Siqi Fu based on joint work with Boyong Chen

Rutgers University-Camden

BIRS at Banff, July 27, 2010

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

Table of contents

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Upper Estimates

Lower estimates

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

Comparing Bergman and Szegö

Stefan Bergman (5/5/1895-6/6/1977)

Gábor Szegö (1/20/1895-8/7/1985)

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

ntroduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

Motivations

Problem (Stein, 72): "What are the relations between K and S?"

K: The Bergman kernel, the reproducing kernel for the Bergman space $A^2(\Omega)$ of L^2 holomorphic functions on Ω . Let $\{b_j\}$ be an orthonormal basis for $A^2(\Omega)$. Then

$$K(z, w) = \sum b_j(z) \overline{b_j(w)}.$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

luricomplex freen Function

pper Estimates

K: The Bergman kernel, the reproducing kernel for the Bergman space $A^2(\Omega)$ of L^2 holomorphic functions on Ω . Let $\{b_j\}$ be an orthonormal basis for $A^2(\Omega)$. Then

$$K(z, w) = \sum b_j(z) \overline{b_j(w)}.$$

S: The Szegö kernel, the reproducing kernel for the Hardy space $H^2(\Omega)$ of holomorphic functions f such that

$$\|f\|_{H^2}^2 := \limsup_{\varepsilon \to 0^+} \int_{b\Omega_{\varepsilon}} |f|^2 dS < \infty,$$

where $\Omega_{\varepsilon} = \{z \in \Omega; \delta(z) = \varepsilon\}$, δ : the Euclidean distance to $b\Omega$.

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

Motivations

Problem (Stein, 72): "What are the relations between K and S?"

K: The Bergman kernel, the reproducing kernel for the Bergman space $A^2(\Omega)$ of L^2 holomorphic functions on Ω . Let $\{b_j\}$ be an orthonormal basis for $A^2(\Omega)$. Then

$$K(z, w) = \sum b_j(z) \overline{b_j(w)}.$$

S: The Szegö kernel, the reproducing kernel for the Hardy space $H^2(\Omega)$ of holomorphic functions f such that

$$\|f\|_{H^2}^2 := \limsup_{\varepsilon \to 0^+} \int_{b\Omega_{\varepsilon}} |f|^2 dS < \infty,$$

where $\Omega_{\varepsilon} = \{z \in \Omega; \delta(z) = \varepsilon\}$, δ : the Euclidean distance to $b\Omega$.

"The relation of K and S is known also only in very special circumstances."

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

 L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

Backgrounds

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

Backgrounds

▶ The Ball in \mathbb{C}^n :

$$K(z, w) = \frac{n!}{\pi^n} \frac{1}{(1 - z\bar{w})^{n+1}}; S(z, w) = \frac{(n-1)!}{2\pi^n} \frac{1}{(1 - z\bar{w})^n}$$

In particular,

$$S(z,z)/K(z,z) = (1-|z|^2)/2n \sim \delta/n.$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

Backgrounds

▶ The Ball in \mathbb{C}^n :

$$K(z,w) = \frac{n!}{\pi^n} \frac{1}{(1-z\bar{w})^{n+1}}; S(z,w) = \frac{(n-1)!}{2\pi^n} \frac{1}{(1-z\bar{w})^n}$$

In particular,

$$S(z,z)/K(z,z) = (1-|z|^2)/2n \sim \delta/n.$$

 \blacktriangleright *b*Ω is smooth, strictly pseudoconvex:

$$S(z,z)/K(z,z)\sim\delta(z)/n$$

(Hörmander; Fefferman; Boutet de Monvel-Sjöstrand)

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

▶ $b\Omega$ is C^{∞} , pseudoconvex in \mathbb{C}^2 or convex in \mathbb{C}^n and of finite type:

$$S(z,z)/K(z,z) \lesssim \delta(z)$$

(Catlin; J.Chen; Nagel-Rosay-Stein-Wagner; McNeal; McNeal-Stein...)

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

$$S(z,z)/K(z,z) \lesssim \delta(z)$$

(Catlin; J.Chen; Nagel-Rosay-Stein-Wagner; McNeal; McNeal-Stein...)

 Relating mapping properties of the Bergman and Szegö projections. (Boas-Straube; Nagel et al; Bonami-Charpentier; Cumenge; Ligocka; Koenig...)

