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Abstract

A survey of some applications of group theory and deformation theory
(including quantization) in mathematical physics. Rotation and discrete
groups in molecular physics (“dynamical” symmetry breaking in crystals,
Racah-Flato-Kibler); chains of groups and symmetry breaking. “Classification
Lie groups” (“internal symmetries”) in particle physics. Space-time
symmetries, relations with internal symmetries. Deformations of symmetries.
Deformation quantization, quantum groups and quantized spaces. Field
theories and evolution equations (from the point of view of nonlinear Lie
group representations). Connections with some cosmology, including
especially quantized anti-de Sitter groups and spaces. Prospects for future
developments between mathematics and physics.
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Epistemological comments

Pythagoras is the first to be recorded saying
that Mathematics is the way to understand the universe.
Many developed similar ideas, including Sir James Hopwood Jeans:
“The Great Architect of the Universe now begins to appear as a pure mathematician.”
“We may as well cut out the group theory. That is a subject that will never be of any use
in physics.” [Discussing a syllabus in 1910.]
Einstein in 1921: “As far as the laws of mathematics refer to reality, they are not
certain; and as far as they are certain, they do not refer to reality.”
“Curse” of experimental sciences. Mathematical logic: if A and A→ B, then B. In real
life, imagine model or theory A. If A→ B and “B is nice” (e.g. verified & more), then A!
[Inspired by Kolmogorov quote.] (It ain’t necessarily so.)

Three questions: Why, What, How?

Daniel Sternheimer Banff 5039, 6 July 2010
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Comments on the title

In 1960 Eugene P. Wigner wrote his famous provocative paper in
Comm. Pure Applied Math. 13, 1-14, The Unreasonable Effectiveness of
Mathematics in the Natural Sciences, reproduced with many interesting
essays in Symmetries and Reflexions (Indiana University Press 1967, MIT
Press 1970).
Many elaborated on it, including the converse statement by Atiyah (the
unreasonable effectiveness of physics in mathematics) on several occasions,
lately with Dijkgraaf and Hitchin in Phil. Trans. R. Soc. A 2010 368, 913-926,
Geometry and physics.
An aim of this talk is to indicate by examples dealing with symmetries and
with deformation theory, important somewhat complementary aspects, that
these effectivenesses are quite reasonable but have their limitations.

Daniel Sternheimer Banff 5039, 6 July 2010
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Symmetries in physics, a tachyonic outlook

“Dynamical” symmetries of (covariant) equations (e.g. Poincaré group and other

space-time symmetries)
and spectroscopical symmetries.
In atomic and molecular physics know the forces and e.g. breaking of SU(2)
symmetry by crystalline field is natural (Wigner, Racah methods, Flato’s
master thesis continued by Kibler, and many more).
In nuclear physics one is lead to “classification symmetries.”
In particle physics more and more particles were discovered [Fermi botanist]
exhibiting new (sometimes “strange”) properties, which lead again to
“classification symmetries” (e.g. SU(3)) which (after some twists) made
people invent new dynamics (QCD, on the basis of QED).
Connection? L.O’Raifeartaigh, Jost-Segal,
Coleman-Mandula (and super-generalizations),
our objections and counterexamples.

Daniel Sternheimer Banff 5039, 6 July 2010



Dedication
The context (mainly lesser known older and recent)

Deformation theory
Composite massless particles

NCG, questions and speculations

Appetizer remarks
Molecular spectroscopy, internal and external symmetries

Rotation group. Bethe, Wigner, Racah

Crystal field theory: seminal
work of Hans Bethe in 1929, who also introduced “double groups” (in SU(2), not
SO(3)). The breaking SO(3) > G is caused by an inhomogeneous electric field at the
site of an ion [with N electrons on a layer d (` = 2) or f (` = 3). The breaking is created
by ion environment (crystal, molecule, even biological). The interaction Hamiltonian
has the symmetry of its causes (“Curie principle”).
Wigner’s book Group theory and its application to the quantum mechanics of atomic
spectra (first German edition, 1931; expanded English version 1959). Together with
Weyl (1928 book “Gruppentheorie und Quantenmechanik”) they spread the
“GruppenPest” (Wigner was Hungarian then).

