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Motivations

Problem (Stein, 72): “What are the relations between K and
s

K: The Bergman kernel, the reproducing kernel for the
Bergman space A%(Q2) of L2 holomorphic functions on Q.
Let {b;} be an orthonormal basis for A%(Q2). Then

K(z.w) =3 bi(2)B(w).
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Problem (Stein, 72): “What are the relations between K and
s

K: The Bergman kernel, the reproducing kernel for the
Bergman space A%(Q2) of L2 holomorphic functions on Q.
Let {b;} be an orthonormal basis for A%(Q2). Then

K(z.w) =3 bi(2)B(w).

S: The Szego kernel, the reproducing kernel for the Hardy
space H2(Q) of holomorphic functions f such that

| f]13 = lim sup/ f|? dS < oo,
e—0t JbQ.

where Q. = {z € Q;6(z) = €}, J: the Euclidean distance to
bQ2.
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Motivations

Problem (Stein, 72): “What are the relations between K and
s

K: The Bergman kernel, the reproducing kernel for the
Bergman space A%(Q2) of L2 holomorphic functions on Q.
Let {b;} be an orthonormal basis for A%(Q2). Then

K(z.w) =3 bi(2)B(w).

S: The Szego kernel, the reproducing kernel for the Hardy
space H2(Q) of holomorphic functions f such that

| f]13 = lim sup/ f|? dS < oo,
e—0+ JbQ.
where Q. = {z € Q;6(z) = €}, J: the Euclidean distance to

b<2.
“The relation of K and S is known also only in very special
circumstances.”
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» The Ball in C™

n! 1
Ko = im0 = T 1 zay

Introduction:

(n — 1)' 1 Background and

main results

In particular,

S(z,2)/K(z,z) = (1 — |z|2)/2n ~d/n.
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» The Ball in C™

Introduction:

! 1 —1) 1
%W;S(z, wy=1"1) B an

K(z,w) =
In particular,
S(z,2)/K(z,2z) = (1 — |z]*)/2n ~ §/n.
» b is smooth, strictly pseudoconvex:
S(z,z)/K(z,z) ~ d(z)/n

(Hormander; Fefferman; Boutet de Monvel-Sjostrand)



» bQis C*°, pseudoconvex in C? or convex in C" and of
finite type:
5(z,2)/K(z,2) 5 0(2)

(Catlin; J.Chen; Nagel-Rosay-Stein-Wagner; McNeal;
McNeal-Stein...)
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» bQis C*°, pseudoconvex in C? or convex in C" and of Siai Fu

based on joint

finite type: work with Boyong
Chen

S(Z7 Z)/l’((z7 Z) 5 (S(Z) Introduction:

Background and
main results

(Catlin; J.Chen; Nagel-Rosay-Stein-Wagner; McNeal;
McNeal-Stein...)

» Relating mapping properties of the Bergman and Szego
projections. (Boas-Straube; Nagel et al;
Bonami-Charpentier; Cumenge; Ligocka; Koenig...)

Goal: Study boundary behavior of S/K on diagonal‘




Main theorem

Q cc C", bQ: C%-smooth, pseudoconvex.
» Upper estimate: For any ¢ € (0, 1),

S(z,2)
K(z,z)

< 3(2)| log 6(z)|"=.
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Main theorem
Q cc C", bQ: C%-smooth, pseudoconvex.

» Upper estimate: For any ¢ € (0, 1),

S(z,z)
) < n/e
Kz.2) ~ 0(z)|logd(z)|"*.
» Lower estimate: If Q is d-regular, then 3¢ € (0,1] such
that
S(z,z)

2 0(z)|log 6(z)| V=

K(z, z)
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Maln theorem gergman and
zegd kernels
Q cc C", bQ: C%-smooth, pseudoconvex. i Fu
» Upper estimate: For any € € (0,1), ijfivdit‘,’,"éziy’:ng
Chen
5(z,2)
<(SZ logd(z n/e. ntroduction:
K(Z, Z) ~ ( )‘ & ( )| :B:Ck:;roﬁnd and
main results
» Lower estimate: If Q is d-regular, then 3¢ € (0,1] such
that
S(z,z)

Kz 2) < ()1 6(z)7Ve.

» When Q has a defining function psh on bQ2 or Q is
pseudoconvex of finite type: Ve € (0,1):

—1/e 5(272) n/e
3(2)|log 8(2)| 7 < K(zz) ~ ()08 d(2)] /e,
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Q cc C", bQ: C%-smooth, pseudoconvex. Zqi .