Goal: Study boundary behavior of S/K on diagonal

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

Main theorem

 $\Omega \subset \subset \mathbb{C}^n$, $b\Omega$: C^2 -smooth, pseudoconvex.

▶ Upper estimate: For any $\varepsilon \in (0,1)$,

$$\frac{S(z,z)}{K(z,z)} \lesssim \delta(z) |\log \delta(z)|^{n/\varepsilon}.$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates fo the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

Main theorem

 $\Omega \subset \subset \mathbb{C}^n$, $b\Omega$: C^2 -smooth, pseudoconvex.

▶ Upper estimate: For any $\varepsilon \in (0,1)$,

$$\frac{S(z,z)}{K(z,z)} \lesssim \delta(z) |\log \delta(z)|^{n/\varepsilon}.$$

▶ Lower estimate: If Ω is δ-regular, then ∃ε ∈ (0,1] such that

$$\frac{S(z,z)}{K(z,z)} \gtrsim \delta(z) |\log \delta(z)|^{-1/\varepsilon}.$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

- $\Omega \subset \subset \mathbb{C}^n$, $b\Omega$: C^2 -smooth, pseudoconvex.
 - ▶ Upper estimate: For any $\varepsilon \in (0,1)$,

$$\frac{S(z,z)}{K(z,z)} \lesssim \delta(z) |\log \delta(z)|^{n/\varepsilon}.$$

▶ Lower estimate: If Ω is δ -regular, then $\exists \varepsilon \in (0,1]$ such that

$$\frac{S(z,z)}{K(z,z)} \gtrsim \delta(z) |\log \delta(z)|^{-1/\varepsilon}.$$

▶ When Ω has a defining function psh on $b\Omega$ or Ω is pseudoconvex of finite type: $\forall \varepsilon \in (0,1)$:

$$|\delta(z)|\log \delta(z)|^{-1/\varepsilon}\lesssim \frac{S(z,z)}{K(z,z)}\lesssim \delta(z)|\log \delta(z)|^{n/\varepsilon}.$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

▶ Upper estimate: For any $\varepsilon \in (0,1)$,

$$\frac{S(z,z)}{K(z,z)} \lesssim \delta(z) |\log \delta(z)|^{n/\varepsilon}.$$

▶ Lower estimate: If Ω is δ-regular, then ∃ε ∈ (0,1] such that

$$\frac{S(z,z)}{K(z,z)} \gtrsim \delta(z) |\log \delta(z)|^{-1/\varepsilon}.$$

▶ When Ω has a defining function psh on $b\Omega$ or Ω is pseudoconvex of finite type: $\forall \varepsilon \in (0,1)$:

$$|\delta(z)|\log \delta(z)|^{-1/\varepsilon}\lesssim rac{S(z,z)}{K(z,z)}\lesssim \delta(z)|\log \delta(z)|^{n/\varepsilon}.$$

 $ightharpoonup \Omega$ is convex:

$$\frac{S(z,z)}{K(z,z)} \approx \delta(z).$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

D-F exponent

▶ Diederich-Fornæss exponent ε : $\exists \phi \in psh(\Omega)$,

$$-\phi(z) \approx \delta^{\varepsilon}$$
.

(Diederich-Fornæss; Kerzman-Rosay; Demailly; Harrington)

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Functio

pper Estimates

ower estimates

■ Diederich-Fornæss exponent ε : $\exists \phi \in psh(\Omega)$,

$$-\phi(z) \approx \delta^{\varepsilon}$$
.

(Diederich-Fornæss; Kerzman-Rosay; Demailly; Harrington)

When Ω is pseudoconvex of finite type or has a psh defining function, the Diederich-Fornæss index, the sup of the D-F exponents, is 1. (Catlin; Sibony; Fornaess-Herbig).
$$\partial\overline{\partial}\varphi\geq\partial\overline{\partial}\rho/\rho$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

$$\partial\overline{\partial}\varphi\geq\partial\overline{\partial}\rho/\rho$$

ightharpoonup Every δ -regular domain is hyperconvex with a positive D-F exponent.