Ugo Fano, Giulio (Joel) Racah (book on “Irreducible tensor sets”) and Racah school in

Jerusalem.

Daniel Sternheimer Banff 5039, 6 July 2010
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Crystal-Field theory. Racah, Flato, Kibler and many more

At the end of 50’s (and early 60’s) crystal-field theory and its applications to optical and
magnetic properties of ions dN or f N in a finite symmetry G relied exclusively on the
Wigner-Racah algebra of G or its double cover (in SU(2)): Y.Tanabe, S.Sugano,
H.Kamimura in Japan and J.S.Griffith in UK.
The originality of the Racah-Flato-Kibler approach was to imbed the “physical” chain
SO(3) > G in a “classification” chain:
SU(5) > SO(5) > SO(3) > G′ > G for dN ions (2`+ 1 = 5)
SU(7) > SO(7) > G2 > SO(3) > G′ > G for f N ions (2`+ 1 = 7),
with an additional technical intermediate finite group G′ > G at the end [G’ being the
cubic group S4, order 24, for trigonal S3, order 6, or tetragonal crystals (order 12,
stretch a cube along one axis to a rectangular prism).]
Chains include a physical part and on top of it a tower, useful to classify states and
interactions, hence compute matrix elements (via Wigner-Eckhart type theorems
expressing matrix elements of spherical tensor operators as product). Introducing
groups before G simplifies computation of other interactions acting on electrons of ions
(Coulomb, spin-orbit, etc.), a brilliant idea of Racah. The technique has then been
widely used in molecular spectroscopy, for many crystal systems.

Such chains were later used in nuclear physics and are now found in Grand Unified

Theories, e.g. (over C) E7 > E6 > SO(10) > SL(5) > SL(3)xGL(2).

Daniel Sternheimer Banff 5039, 6 July 2010
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Poincaré and anti de Sitter “external” symmetries

1930’s: Dirac asks Wigner to study UIRs of Poincaré group. 1939: Wigner
paper in Ann.Math. UIR: particle with positive and zero mass (and “tachyons”).
Seminal for UIRs (Bargmann, Mackey, Harish Chandra etc.)
Deform Minkowski to AdS, and Poincaré to AdS group SO(2,3). UIRs of AdS studied
incompletely around 1950’s. 2 (most degenerate) missing found (1963) by Dirac, the
singletons that we call Rac= D( 1

2 , 0) and Di= D(1, 1
2 ) (massless of Poincaré in 2+1

dimensions). In normal units a singleton with angular momentum j has energy
E = (j + 1

2 )ρ, where ρ is the curvature of the AdS4 universe (they are naturally
confined, fields are determined by their value on cone at infinity in AdS4 space,
AdS4/CFT3 correspondence). The massless representations of SO(2, 3) are defined
(for s ≥ 1

2 ) as D(s + 1, s) and (for helicity zero) D(1, 0)⊕ D(2, 0). There are many
justifications to this definition. They are kinematically composite:
(Di⊕ Rac)⊗ (Di⊕ Rac) = (D(1, 0)⊕ D(2, 0))⊕ 2

⊕∞
s= 1

2
D(s + 1, s).

Also dynamically (QED with photons composed of 2 Racs, FF88).

