(\lambda,\chi)v = \begin{cases} v & \text{if } s_{\alpha}v = v, \\ \frac{q_{\alpha} - \langle \nu, \check{\alpha} \rangle}{q_{\alpha} + \langle \nu, \check{\alpha} \rangle} & \text{if } s_{\alpha}v = -v \end{cases}$$

for $v \in V_{\lambda}^{M \cap K}$. The q_{α} are (positive) scalars that only depend on the *W*-orbit of α . There are analogous results when we replace χ by an arbitrary character, or \mathbb{R} by a p-adic field. In the case of a split adjoint p-adic group, [BM1] and [BM2] replace the group by an affine graded Hecke algebra. The V_{λ} are replaced by Weyl group representations, and the formulas above are exact; they are the formulas for the intertwining operators.

The guiding principle is that for these K-types we can do the calculation in the affine graded Hecke algebra with parameters q_{α} , and V_{λ} is replaced by a Weyl group representation.

The p-adic case

- **G** split, B = AN a Borel subgroup, $\mathbb{F} \supset \mathcal{R} \supset \mathcal{P}$, $K = G(\mathcal{R})$,
- $\mathcal I$ an Iwahori subgroup.
- $\chi \mid_{A \cap K} = triv, i.e.$ unramified.
- ${}^{\vee}G$ be the complex dual group.

Then

$${L(\chi) \text{ spherical }} \longleftrightarrow {s \in}^{\vee} G \text{ semisimple} / {}^{\vee}G.$$

s decomposes into an elliptic and a hyperbolic part $s = s_e s_h$.

$$Unit_{sph}(G) = \bigsqcup Unit_{sph,s_e}(G)$$

[BM1] and [BM2] show that

- 1. $Unit_{\mathcal{I}-sph}(G) \cong Unit(\mathcal{H})$ where \mathcal{H} is the Iwahori-Hecke algebra,
- 2. $Unit(\mathcal{H}_{s_e}) \cong Unit(\mathbb{H}(s_e))$, where $\mathbb{H}(s_e)$ is the affine graded I-Hecke algebra at s_e .

In particular,

$$Unit_{sph,s_e}(G) \cong Unit_{sph,1}(G(s_e)),$$

where $G(s_e)$ is the split group dual to ${}^{\vee}G(s_e)$.

We will assume that $s_e = 1$.

Main Result

Joint with Dan Ciubotaru we have extended the results for \mathcal{I} -spherical representations to groups other than adjoint type and

- arbitrary χ for split groups of any kind, (using results of Roche)
- blocks (in the sense of Bernstein) when there are types, *e.g.* unipotent representations for p-adic groups studied by Lusztig,
- blocks associated to unramified characters of quasisplit groups.

Main topic of this talk

Let G be quasisplit, "but with no factor which is a complex group viewed as a real group".

Associated to G there is an (outer) automorphism $\forall \tau$ of $\forall G$. Then form ${}^{L}G := {}^{\vee}G \ltimes \{\forall \tau\}$, and let ${}^{\vee}G \forall \tau$ be the connected component of $\forall \tau$. In this case,

 $\{L(\chi) \text{ unramified }\} \leftrightarrow \{s \in {}^{\vee}G{}^{\vee}\tau \text{ semisimple }\}/{}^{\vee}G.$

A semisimple element decomposes $s = s_h s_e$ with $s_e \in {}^{\vee}G^{\vee}\tau$. Let $G(s_e)$ be as before (split real group). Then there is an inclusion

 $Unit_{sph,s_e}(G) \subset Unit_{sph,1}(G(s_e)).$

Here are the groups for real infinitesimal character, *i.e.* $s_e = \forall \tau$:

By [B3], this is an equality for U(n + 1, n), U(n, n). For type E_6 the inclusion is into the spherical unitary dual for split p-adic F_4 which is known by [C1].

Split groups, p-adic case

$$Sph(G) = \bigsqcup_{\mathsf{VO} \subset \mathsf{Vg}} Sph(G)_{\mathsf{VO}}$$

where \mathcal{O} is a nilpotent orbit. Let $A(\mathcal{O})$ be the reductive part of the centralizer of $\mathcal{C} \in \mathcal{O}$. Then

$$Sph(G)_{\mathcal{O},u} = Sph(A(\mathcal{O}))_{0,u}.$$

The spherical unitary dual only depends on the adjoint group, not the isogeny classes. So we only need to specify $Sph(G)_{0,u}$ for Gsimple. This is a union of simplices in the dominant chamber, explicitly determined in [B1] for classical types, [C1] for F_4 , [BC] for E_6, E_7, E_8 . G_2 and small rank cases were known before. There are some exceptions, where the answer has to be given case by case:

$$\{\underbrace{A_2 + 3A_1}_{\text{in }E_7}, \underbrace{A_4A_2A_1, A_4A_2, D_4(a_1)A_2, A_3 + 2A_1, A_2 + 2A_1, 4A_1}_{\text{in }E_8}\}.$$
(2)

See [C1] for F_4 .