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

luricomplex

pper Estimates

$$\partial \overline{\partial} \varphi \geq \partial \overline{\partial} \rho / \rho$$

- ▶ Every δ -regular domain is hyperconvex with a positive D-F exponent.
- ▶ If $b\Omega$ has a psh defining function or is pseudoconvex of finite D'Angelo type, then Ω is δ -regular.

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

luricomplex

pper Estimates

$$\partial \overline{\partial} \varphi \geq \partial \overline{\partial} \rho/\rho$$

- ▶ Every δ -regular domain is hyperconvex with a positive D-F exponent.
- ▶ If $b\Omega$ has a psh defining function or is pseudoconvex of finite D'Angelo type, then Ω is δ -regular.
 - ▶ Case I: psh defining function $\Omega = \{ \rho < 0 \}$. $\partial \overline{\partial} \rho \geq C \rho \partial \overline{\partial} |z|^2$. Take $\phi = C |z|^2$.

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

$$\partial \overline{\partial} \varphi \geq \partial \overline{\partial} \rho/\rho$$

- ▶ Every δ -regular domain is hyperconvex with a positive D-F exponent.
- ▶ If $b\Omega$ has a psh defining function or is pseudoconvex of finite D'Angelo type, then Ω is δ -regular.
 - ▶ Case I: psh defining function $\Omega = \{ \rho < 0 \}$. $\partial \overline{\partial} \rho \geq C \rho \partial \overline{\partial} |z|^2$. Take $\phi = C |z|^2$.
 - ► Case II: finite type. By Catlin, \exists bounded continuous λ , $\partial \overline{\partial} \lambda \gtrsim \partial \overline{\partial} |z|^2 / \delta^{\varepsilon}$. Take $\phi = C(\lambda (-\rho)^{\eta})$, $\eta << \varepsilon$.

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

$$\partial \overline{\partial} \varphi \geq \partial \overline{\partial} \rho/\rho$$

- ▶ Every δ -regular domain is hyperconvex with a positive D-F exponent.
- ▶ If $b\Omega$ has a psh defining function or is pseudoconvex of finite D'Angelo type, then Ω is δ -regular.
 - ▶ Case I: psh defining function $\Omega = \{ \rho < 0 \}$. $\partial \overline{\partial} \rho \geq C \rho \partial \overline{\partial} |z|^2$. Take $\phi = C |z|^2$.
 - ► Case II: finite type. By Catlin, \exists bounded continuous λ , $\partial \overline{\partial} \lambda \gtrsim \partial \overline{\partial} |z|^2 / \delta^{\varepsilon}$. Take $\phi = C(\lambda (-\rho)^{\eta})$, $\eta << \varepsilon$.

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

Basic properties

•

$$K_{\Omega}(z,z) = \sup\{|f(z)|^2 \mid f \in A^2(\Omega), ||f||_{\Omega} \le 1\}$$

and

$$S_{\Omega}(z,z) = \sup\{|f(z)|^2 \mid f \in H^2(\Omega), ||f||_{b\Omega} \le 1\}$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction:
Background and
main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

$$K_{\Omega}(z,z) = \sup\{|f(z)|^2 \mid f \in A^2(\Omega), ||f||_{\Omega} \le 1\}$$

and

$$S_{\Omega}(z,z) = \sup\{|f(z)|^2 \mid f \in H^2(\Omega), ||f||_{b\Omega} \le 1\}$$

▶ Localization property: U a neighborhood of $z^0 \in b\Omega$:

$$K_{\Omega \cap U}(z,z) \lesssim K_{\Omega}(z,z) \leq K_{\Omega \cap U}(z,z)$$

and

$$S_{\Omega}(z,z) \lesssim S_{\Omega \cap U}(z,z)$$

for z near z^0 .