Daniel Sternheimer Banff 5039, 6 July 2010
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Generations, “internal” symmetries

At first, because of the isospin I, a quantum number separating proton and
neutron introduced (in 1932, after the discovery of the neutron) by
Heisenberg, SU(2) was tried. Then in 1947 a second generation of “strange”
particles started to appear and in 1952 Pais suggested a new quantum
number, the strangeness S.
In 1975 a third generation (flavor) was discovered, associated e.g. with the τ
lepton, and its neutrino ντ first observed in 2000.
In the context of what was known in the 1960’s, a rank 2 group was the
obvious thing to try and introduce in order to describe these “internal”
properties. That is how in particle physics theory appeared U(2) (or
SU(2)× U(1), now associated with the electroweak interactions) and the
simplest simple group of rank 2, SU(3), which subsists until now but has
taken different forms, mostly as “color” symmetry in QCD theory. We first
classify empirically, and when a model is “nice” we invent the forces.
Connection with space-time symmetries? (O’Raifeartaigh no-go “theorem”
and FS counterexamples.) Reality is (much) more complex.

Daniel Sternheimer Banff 5039, 6 July 2010
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careful with no-go theorems

Natural question: study the relation (if any) of internal world with space-time (relativity).
That was, and still is a hard question. (E.g., combining the present Standard Model of
elementary particles with gravitation is until now some quest for a Holy Grail.) Negating
any connection, at least at the symmetry level, was a comfortable way out. For many,
the proof of a trivial relation was achieved by what is often called the O’Raifeartaigh
Theorem, a “no go theorem” stating that any finite-dimensional Lie algebra containing
the Poincaré Lie algebra and an “internal” Lie algebra must contain these two as a
direct product. Proof was based on nilpotency of Poincaré energy-momentum
generators but implicitly assumed the existence of a common invariant domain of
differentiable vectors, which Wigner was careful to state as an assumption in his
seminal 1939 paper and was proved later for Banach Lie group representations by “a
Swedish gentleman”. We showed in a provocative PR Letter that the result was not
proved in the generality stated, then exhibited a number of counterexamples. The
sophisticated Coleman-Mandula attempt to prove a direct product relation contained an
implicit hypothesis, hidden in the notation, that presupposed the result claimed to be
proved. One should be careful with no-go theorems. Also when negating a model.

We now know that the situation is much more complex, especially when dynamics has

to be introduced in the theory. So a fortiori one cannot and should not rule out a priori

any relation between space-time and internal symmetries.
Daniel Sternheimer Banff 5039, 6 July 2010
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Dirac quote

“... One should examine closely even the elementary and the satisfactory features of our Quantum Mechanics and

criticize them and try to modify them, because there may still be faults in them. The only way in which one can hope

to proceed on those lines is by looking at the basic features of our present Quantum Theory from all possible points

of view. Two points of view may be mathematically equivalent and you may think for that reason if

you understand one of them you need not bother about the other and can neglect it.
But it may be that one point of view may suggest a future development which another
point does not suggest, and although in their present state the two points of view are equivalent they may
lead to different possibilities for the future. Therefore, I think that we cannot afford to neglect any possible point of
view for looking at Quantum Mechanics and in particular its relation to Classical Mechanics. Any point of view which
gives us any interesting feature and any novel idea should be closely examined to see whether they suggest any
modification or any way of developing the theory along new lines.

A point of view which naturally suggests itself is to examine just how close we can make the connection between

Classical and Quantum Mechanics. That is essentially a purely mathematical problem – how close can we make the

connection between an algebra of non-commutative variables and the ordinary algebra of commutative variables? In

both cases we can do addition, multiplication, division...” Dirac, The relation of Classical to Quantum Mechanics

(2nd Can. Math. Congress, Vancouver 1949). U.Toronto Press (1951) pp 10-31.