» Upper estimate: For any ¢ € (0, 1), s Sl
Chen
5(z,2)

<(SZ logd(z n/e. ntroduction:

K(Z, Z) ~ ( )‘ & ( )| :B:Ck:;roﬁnd and

main results

» Lower estimate: If Q is d-regular, then 3¢ € (0,1] such

that
S(z,z)

K(z, z)
» When Q has a defining function psh on bQ2 or Q is
pseudoconvex of finite type: Ve € (0,1):

2 0(z)|log 6(z)| V=

—1/e 5(272) n/e
3(2)|log 8(2)| 7 < K(zz) ~ ()08 d(2)] /e,

» Q is convex:

S(z,2)
K(z,z)

~ i(2).



D-F exponent

» Diederich-Fornzess exponent e: 3¢ € psh(Q),
—¢(z) ~ 6°.

(Diederich-Fornaess; Kerzman-Rosay; Demailly;
Harrington)
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» Diederich-Fornaess exponent e: 3¢ € psh(Q2), Introduction:

Background and
—6(2) ~ 5.

main results

(Diederich-Fornaess; Kerzman-Rosay; Demailly;
Harrington)

» When Q is pseudoconvex of finite type or has a psh
defining function, the Diederich-Fornaess index, the sup
of the D-F exponents, is 1. (Catlin; Sibony;
Fornaess-Herbig).



» J-regular: 3 bounded continuous ¢ € psh(Q2) and a
defining function p of € such that

99 > 00p/p
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D-F exponent.
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» Every d-regular domain is hyperconvex with a positive
D-F exponent.

» If bQ has a psh defining function or is pseudoconvex of
finite D'Angelo type, then Q is §-regular.
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Introduction:
Background and
main results

» Every d-regular domain is hyperconvex with a positive
D-F exponent.

» If bQ has a psh defining function or is pseudoconvex of
finite D'Angelo type, then Q is §-regular.

> Case I: psh defining function Q = {p < 0}.
d0p > Cpdd|z|?. Take ¢ = C|z|°.
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» If bQ has a psh defining function or is pseudoconvex of
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> Case I: psh defining function Q = {p < 0}.
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> Cise Il: f@ite type. By Catlin, 3 bounded continuous A,
Q0N 2 90|z|?/6%. Take ¢ = C(A — (—p)"), n << &.
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Ka(z,2) = sup{|f(2)]” | f € A%(Q),||f]la <1}

and Basic properties of
the kernels

Sa(z,2) = sup{|f(2)]* | f € H*(Q), ||fllse < 1}
» Localization property: U a neighborhood of z0 € bQ:
Kanu(z,2) S Kal(z,2z) < Kanu(z, 2)

and
Sa(z,2z) < Sanul(z, 2)

for z near 29.



» For any harmonic function f on ©, 1 < p < o0,

lim sup
e—0t

Ja

|f|PdS = limsup(1—r

r—1-

) [ 1F@PS ) av

Comparison of the
Bergman and
Szego kernels

Siqi Fu
based on joint

work with Boyong
Chen

Basic properties of
the kernels



Comparison of the
Bergman and
Szego kernels

Siqi Fu
based on joint

work with Boyong
Chen

» For any harmonic function f on ©, 1 < p < o0,

Iimsup/ |f|PdS = limsup(1—r /\f )|P6~"(z) dV
b2

e—0+ r—1- Basic properties of

the kernels

» Given z € Q and f € A%(Q), find g € H(Q),
g(z) =1(2),

(-0 [[1eP5 5 50 [P = Z’Z))zé(z>




Hormander’'s estimates

» The 0-Problem: Q cc C". Given (0,1)-form

v=>_",vjdz. Find u such that

8U—Zazjdzj—v

provided dv = 0.

(0-equation)
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» The 0-Problem: Q cc C". Given (0, 1)-form based on i
- . work wi oyong
v =37 vjdZ. Find u such that Chon
Ou = E I 4z = v, O-equation
azj J ( q )
a Weighted
[ - L“-estimates for
prOVIded 8‘/ N O the Et—opetrator

» Hormander (65): € is pseudoconvex. 1 € psh(2).
Suppose 99¢y > c(z)00|z|? for a positive continuous
function c(z). Then the J-equation has a solution
satisfying

2
/ lufe™¥ dV < M o= v < oo
Q a <(2)



Demailly's estimates

» Demailly(82):

[1uke < [Bge.

V55, = sup{l(v. X)l: X5, <

where

and ,
n 8 w
|X|88w Z 82 8szXk

1}
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Demailly's estimates

» Demailly(82):

[1uke < [Bge.

V55, = sup{l(v. X)l: X5, <

where

and ,
n 8 d}
|X|88w Z 82 8ZkXXk

» If u L N(9) in L%(, e‘w), then

2 —
ke < [ fpuse.