Sketch of some proofs

Type F₄. The maximal compact subgroup (actually of the double cover of F_4) is $Sp(2) \times Sp(6)$. There is a matchup $\sigma \longleftrightarrow V_{\mu(\sigma)}$ with the proerty that V_{μ} is petite, and the representation of W on $V_{\mu}^{M\cap K}$ is σ :

K-type	W-type
$(0 \mid 0, 0, 0)$	$1_1,$
$(0 \mid 1, 1, 0)$	$2_1,$
$(4\mid 0,0,0)$	$2_3,$
$(1 \mid 2, 1, 0)$	$8_1,$
$(1 \mid 1, 1, 1)$	$4_2,$
$(2 \mid 2, 0, 0)$	9 ₁ .

These W- types are called *relevant*; a spherical irreducible representation is unitary if and only if it is positive definite on these W-types. This implies an embedding of the spherical unitary dual of the split real F_4 into the spherical unitary dual of the split p-adic F_4 . Similar results are proved for all split groups, [B1], [B2], [C1], [BC].

We consider the case of quasisplit E_6 . For each $\sigma \in \widehat{W}$ on the list, we need a $V_{\lambda(\sigma)}$ which is petite, and such that $V^M_{\lambda(\sigma)}$ contains σ . Let $\tau \in Aut(G)$ satisfy

- τ and θ commute,
- G_{τ} is split type F_4 .

Then $K_{\tau} = C_1 C_3 \subset K = A_1 A_5$ with C_1 identified with the A_1 , and $C_3 \subset A_5$ the usual inclusion. Let H = MT be a Cartan subgroup of K with T a Cartan subgroup of K_{τ} . We can ignore the $C_1 \cong A_1$.

In coordinates

$$\mathfrak{t} = \{(a, b, c, -c, -b, -a)\}$$
$$\mathfrak{m} = \{(a_1, a_2, -a_1 - a_2, -a_1 - a_2, a_2, a_1)\}.$$

Suppose we want to match 8_1 with a petite representation of A_5 . We choose a λ as small as possible so that $V_{\lambda} \mid_{C_3}$ contains the representation (2, 1, 0) of C_3 . The best choice would be a λ such that $\lambda \mid_{\mathfrak{t}} = (2, 1, 0)$ and $\lambda \mid_{\mathfrak{m}} = 0$. This does not work. It turns out that the good choice is $\lambda = (2, 1, 0, 0, 0, 0)$. It is easy to see that dim $V^{\mathfrak{m}} = 16$, and dim $V^M = 8$. Since also

$$(2, 1, 0, 0, 0, 0) \mid_{C_3} = (2, 1, 0) + (1, 0, 0),$$

and the second factor does not contain any M_{τ} fixed vectors, the claim follows from the F_4 computation.

References

References

- [B1] D. Barbasch The spherical unitary dual of split real and p-adic groups, preprint, to appear in Journal of Institute Jussieu
- [B2] D. Barbasch Relevant and petite K-types for split groups,
 Functional analysis VIII, 35–71, Various Publ. Ser. (Aarhus),
 47, Aarhus Univ., Aarhus, 2004
- [B3] D. Barbasch A reduction theorem for the unitary dual of U(p,q) in volume in honor of Carmona
- [BC] D. Barbasch, D. Ciubotaru Whittaker unitary dual of affine graded Hecke algebras of type E, preprint

- [BM1] D. Barbasch, A. Moy A unitarity criterion for p-adic groups Invent. Math., vol 98, 1989, 19-38
- [BM2] _____ Reduction to real infinitesimal character in affine Hecke algebras, Journal of the AMS, vol 6, Number 3, 1993, 611-635
- [C1] D. Ciubotaru The Iwahori spherical unitary dual of the split group of type F4, Represent. Theory, vol 9, 2005, 94–137
- [JW] K. Johnson, N. Wallach, Composition series and intertwining operators for spherical principal series I, Transactions of AMS, vol. 229, (1977), 137-173