Daniel Sternheimer Banff 5039, 6 July 2010
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Flato’s deformation philosophy

Physical theories have domain of applicability

defined by the relevant distances, velocities, energies, etc. involved. The passage from

one domain (of distances, etc.) to another doesn’t happen in an uncontrolled way:

experimental phenomena appear that cause a paradox and contradict [Fermi quote]

accepted theories. Eventually a new fundamental constant enters, the formalism is

modified: the attached structures (symmetries, observables, states, etc.) deform the

initial structure to a new structure which in the limit, when the new parameter goes to

zero, “contracts” to the previous formalism. The question is, in which category to seek

for deformations? Physics is conservative: if start with e.g. category of associative or

Lie algebras, tend to deform in same category. But there are important generalizations:

e.g. quantum groups are deformations of (some commutative) Hopf algebras.Daniel Sternheimer Banff 5039, 6 July 2010
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The framework of deformation quantization

Poisson manifold (M, π), deformations of product of functions.
Inspired by deformation philosophy, based on Gerstenhaber’s deformation theory

[Flato, Lichnerowicz, Sternheimer; and Vey; mid 70’s] [Bayen, Flato, Fronsdal,

Lichnerowicz, Sternheimer, LMP ’77 & Ann. Phys. ’78]

• At = C∞(M)[[t ]], formal series in t with coefficients in C∞(M) = A.
Elements: f0 + tf1 + t2f2 + · · · (t formal parameter, not fixed scalar.)
• Star product ?t : At ×At → At ; f ?t g = fg +

∑
r≥1 t r Cr (f ,g)

- Cr are bidifferential operators null on constants: (1 ?t f = f ?t 1 = f ).
- ?t is associative and C1(f ,g)− C1(g, f ) = 2{f ,g}, so that
[f ,g]t ≡ 1

2t (f ?t g − g ?t f ) = {f ,g}+ O(t) is Lie algebra deformation.

Basic paradigm. Moyal product on R2n with the canonical Poisson bracket P:

F ?M G = exp
( i~

2 P
)
(F ,G) ≡ FG +

∑
k≥1

1
k!

( i~
2

)k Pk (F ,G).

Daniel Sternheimer Banff 5039, 6 July 2010



Dedication
The context (mainly lesser known older and recent)

Deformation theory
Composite massless particles

NCG, questions and speculations

The deformation philosophy
Deformation quantization

Applications and Equivalence

Equation of motion (time τ ): dF
dτ = [H,F ]M ≡ 1

i~ (H ?M F − F ?M H)
Link with Weyl’s rule of quantization: Ω1(F ?M G) = Ω1(F )Ω1(G)

Equivalence of two star-products ?1 and ?2.
• Formal series of differential operators T (f ) = f +

∑
r≥1 t r Tr (f ).

• T (f ?1 g) = T (f ) ?2 T (g).

For symplectic manifolds, equivalence classes of star-products are parametrized by the

2nd de Rham cohomology space H2
dR(M): {?t}/ ∼ = H2

dR(M)[[t]] (Nest-Tsygan [1995]

and others). In particular, H2
dR(R2n) is trivial, all deformations are equivalent.

Kontsevich: {Equivalence classes of star-products} ≡ {equivalence
classes of formal Poisson tensors πt = π + tπ1 + · · · }.
Remarks: - The choice of a star-product fixes a quantization rule.
- Operator orderings can be implemented by good choices of T (or $).

- On R2n, all star-products are equivalent to Moyal product (cf. von Neumann uniqueness

theorem on projective UIR of CCR).

Daniel Sternheimer Banff 5039, 6 July 2010
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Existence and Classification

Let (M, π) be a Poisson manifold. f ?̃g = fg + t{f ,g} does not define
an associative product. But (f ?̃g)?̃h − f ?̃(g?̃h) = O(t2).
Is it always possible to modify ?̃ in order to get an associative product?

Existence, symplectic case:
– DeWilde-Lecomte [1982]: Glue local Moyal products.
– Omori-Maeda-Yoshioka [1991]: Weyl bundle and glueing.
– Fedosov [1985,1994]: Construct a flat abelian connection on the
Weyl bundle over the symplectic manifold.
General Poisson manifold M with Poisson bracket P:
Solved by Kontsevich [1997, LMP 2003]. “Explicit” local formula:
(f ,g) 7→ f ? g =

∑
n≥0 tn ∑

Γ∈Gn,2
w(Γ)BΓ(f ,g), defines a differential

star-product on (Rd ,P); globalizable to M. Here Gn,2 is a set of graphs Γ,

w(Γ) some weight defined by Γ and BΓ(f , g) some bidifferential operators.