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction:
Background and
main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

luricomplex reen Function

pper Estimates

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

ower estimates

▶ For any harmonic function f on Ω , 1 ,

$$\limsup_{\varepsilon \to 0^+} \int_{b\Omega_\varepsilon} |f|^p \, dS = \limsup_{r \to 1^-} (1-r) \int_\Omega |f(z)|^p \delta^{-r}(z) \, dV.$$

▶ For any harmonic function f on Ω , 1 ,

$$\limsup_{\varepsilon \to 0^+} \int_{b\Omega_\varepsilon} |f|^p \, dS = \limsup_{r \to 1^-} (1-r) \int_{\Omega} |f(z)|^p \delta^{-r}(z) \, dV.$$

▶ Given $z \in \Omega$ and $f \in A^2(\Omega)$, find $g \in H(\Omega)$, g(z) = f(z)

$$(1-r)\int_{\Omega}|g|^2\delta^{-r}\lesssim \frac{1}{\delta(z)}\int_{\Omega}|f|^2\Rightarrow \frac{S(z,z)}{K(z,z)}\gtrsim \delta(z)$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Basic properties of the kernels

Hörmander's estimates

▶ The $\overline{\partial}$ -Problem: $\Omega \subset \subset \mathbb{C}^n$. Given (0,1)-form $v = \sum_{j=1}^n v_j d\overline{z}_j$. Find u such that

$$\overline{\partial} u = \sum_{j=1}^{n} \frac{\partial u}{\partial \overline{z}_{j}} d\overline{z}_{j} = v, \qquad (\overline{\partial}\text{-equation})$$

provided $\overline{\partial}v = 0$.

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

▶ The $\overline{\partial}$ -Problem: $\Omega \subset \subset \mathbb{C}^n$. Given (0,1)-form $v = \sum_{j=1}^n v_j d\overline{z}_j$. Find u such that

$$\overline{\partial} u = \sum_{j=1}^{n} \frac{\partial u}{\partial \overline{z}_{j}} d\overline{z}_{j} = v,$$
 ($\overline{\partial}$ -equation)

provided $\overline{\partial}v = 0$.

▶ Hörmander (65): Ω is pseudoconvex. $\psi \in psh(\Omega)$. Suppose $\partial \overline{\partial} \psi \geq c(z) \partial \overline{\partial} |z|^2$ for a positive continuous function c(z). Then the $\overline{\partial}$ -equation has a solution satisfying

$$\int_{\Omega} |u|^2 e^{-\psi} dV \le \int_{\Omega} \frac{|v|^2}{c(z)} e^{-\psi} dV < \infty.$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

Demailly's estimates

▶ Demailly(82):

$$\int |u|^2 e^{-\psi} \le \int |v|^2_{\partial \overline{\partial} \psi} e^{-\psi}.$$

where

$$|v|^2_{\partial\overline{\partial}\psi}=\sup\{|\langle v,X\rangle|;\quad |X|_{\partial\overline{\partial}\psi}\leq 1\}$$

and

$$|X|_{\partial \overline{\partial} \psi} = \sum_{j,k=1}^{n} \frac{\partial^{2} \psi}{\partial z_{j} \partial \overline{z}_{k}} X_{j} \overline{X}_{k}.$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

Demailly's estimates

▶ Demailly(82):

$$\int |u|^2 e^{-\psi} \le \int |v|^2_{\partial \overline{\partial} \psi} e^{-\psi}.$$

where

$$|v|_{\partial\overline{\partial}\psi}^2 = \sup\{|\langle v, X \rangle|; \quad |X|_{\partial\overline{\partial}\psi} \leq 1\}$$

and

$$|X|_{\partial \overline{\partial} \psi} = \sum_{i,k=1}^{n} \frac{\partial^{2} \psi}{\partial z_{j} \partial \overline{z}_{k}} X_{j} \overline{X}_{k}.$$

▶ If $u \perp \mathcal{N}(\overline{\partial})$ in $L^2(\Omega, e^{-\psi})$, then

$$\int_{\Omega} |u|^2 e^{-\psi} \le \int_{\Omega} |\overline{\partial} u|_{\partial \overline{\partial} \psi}^2 e^{-\psi}.$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

Berndtsson's Estimates

▶ Berndtsson (01): $\rho \in C^2(\Omega)$, $\rho < 0$. Suppose $\exists \psi \in psh(\Omega) \cap C^2(\Omega)$ such that

$$\Theta = (-\rho)\partial \overline{\partial}\psi + \partial \overline{\partial}\rho > 0.$$

If $u\perp \mathcal{N}(\overline{\partial})$ in $L^2(\Omega,e^{-\psi})$, then $\forall r\in (0,1)$,

$$(1-r)\int |u|^2(-\rho)^{-r}e^{-\psi} \le \frac{1}{r}\int |v|_{\Theta}^2(-\rho)^{1-r}e^{-\psi}$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Ipper Estimates

