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Motivation for study

g - finite-dimensional semisimple Lie algebra. Field: C.

M - g-module.

The Fernando-Kac subalgebra g[M] ⊂ g associated to M :
the set of elements acting locally finitely.

The set g[M] is indeed a Lie subalgebra, (Kac, [Kac85],
Fernando [Fer90]).

l ⊂ g is a Fernando-Kac subalgebra if there exists an
irreducible module M for which l = g[M].

M is a (g, l)-module if l ⊂ g[M].

A (g, l)-module M is of finite type if for any fixed
irreducible finite-dimensional l-module V the
Jordan-Hölder multiplicities of V in all finite-dimensional
l-submodules of M are bounded.
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Subalgebras containing a Cartan subalgebra

h - fixed Cartan subaglebra; b - fixed Borel.

l = k⊃+ n - subalgebra
containing h.l = k︸︷︷︸

reductive part

⊃+ n︸︷︷︸
nilradical

- semidirect sum. ∆(g) -

root system notation.

l = h⊕
⊕
α∈∆(l)

gα

︸ ︷︷ ︸
subalgebra of interest

k = h⊕
⊕

α∈∆(l):
−α∈∆(l)

gα; n =
⊕

α∈∆(l):
−α/∈∆(l)

gα

.

∆(k) - root subsystem of ∆(g).

A regular semisimple subalgebra is defined as one that can be
written as [k, k] (kills central piece of h).

The root subsystems of ∆(g) classify all regular subalgebras.

Done in “Semismiple Lie subalgebras of simple Lie algebras”,
Dynkin.
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Penkov’s conjecture

Definition (Penkov)

(a) Cone condition. l satisfies the cone condition if
ConeQ(∆(n)) ∩ ConeQ(Singb∩k(g/l)) = {0}, where Singb∩k
stands for b ∩ k-singular. Motivation: I. Penkov, V.
Serganova, G. Zuckerman, 2004.

(b) Centralizer condition. l satisfies the centralizer condition if
(C ([k, k]) ∩N(n))ss has simple constituents of type A and C
only. Motivation: S. Fernando, 1990.

Theorem

Let l = k⊃+ n be a subalgebra containing a Cartan subalgebra of the
simple Lie algebra g ' sl(n), so(2n + 1), sp(2n), so(2n), E6,E7,F4

or G2. Then l is a Fernando-Kac subalgebra of finite type if and
only if the cone condition and the centralizer condition are
satisfied.
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If the nilradical is zero, the cone condition is trivially satisfied. The
theorem follows directly from [Fer90] (non-existence if centralizer
condition fails) and the construction in [BL87] (if centralizer
condition holds).

The following proposition relates to the
combinatorics involved in the proof of the theorem when the
nilradical is non-zero.

Proposition

Suppose you can find a relation

a1α1 + · · ·+ alαl = b1β1 + · · ·+ bkβk

where α ∈ Singb∩k(g/l), βi ∈ ∆(n), ai , bj ∈ Z>0, and in addition

βi ± βj is not a root for all i , j

[gαi , n] ⊂ n for all i .

Then l = k⊃+ n is not Fernando-Kac of finite type.
The failure of the cone condition alone is sufficient for the
existence of such a relation in types An, Bn, Dn, E6, E7, G2.
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Plan for the rest of the talk

An algorithm to generate all root subsystems of g explicitly.

An algorithm to decompose g as a k-module.

Tables for E8 or any other rank≤ 8 simple Lie algebra on
demand.

An algorithm to enumerate all nilradicals n up to isomorphism
that can be attached to a reductive subalgebra k ⊃ h.

An algorithm to generate all sl(2)-subalgebras of a simple Lie
algebra following Dynkin.

Tables for E8 or any other rank≤ 8 simple Lie algebra on
demand.

Rant about C++, the “vector partition” program, etc.
http://vector-partition.jacobs-university.de/

cgi-bin/vector_partition_linux_cgi?rootSAs
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Generating root subsystems up to isomorphism

∆ parametrizes the elements of a root subsystem and ∆′ a simple
basis of ∆; R is a list of root subsystems.

Step 0. Initialize ∆ and ∆′ to be the empty, and R to be the
empty list.

Step 1. For each root α in ∆(g)\∆ set ∆ = ∆ ∪ {α}.
Corresponds to a “for loop”.

Step 2. Compute the simple basis ∆′ of ∆.

Step 3. Check whether ∆′ is isomorphic via a root system
isomorphism of ∆(g) to a simple basis of an element already
present in R. If so, terminate the current branch of
computation. Otherwise, add ∆ to R and go to Step 1.
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Note: step 3 - not needed in the sense that one can compare only
two pairs of Dynkin diagrams.