Particular case of Formality Theorem. Operadic approach
Daniel Sternheimer Banff 5039, 6 July 2010
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This is Quantization

A star-product provides an autonomous quantization of a manifold M.
BFFLS ’78: Quantization is a deformation of the composition law of
observables of a classical system: (A, ·)→ (A[[t ]], ?t ), A = C∞(M).

Star-product ? (t = i
2~) on Poisson manifold M and Hamiltonian H;

introduce the star-exponential: Exp?( τH
i~ ) =

∑
r≥0

1
r ! ( τi~ )r H?r .

Corresponds to the unitary evolution operator, is a singular object i.e. belongs not to

the quantized algebra (A[[t]], ?) but to (A[[t , t−1]], ?). Singularity at origin of its trace,

Harish Chandra character for UIR of semi-simple Lie groups.

Spectrum and states are given by a spectral (Fourier-Stieltjes in the
time τ ) decomposition of the star-exponential.

Paradigm: Harmonic oscillator H = 1
2 (p2 + q2), Moyal product on R2`.

Exp?
(
τH
i~
)

=
(

cos( τ2 )
)−1 exp

( 2H
i~ tan( τ2 )

)
=
∑∞

n=0 exp
(
− i(n + `

2 )τ
)
π`n.

Here (` = 1 but similar formulas for ` ≥ 1, Ln is Laguerre polynomial of degree n)

π1
n(q, p) = 2 exp

(−2
~ H(q, p)

)
(−1)nLn

( 4
~H(q, p)

)
.

Daniel Sternheimer Banff 5039, 6 July 2010
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Conventional vs. deformation quantization

• It is a matter of practical feasibility of calculations, when there are
Weyl and Wigner maps to intertwine between both formalisms, to
choose to work with operators in Hilbert spaces or with functional
analysis methods (distributions etc.) Dealing e.g. with spectroscopy (where it

all started; cf. also Connes) and finite dimensional Hilbert spaces where operators are

matrices, the operatorial formulation is easier.

• When there are no precise Weyl and Wigner maps (e.g. very general

phase spaces, maybe infinite dimensional) one does not have much choice
but to work (maybe “at the physical level of rigor”) with functional analysis.
Contrarily to what some (excellent physicists) assert, deformation quantization is

quantization and not a mere reformulation: it permits (in concrete cases) to take for ~ its value, when there are

Weyl and Wigner maps one can translate its results in Hilbert space, and e.g. for the 2-sphere there is a special

behavior when the radius of the sphere has quantized values related to the Casimir values of SO(3).

Daniel Sternheimer Banff 5039, 6 July 2010
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Cohomological renormalization in deformation quantization

Starting with some star-product ? (e.g. similar to the normal star-product on a manifold
of initial data), we would like to interpret various divergences appearing in the theory in
terms of coboundaries (or cocycles) for the relevant Hochschild cohomology. If we
suspect that a term in a cochain of the product ? is responsible for the appearance of
divergences, applying an iterative procedure of equivalence, we can try to eliminate it,
or at least get a lesser divergence, by subtracting at the relevant order a divergent
coboundary; we would then get a better theory with a new star-product, “equivalent” to
the original one. Furthermore, since in this case we expect to have at each order an
infinity of non equivalent star-products, we can try to subtract a cocycle and then pass
to a nonequivalent star-product whose lower order cochains are identical to those of
the original one. We would then make an analysis of the divergences up to order ~r ,
identify a divergent cocycle, remove it, and continue the procedure (at the same or
hopefully a higher order). Along the way one should preserve the usual properties of a
quantum field theory (Poincaré covariance, locality, etc.) and the construction of
adapted star-products should be done accordingly. The complete implementation of
this program should lead to a cohomological approach to renormalization theory. For
λφ4

2-theory a λ-dependent star-product formally equivalent to normal permits to gain
one order in perturbation theory.