▶ Berndtsson (01): $\rho \in C^2(\Omega)$, $\rho < 0$. Suppose $\exists \psi \in psh(\Omega) \cap C^2(\Omega)$ such that

$$\Theta = (-\rho)\partial \overline{\partial}\psi + \partial \overline{\partial}\rho > 0.$$

If $u\perp \mathcal{N}(\overline{\partial})$ in $L^2(\Omega,e^{-\psi})$, then $\forall r\in (0,1)$,

$$(1-r)\int |u|^2(-\rho)^{-r}e^{-\psi} \leq \frac{1}{r}\int |v|_{\Theta}^2(-\rho)^{1-r}e^{-\psi}$$

▶ Demailly ⇒ Berndtsson: Let

$$\varphi = \psi - r \log(-\rho) = \psi + \phi.$$

Then $ue^{\phi} \perp \mathcal{N}(\overline{\partial})$ in $L^2(\Omega, e^{-\varphi})$.

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

ntroduction: Background and nain results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

Berndtsson's Estimates

▶ Berndtsson (01): $\rho \in C^2(\Omega)$, $\rho < 0$. Suppose $\exists \psi \in psh(\Omega) \cap C^2(\Omega)$ such that

$$\Theta = (-\rho)\partial \overline{\partial}\psi + \partial \overline{\partial}\rho > 0.$$

If $u\perp \mathcal{N}(\overline{\partial})$ in $L^2(\Omega,e^{-\psi})$, then $\forall r\in (0,1)$,

$$(1-r)\int |u|^2(-\rho)^{-r}e^{-\psi} \leq \frac{1}{r}\int |v|_{\Theta}^2(-\rho)^{1-r}e^{-\psi}$$

▶ Demailly ⇒ Berndtsson: Let

$$\varphi = \psi - r \log(-\rho) = \psi + \phi.$$

Then $ue^{\phi} \perp \mathcal{N}(\overline{\partial})$ in $L^2(\Omega, e^{-\varphi})$. Applying Demailly,

$$\int_{\Omega} |u|^2 e^{\phi - \psi} \le \int_{\Omega} |\overline{\partial} u + u \overline{\partial} \phi|_{\partial \overline{\partial} \varphi}^2 e^{\phi - \psi}.$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

ntroduction: Background and nain results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

ower estimates

Berndtsson then follows from

$$\partial\overline{\partial}\varphi\geq\frac{r}{-\rho}+\frac{1}{r}\partial\psi\wedge\overline{\partial}\psi$$

and Cauchy-Schwarz:

$$|\overline{\partial}u + u\overline{\partial}\phi|_{\partial\overline{\partial}\varphi}^2 \le r|u|^2 + \frac{1}{r}|\overline{\partial}u|_{\Theta}^2(-\rho)$$

Pluricomplex Green function

 $\Omega \subset\subset \mathbb{C}^n$. Pluricomplex Green function:

$$g(z, w) = \sup\{u(z) \mid u \in psh(\Omega), u < 0,$$

$$\limsup_{z \to w} (u(z) - \log|z - w|) < \infty\}.$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

Pluricomplex Green function

 $\Omega \subset\subset \mathbb{C}^n$. Pluricomplex Green function:

$$g(z, w) = \sup\{u(z) \mid u \in psh(\Omega), u < 0,$$

$$\limsup_{z \to w} (u(z) - \log|z - w|) < \infty\}.$$

▶ Demailly (87): Ω is hyperconvex \Rightarrow g(z, w): $\overline{\Omega} \times \Omega \rightarrow [-\infty, 0]$ is continuous with $g|_{b\Omega \times \Omega} = 0$.