1}
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Berndtsson's Estimates

» Berndtsson (01): p € C%(Q), p < 0. Suppose
T € psh(Q) N C3(Q) such that

© = (—p)ddy + 8dp > 0.
If u Ll N(9) in L2(Q, e %), then Vr € (0,1),

1
(-0 [lPpyrev <7 [Iva(-p) e

Comparison of the
Bergman and
Szego kernels

Siqi Fu
based on joint
work with Boyong
Chen

Weighted
Lz—eitimates for
the 9-operator



Berndtsson's Estimates

» Berndtsson (01): p € C%(Q), p < 0. Suppose
T € psh(Q) N C3(Q) such that

© = (—p)ddy + 8dp > 0.
If u Ll N(9) in L2(Q, e %), then Vr € (0,1),

1—r/|u| ) eV < = /|v| p)tre

» Demailly = Berndtsson: Let
p =1 —rlog(—p) =¢ +¢.
Then ve? L N(9) in L2(Q,e™%).
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» Berndtsson (01): p € C%(Q), p < 0. Suppose | SiFu
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Elw € pSh(Q) N C2(Q) SUCh that work with éoyong

Chen

© = (—p)ddy + 8dp > 0.
If u Ll N(9) in L2(Q, e %), then Vr € (0,1),

— ]_ —_ Weighted
1 - r |U| r d} < |V| r d) L2-estimates for
the H-operator
» Demailly = Berndtsson: Let

p =19 —rlog(—p)=¢+¢.
Then ve? L N(9) in L2(Q,e%). Applying Demailly,

2,6 « [ Dyt udbl2. eb—v
/Q]u] e _/Q|8u—|—u8¢\8890e .



» Berndtsson then follows from
_ r 1 _
A0p > — + =0 N\ O
_,0 r
and Cauchy-Schwarz:

_ _ 1 _
Bu+ uBo 2y, < rluf? + - [Buid(—p)
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Pluricomplex Green function
Q cc C". Pluricomplex Green function:

g(z,w) =sup{u(z) | u € psh(Q),u <0,
limsup(u(z) — log|z — w|) < oo}.

zZ—WwW

» Demailly (87): Q is hyperconvex =
g(z,w): Q x Q — [—00,0] is continuous with
glbaxa = 0.
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Pluricomplex Green function

Q cc C". Pluricomplex Green function:

g(z,w) =sup{u(z) | u € psh(Q),u <0,

limsup(u(z) — log|z — w|) < oo}.

zZ—WwW

» Demailly (87): Q is hyperconvex =
g(z,w): Q x Q — [—00,0] is continuous with

glbaxa = 0.

» Blocki (05): Q has D-F exponent ¢ > 0 and § = §(w):

{g(-w) < -1} C {4]logd|”

1
€

< 6(-) S Ol logdl<}
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Q cc C". Pluricomplex Green function: :iqi .

based on joint
work with Boyong
Chen

g(z,w) =sup{u(z) | u € psh(Q),u <0,
limsup(u(z) — log|z — w|) < oo}.

zZ—WwW

» Demailly (87): Q is hyperconvex =

g(z,w): Q x Q — [—00,0] is continuous with

glbaxa = 0. Green Fonction
» Blocki (05): Q has D-F exponent ¢ > 0 and § = §(w):

1
€

{g(-,w) < —1} C {|logd|~= < 4() S 6]logdl-}
When 2 is convex:

{g(-w) < ~1} C {26 < 8() < Co)



Upper estimates

bQ pseudoconvex, C2-smooth, Ve € (0, 1),

S(z,2)

K(z,z)

< 8(2)|log 5(2)|"*

Comparison of the
Bergman and
Szego kernels

Siqi Fu
based on joint

work with Boyong
Chen

Upper Estimates



Upper estimates
bQ pseudoconvex, C2-smooth, Ve € (0, 1),
S(z,2)

Koz < 02 log ()"

» Step 1 (Chen/Herbot; 99): Q bounded, pseudoconvex
K(z,2) 2 Kig(..2)<-1}(2,2)
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bQ pseudoconvex, C2-smooth, Ve € (0,1), :iqi .

based on joint
work with Boyong

3(2:2) < 51)]log ()|

K(z,z)

» Step 1 (Chen/Herbot; 99): Q bounded, pseudoconvex
K(z,2) 2 Kig(..2)<-1}(2,2)
Proof: Given f holomorphic on Q, = {g(-,z) < —1}.
Solve Ou = v. Applying Demailly with weight
v =2ng(-, z)—log(—g(+,2)+1); v = Ix(~ log(—g(". 2)))f

where x is cut-off function = 1 on (—o0,—1), and =0
on (0,00). Then let g = x(— log(—g(-,2)))f — u.