The Connes–Kreimer rigorous renormalization procedure might fit in this pattern.

Daniel Sternheimer Banff 5039, 6 July 2010
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Nonlinear group representations and evolution equations

A cohomological (formal), then analytical, study of nonlinear Lie group representations
was started by us about 33 years ago (FPS77). Nonlinear representations can be
viewed as successive extensions of their linear part S1 by its (symmetric) tensorial
powers ⊗nS1, n ≥ 2: first S1 by S1 ⊗ S1, then the result by ⊗3S1 and so on.
Cohomology plays a natural role. E.g. it is sufficient to have at least one invertible
operator in the representation of the center of the enveloping algebra for the
corresponding 1-cohomology to vanish, rendering trivial an associated extension.
Spectacular applications to covariant nonlinear partial differential equations, e.g.
nonlinear Klein-Gordon and especially the coupled Maxwell-Dirac equations
(first-quantized electrodynamics, cf. e.g. FST AMS Memoir 606, 1997). In such
equations the nonlinearity appears as coupled to the linear (free) equations, with a
coupling constant that plays the role of deformation parameter.

Once the classical covariant field equations are studied enough in details one can think

of studying their quantization along the lines of deformation quantization, e.g. by

considering the quantized fields as functionals over the initial data of the classical

equations.

Daniel Sternheimer Banff 5039, 6 July 2010
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Composite electrodynamics

Photon (composite QED) and new infinite dimensional
algebras. Flato, M.; Fronsdal, C. Composite electrodynamics. J. Geom. Phys. 5
(1988), no. 1, 37–61.
Singleton theory of light, based on a pure gauge coupling of scalar singleton field to
electromagnetic current. Like quarks, singletons are essentially unobservable. The
field operators are not local observables and therefore need not commute for spacelike
separation, hence (like for quarks) generalized statistics. Then a pure gauge coupling
generates real interactions – ordinary electrodynamics in AdS space. Singleton field
operator φ(x) =

∑
j φ

j (x)aj +h.c. Concept of normal ordering in theory with
unconventional statistics is worked out; there is a natural way of including both photon
helicities.

Quantization is a study in representation theory of certain infinite-dimensional,

nilpotent Lie algebras (generated by the aj ), of which the Heisenberg algebra is the

prototype (and included in it for the photon). Compatible with QED.

Daniel Sternheimer Banff 5039, 6 July 2010
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Singleton-based field theory in AdS

Dis and Racs and around (mostly M. Flato & C. Frønsdal)
Interacting singletons. Lett. Math. Phys. 44 (1998), no. 3, 249–259. (MF, CF)
Singleton fields, in the context of strings and membranes, have been
regarded as topological gauge fields that can interact only at the boundary of
anti-de Sitter space. At spatial infinity they may have a more physical
manifestation as constituents of massless fields in spacetime. The composite
character of massless fields is expressed by field-current identities that relate
ordinary massless field operators to singleton currents and stress-energy
tensors. Naive versions of such identities do not make sense, but when the
singletons are described in terms of dipole structures, such constructions are
at least formally possible. The new proposal includes and generalizes an
early composite version of QED, and includes quantum gravity, super gravity
and models of QCD. Unitarity of such theories is conjectural.

Daniel Sternheimer Banff 5039, 6 July 2010
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Singleton field theory and neutrino oscillations in AdS

Singletons, Physics in AdS Universe and Oscillations of Composite
Neutrinos,
Lett. Math. Phys. 48 (1999), no. 1, 109–119. (MF, CF, DS)
The study starts with the kinematical aspects of singletons and massless
particles. It extends to the beginning of a field theory of composite
elementary particles and its relations with conformal field theory, including
very recent developments and speculations about a possible interpretation of
neutrino oscillations and CP violation in this context. This framework was
developed since the 70’s. Based on our deformation philosophy of physical
theories, it deals with elementary particles composed of singletons in anti-de
Sitter spacetime.