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

$$g(z, w) = \sup\{u(z) \mid u \in psh(\Omega), u < 0,$$

$$\limsup_{z \to w} (u(z) - \log|z - w|) < \infty\}.$$

- ▶ Demailly (87): Ω is hyperconvex \Rightarrow g(z, w): $\overline{\Omega} \times \Omega \to [-\infty, 0]$ is continuous with $g|_{b\Omega \times \Omega} = 0$.
- ▶ Blocki (05): Ω has D-F exponent $\varepsilon > 0$ and $\delta = \delta(w)$:

$$\{g(\cdot, w) < -1\} \subset \{\delta | \log \delta|^{-\frac{1}{\varepsilon}} \lesssim \delta(\cdot) \lesssim \delta | \log \delta|^{\frac{n}{\varepsilon}} \}$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

$$g(z, w) = \sup\{u(z) \mid u \in psh(\Omega), u < 0,$$

$$\limsup_{z \to w} (u(z) - \log|z - w|) < \infty\}.$$

- ▶ Demailly (87): Ω is hyperconvex \Rightarrow g(z, w): $\overline{\Omega} \times \Omega \rightarrow [-\infty, 0]$ is continuous with $g|_{b\Omega \times \Omega} = 0$.
- ▶ Blocki (05): Ω has D-F exponent $\varepsilon > 0$ and $\delta = \delta(w)$:

$$\{g(\cdot,w)<-1\}\subset\{\delta|\log\delta|^{-\frac{1}{\varepsilon}}\lesssim\delta(\cdot)\lesssim\delta|\log\delta|^{\frac{n}{\varepsilon}}\}$$

When Ω is convex:

$$\{g(\cdot,w)<-1\}\subset\{\frac{1}{C}\delta\leq\delta(\cdot)\leq C\delta\}$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

Upper estimates

$$b\Omega$$
 pseudoconvex, C^2 -smooth, $\forall \varepsilon \in (0,1)$,

$$\frac{S(z,z)}{K(z,z)} \lesssim \delta(z) |\log \delta(z)|^{n/\varepsilon}$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Upper Estimates

Upper estimates

 $b\Omega$ pseudoconvex, C^2 -smooth, $\forall \varepsilon \in (0,1)$,

$$\frac{S(z,z)}{K(z,z)} \lesssim \delta(z) |\log \delta(z)|^{n/\varepsilon}$$

▶ Step 1 (Chen/Herbot; 99): Ω bounded, pseudoconvex

$$K(z,z) \gtrsim K_{\{g(\cdot,z)<-1\}}(z,z)$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Upper Estimates

 $b\Omega$ pseudoconvex, C^2 -smooth, $\forall \varepsilon \in (0,1)$,

$$\frac{S(z,z)}{K(z,z)} \lesssim \delta(z) |\log \delta(z)|^{n/\varepsilon}$$

▶ Step 1 (Chen/Herbot; 99): Ω bounded, pseudoconvex

$$K(z,z) \gtrsim K_{\{g(\cdot,z)<-1\}}(z,z)$$

Proof: Given f holomorphic on $\Omega_z = \{g(\cdot, z) < -1\}$. Solve $\overline{\partial} u = v$. Applying Demailly with weight

$$\psi = 2 n g(\cdot, z) - \log(-g(\cdot, z) + 1); v = \overline{\partial} \chi(-\log(-g(\cdot, z))) f$$

where χ is cut-off function =1 on $(-\infty,-1)$, and =0 on $(0,\infty)$. Then let $g=\chi(-\log(-g(\cdot,z)))f-u$.

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

ntroduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Upper Estimates

$$\frac{S(z,z)}{K(z,z)} \lesssim \delta(z) |\log \delta(z)|^{n/\varepsilon}$$

► Step 1 (Chen/Herbot; 99): Ω bounded, pseudoconvex

$$K(z,z) \gtrsim K_{\{g(\cdot,z)<-1\}}(z,z)$$

Proof: Given f holomorphic on $\Omega_z = \{g(\cdot, z) < -1\}$. Solve $\overline{\partial} u = v$. Applying Demailly with weight

$$\psi = 2ng(\cdot,z) - \log(-g(\cdot,z) + 1); v = \overline{\partial}\chi(-\log(-g(\cdot,z)))f$$

where χ is cut-off function =1 on $(-\infty,-1)$, and =0 on $(0,\infty)$. Then let $g=\chi(-\log(-g(\cdot,z)))f-u$.

▶ Step 2: Applying Blocki. Write $\delta = \delta(z)$. For any $f \in H^2(\Omega)$.

$$\int_{\Omega_z} |f|^2 \leq \int_0^{\delta |\log \delta|^{\frac{n}{\varepsilon}}} dt \int_{\{\delta = t\}} |f|^2 \lesssim \|f\|_{b\Omega}^2 \delta |\log \delta|^{\frac{n}{\varepsilon}}.$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Upper Estimates

▶ Step 3: Use the localization properties of the Bergman and Szegö kernels to localize the problem.