Proposition

For the two root subsystems ∆1 and ∆2 to be isomorphic via
isomorphism of ∆(g) it is necessary and sufficient that their

Dynkin diagrams and the Dynkin diagrams of ∆⊥∼1 and ∆⊥∼2 are
isomorphic, where ⊥∼ stands for strongly orthogonal (α⊥∼ β if
α± β is not a root).

Note: if ∆ parametrizes a regular subalgebra [k, k], then ∆⊥∼
parametrizes the root system of the centralizer of [k, k]. The
centralizer of a regular subalgebra consists of a regular subalgebra
and a piece of the Cartan subalgebra.
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Decompose g as a k-module

k contains a Cartan subalgebra and therefore separates root
spaces. Therefore any k-submodule of g/k is a direct sum of
root spaces.

Any simple k-submodule of g/k is uniquely identified by its
b ∩ k-singular weight vector.

gα ∈ gα is b ∩ k-singular if α + γ is not a root for any
γ ∈ ∆(b ∩ k).

Take an arbitrary α′ in ∆(g)\∆(k). Start adding positive roots
of k to α′ until possible. The root obtained in the end is the
b∩ k-singular vector in the simple k-submodule containing gα

′
.
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Generate all nilradicals up to isomorphism that can be
attached to k (one representative per isomorphism class)

Let the k-module decomposition of g/k be M1 ⊕ · · · ⊕MN .

Pairing table. We say Mi and Mj pair to Mk if there exist
α ∈Weights(Mi ) and β ∈Weights(Mj) such that
α + β ∈Weights(Mk).

Opposite modules. Mi is opposite to Mj if
Weights(Mi ) = −Weights(Mj).
Compute the group W ′ of all root system automorphisms of
∆(g) that preserve ∆(b ∩ k). Example: ∆(k) = 7A1 ⊂ E7.
Then W ′ has 168 elements.
Choose an arbitrary order ≺′ on the set of all subsets of
{M1, . . . ,MN}. Using W ′ and ≺′ induce a partial order ≺ on
all subsets of {M1, . . . ,MN}.
To enumerate all nilradicals up to isomorphism (getting one
representative in each W ′- class) one enumerates all subsets
of the Mi ’s that respect the pairing table, have no opposite
modules, and respect ≺. Numerology: E6: 64580 possibilities.
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Generate all sl(2)-subalgebras of g: starting facts form
Dynkin

Some facts from “Semisimple Lie subalgebras of semisimple Lie
algebras”.

Let our sl(2) be given by h, e, f with [h, e] = 2e, [h, f ] = −2f ,
[e, f ] = h. h can be assumed to lie in a Cartan s.a. of g.
Suppose we know h. Compute a simple basis α1, . . . , αn of
∆(g) with respect to h. Define the characteristic of h as the
n-tuple (α1(h), . . . , αn(h)).
The characteristic of h can consist of 0,1 and 2’s only.
Whenever characteristics of two sl(2)’s coincide, the sl(2)’s
are conjugate.
If there is a 1 in the characteristic, then our sl(2) lies inside a
regular subalgebra of g with rank smaller than rkg.
The element e is a linear combination of elements of gα,
where α runs over all roots with α(h) = 2.
The element f is a linear combination of elements of gα,
where α runs over all roots with α(h) = −2.
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Generate all sl(2)-subalgebras of g: algorithm

Fix a root subsystem ∆(k) and the corresponding subalgebra
k ⊃ h. The corresponding regular subalgebra is [k, k].

Fix a simple basis of ∆(k).
Enumerate all possible characteristics of h of length rk[k, k]
that do not contain 1’s (total 2rk[k,k]).
Generate the corresponding h’s.
Throw out h’s that would imply a non-trivial centralizer of the
sl(2) in [k, k].
Write e =

∑
αi (h)=2 aig

αi , f =
∑

αi (h)=−2 big
−αi , where ai ,

bi - unknowns.
Then [e, f ] =

∑
i 6=j nαi ,−αj aibjg

αi−αj +
∑

aibi
2

〈αi ,αi 〉hαi ,
where nαi ,−αj are the structure constants.
This is a quadratic system of m equations, where m equals
the sum of rk[k, k] and the number of roots of the form
αi − αj . Solve it!
Find a simple basis of g with respect to h to recover the
characteristic of h in g.
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The “vector partition” program

Project started December 2008.

Can compute:

Everything described in the talk.
Algebraic expressions in closed form for the Kostant partition
function. Can go up to A6, D4, B4, C4.
Hyperplane arrangements (needed to describe the
combinatorial chambers for the Kostant partition function).
Weyl groups, Kazhdan-Lusztig coefficients, structure constants
of simple Lie algebras.
Simplex algorithm (basic implementation).
Has its own large integer/rational number library, classes
implementing quasipolynomials over Q.
Uses its own classes for hashing arrays. No external packages!

Current size of the mathematical part: ∼30 000 lines of code.
Total project size >35 000 lines of code.

560+ commits in the public source code repository.
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Thank you for Your attention!
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