Daniel Sternheimer Banff 5039, 6 July 2010
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Composite neutrinos’ oscillations

Developing a field theory of composite neutrinos (neutrinos composed of
singleton pairs with, e.g., three flavors of singletons) it might be possible to
correlate oscillations between the three kinds of neutrinos with the AdS4

description of these ‘massless’ particles. Of course any reasonable estimate
of the value of the cosmological constant rules out a direct connection to the
value of experimental parameters like PC violation coupling constants or
neutrino masses. PC violation is a feature of composite electrodynamics and
any direct observation of singletons, even at infinity, will imply PC violation. If
more than one singleton flavor is used, as is appropriate in the context of
neutrinos, then PC invariance can be restored in the electromagnetic sector,
but in that case, neutrino oscillations will imply PC violation. The structure of
Anti de Sitter field theory, especially that of singleton field theory, may provide
a natural framework for a description of neutrino oscillations.

Daniel Sternheimer Banff 5039, 6 July 2010
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Composite leptons and flavor symmetry

The electroweak model is based on “the weak group”, SW = SU(2)× U(1),
on the Glashow representation of this group, carried by the triplet (νe, eL; eR)
and by each of the other generations of leptons.
Suppose that:
(a) There are three bosonic singletons (RNRL; RR) = (RA)A=N,L,R (three
“Rac”s) that carry the Glashow representation of SW ;
(b) There are three spinorial singletons (Dε,Dµ; Dτ ) = (Dα)α=ε,µ,τ (three
“Di”s). They are insensitive to SW but transform as a Glashow triplet with
respect to another group SF (the “flavor group”), isomorphic to SW ;
(c) The vector mesons of the standard model are Rac-Rac composites, the
leptons are Di-Rac composites, and there is a set of vector mesons that are
Di-Di composites and that play exactly the same role for SF as the weak
vector bosons do for SW : W B

A = R̄BRA, LA
β = RADβ , Fαβ = D̄βDα.

These are initially massless, massified by interaction with Higgs.
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Composite leptons massified

Let us concentrate on the leptons (A = N, L,R; β = ε, µ, τ )

(LA
β) =

 νe eL eR

νµ µL µR

ντ τL τR

 . (1)

A factorization LA
β = RADβ is strongly urged upon us by the nature of the

phenomenological summary in (1). Fields in the first two columns couple
horizontally to make the standard electroweak current, those in the last two
pair off to make Dirac mass-terms. Particles in the first two rows combine to
make the (neutral) flavor current and couple to the flavor vector mesons. The
Higgs fields have a Yukawa coupling to lepton currents, LYu = −gYuL̄βALB

αHαA
βB .

The electroweak model was constructed with a single generation in mind,
hence it assumes a single Higgs doublet. We postulate additional Higgs
fields, coupled to leptons in the following way, L′Yu = hYuLA

αLB
βKαβ

AB + h.c..
This model predicts 2 new mesons, parallel to the W and Z of the
electroweak model (Frønsdal, LMP 2000). But too many free parameters.
Do the same for quarks (and gluons), adding color?
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Questions and facts

Even if know “intimate structure” of particles (as composites of quarks etc. or
singletons): How, when and where happened “baryogenesis”? [Creation of ‘our

matter’, now 4% of universe mass, vs. 74% ‘dark energy’ and 22 % ‘dark matter’; and

matter–antimatter asymetry, Sakharov 1967.] Everything at “big bang”?! [Shrapnel of

‘stem cells’ of initial singularity?]
Facts:SOq(3, 2) at even root of unity has finite-dimensional UIRs (“compact”?).