Upper Estimates
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bQ pseudoconvex, C2-smooth, Ve € (0,1), :qi .
S(z,2) work wih Boyen
< 6(2)| log 6(2)|"* T

K(z, z)

» Step 1 (Chen/Herbot; 99): Q bounded, pseudoconvex

K(z,2) 2 Kig(..2)<-1}(2,2)

Proof: Given f holomorphic on Q, = {g(-,z) < —1}.
Solve Ou = v. Applying Demailly with weight
W =2ng(-,z)—log(—g(+, 2)+1); v = Ox(— log(—g(-, 2)))f
where x is cut-off function = 1 on (—o0,—1), and =0
on (0,00). Then let g = x(— log(—g(-,2)))f — u.

» Step 2: Applying Blocki. Write § = 6(z). For any
f € H?(Q).

8| log 8| € )
/ 72 < / dt / 72 < [11205] log 8]
Qz 0 {5=t}

Upper Estimates



» Step 3: Use the localization properties of the Bergman
and Szego kernels to localize the problem.
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» Step 3: Use the localization properties of the Bergman
and Szego kernels to localize the problem.

» Using the fact that for any z° € bQ, Ve € (0,1), 3
defining function r of Q and a neighborhood U of z°
such that ¢ = —(—r)® is psh on QN U
(Diederich-Fornzess).
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Siqi Fu
Using the fact that for any z° € bQ, Ve € (0,1), 3 w:j(s?/vditinézlyr:ng
defining function r of Q and a neighborhood U of z° chen
such that ¢ = —(—r)® is psh on QN U
(Diederich-Fornzess).
Consider
Q= {p1 = —(=r)° + Mx(|z — 2" /m”) < 0}
where y is positive , increasing, and convex when t > 1.
M Iarge, m Sma“. Upper Estimates

0 < —p1 S5
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Step 3: Use the localization properties of the Bergman g:;ggigrsgg
and Szego kernels to localize the problem.

Siqi Fu
Using the fact that for any z° € bQ, Ve € (0,1), 3 w:j(s?/vditinézlyr:ng
defining function r of Q and a neighborhood U of z° chen
such that ¢ = —(—r)® is psh on QN U
(Diederich-Fornzess).
Consider
Q= {p1 = —(=r)° + Mx(|z — 2" /m”) < 0}
where y is positive , increasing, and convex when t > 1.
M Iarge, m Sma“. Upper Estimates

0S5 —p1 S0
Cannot directly applying Blocki. Nonetheless, we have

{ga(-2) < —1} € {5(-) < b]log 3|™}.



Lower Estimates

Q is d-regular. €: D-F exponent.

S(z,z)

K(z, z)

> 6(z)| log 8(2)| =
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> 6(z)| log 8(2)| =

» Given z € Q and f € A%(Q). Applying Berndtsson with
weight

Y = 2ng(-,z) — log(—g(-, z) + 1) + ¢.

where ¢ is the psh function from J-regularity.

Lower estimates



Lower Estimates

Q is d-regular. €: D-F exponent.

> 6(z)| log 8(2)| =

» Given z € Q and f € A%(Q). Applying Berndtsson with
weight

Y = 2ng(-,z) — log(—g(-, z) + 1) + ¢.

where ¢ is the psh function from J-regularity. Solve

Ou = v where

v = 0x(—log(—g(+, 2)))f

where x is cut-off function =1 on (—o0,—1), and =0
on (0, c0).
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» Notice that e ———

Szego kernels

Suppdx(x) C {—e < g(-w) < -1} C {C3l6] V/* <3()}  on,

based on joint

and work with Boyong
Chen

001 > dlog(—g(-, w) + 1) A Dlog(—g(-, w) + 1)
Hence [9x|y5, S 1.

Lower estimates
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Szego kernels
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based on joint
a nd work with Boyong

90y > Dlog(—g(-,w) +1) A dlog(—g(-,w) + 1)

Hence [9x|y5, S 1.
» By Demailly:

lul?e™¥ g/ V]2 e ¥ < .
/Q o 09y

Hence u(w) = 0.

Lower estimates



Notice that Comparison of the

Bergman and
Suppdx() C {—e < g(-,w) < —1} C {Cols|"/* < 4(-)}

Szego kernels

Siqi Fu
based on joint
a nd work with Boyong

90y > Dlog(—g(-,w) +1) A dlog(—g(-,w) + 1)

Hence [9x|y5, S 1.
By Demailly:
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Make precise: convolute with the Friderichs’ mollifiers.



Thank You!
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Szego kernels

Siqi Fu
based on joint

work with Boyong
Chen

Lower estimates
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