Black holes à la ’t Hooft: can communicate with them, by interaction at surface.

Noncommutative (quantized) manifolds. E.g. quantum 3- and 4-spheres

(Connes with Landi and Dubois-Violette); spectral triples (A,H,D)).

Connes’ Standard Model with neutrino mixing, minimally coupled to gravity.

Space-time is Riemannian compact spin 4-manifold (Barrett has Lorentzian version) ×
finite (32) NCG. More economical than SUSYSM and predicts Higgs mass at upper

limit (SUSYSM gives lower). [Recent with Marcolli and Chamseddine. (Aug. 2009) Marcolli’s early

universe “Linde” models from NCG, with negative gravity & dark matter models with sterile neutrinos.]
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Conjectures and a speculative answer

[Odessa Rabbi anecdote] Space-time could be, at very small distances, not only deformed

(to AdS4 with tiny negative curvature ρ, which does not exclude at cosmological

distances to have a positive curvature or cosmological constant, e.g. due to matter) but

also “quantized” to some qAdS4. Such qAdS4 could be considered, in a sense to make

more precise (e.g. with some measure or trace) as having ”finite” (possibly ”small”)

volume (for q even root of unity). At the “border” of these one would have, for most

practical purposes at “our” scale, the Minkowski space-time, obtained by qρ→ 0. They

could be considered as some “black holes” from which “q-singletons” would emerge,

create massless particles that would be massified by interaction with dark matter or

dark energy. That could (and should, otherwise there would be manifestations closer to

us, that were not observed) occur mostly at or near the “edge” of our universe in

accelerated expansion. These “qAdS black holes” (“inside” which one might find

compactified extra dimensions) could be a kind of “shrapnel” resulting from the Big

Bang (in addition to background radiation) and provide a clue to baryogenesis.
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A NCG model for qAdS4

To AdSn, n ≥ 3, we associate naturally a symplectic symmetric space (M, ω, s). The
data of any invariant (formal or not) deformation quantization on (M, ω, s) yields
canonically universal deformation formulae (procedures associating to a topological
algebra A having a symmetry G a deformation Aθ in same category) for the actions of
a non-Abelian solvable Lie group R0 (one-dimensional extension of the Heisenberg
group Hn), given by an oscillatory integral kernel.

Using it we (P.Bieliavsky, LC, DS & YV) define a noncommutative Lorentzian spectral

triple (A∞,H,D) where A∞ := (L2
right(R0))∞ is a NC Fréchet algebra modelled on

the space H∞ of smooth vectors of the regular representation on the space H of

square integrable functions on R0, and D a Dirac operator acting as a derivation of the

noncommutative bi-module structure, and for all a ∈ A∞, the commutator [D, a]

extends to H as a bounded operator. The underlying commutative limit is endowed

with a causal black hole structure (for n ≥ 3) encoded in the R0-group action.
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Perspectives and cosmological speculations

1. Define within the present Lorentzian context the notion of causality at the
operator algebraic level.
2. Representation theory for SOq(2, n) (e.g. new reps. at root of unity, analogs of
singletons, ‘square root’ of massless reps. of AdS or Poincaré, etc.) Also maybe
quantized exceptional groups.
3. Define a kind of trace giving finite “q-volume” for qAdS at even root of unity
(possibly in TVS context).
4. Find analogs of all the ‘good’ properties (e.g. compactness of the resolvent of

D) of Connes’ spectral triples in compact Riemannian case, possibly

with quadruples (A, E,D,G) where A is some topological algebra, E an appropriate

TVS, D some (bounded on E) “Dirac” operator and G some symmetry.
5. Limit ρq → 0 (ρ < 0 being AdS curvature)?
6. Unify (groupoid?) Poincaré in Minkowski space (possibly modified locally
by the presence of matter) with these SOq(2, n) in the qAdS “black holes”.
7. Field theory on such q-deformed spaces, etc.
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