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Upper Estimates

- ▶ Step 3: Use the localization properties of the Bergman and Szegö kernels to localize the problem.
- ▶ Using the fact that for any $z^0 \in b\Omega$, $\forall \varepsilon \in (0,1)$, \exists defining function r of Ω and a neighborhood U of z^0 such that $\varphi_2 = -(-r)^{\varepsilon}$ is psh on $\Omega \cap U$ (Diederich-Fornæss).

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Upper Estimates

- ▶ Using the fact that for any $z^0 \in b\Omega$, $\forall \varepsilon \in (0,1)$, \exists defining function r of Ω and a neighborhood U of z^0 such that $\varphi_2 = -(-r)^{\varepsilon}$ is psh on $\Omega \cap U$ (Diederich-Fornæss).
- Consider

$$\widetilde{\Omega} = \{ \varphi_1 = -(-r)^{\varepsilon} + M\chi(|z-z_0|^2/m^2) < 0 \}$$

where χ is positive , increasing, and convex when t>1. M large, m small.

$$\tilde{\delta} \lesssim -\varphi_1 \lesssim \tilde{\delta}^{\varepsilon}$$
.

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

ntroduction: Background and nain results

Basic properties of the kernels

 L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Upper Estimates

- ▶ Using the fact that for any $z^0 \in b\Omega$, $\forall \varepsilon \in (0,1)$, \exists defining function r of Ω and a neighborhood U of z^0 such that $\varphi_2 = -(-r)^{\varepsilon}$ is psh on $\Omega \cap U$ (Diederich-Fornæss).
- Consider

$$\widetilde{\Omega} = \{ \varphi_1 = -(-r)^{\varepsilon} + M\chi(|z-z_0|^2/m^2) < 0 \}$$

where χ is positive , increasing, and convex when t>1. M large, m small.

$$\tilde{\delta} \lesssim -\varphi_1 \lesssim \tilde{\delta}^{\varepsilon}$$
.

Cannot directly applying Blocki. Nonetheless, we have

$$\{g_{\widetilde{O}}(\cdot,z)\leq -1\}\subset \{\widetilde{\delta}(\cdot)\lesssim \widetilde{\delta}|\log\widetilde{\delta}|^{n/\varepsilon}\}.$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

ntroduction: Background and

Basic properties of the kernels

 a^2 -estimates for he $\overline{\partial}$ -operator

Pluricomplex Green Function

Upper Estimates

Lower Estimates

 Ω is δ -regular. ε : D-F exponent.

$$\frac{S(z,z)}{K(z,z)} \gtrsim \delta(z) |\log \delta(z)|^{-\frac{1}{\varepsilon}}$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

$$\frac{S(z,z)}{K(z,z)} \gtrsim \delta(z) |\log \delta(z)|^{-\frac{1}{\varepsilon}}$$

▶ Given $z \in \Omega$ and $f \in A^2(\Omega)$. Applying Berndtsson with weight

$$\psi = 2ng(\cdot, z) - \log(-g(\cdot, z) + 1) + \phi.$$

where ϕ is the psh function from δ -regularity.

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

$$\frac{S(z,z)}{K(z,z)} \gtrsim \delta(z) |\log \delta(z)|^{-\frac{1}{\varepsilon}}$$

▶ Given $z \in \Omega$ and $f \in A^2(\Omega)$. Applying Berndtsson with weight

$$\psi = 2ng(\cdot,z) - \log(-g(\cdot,z) + 1) + \phi.$$

where ϕ is the psh function from δ -regularity. Solve $\overline{\partial} u = v$ where

$$v = \overline{\partial}\chi(-\log(-g(\cdot,z)))f$$

where χ is cut-off function =1 on $(-\infty,-1)$, and =0 on $(0,\infty)$.

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

► Notice that

$$\operatorname{\mathsf{Supp}} \overline{\partial} \chi(*) \subset \{-e \leq g(\cdot, w) \leq -1\} \subset \{C\delta |\delta|^{-1/\varepsilon} \leq \delta(\cdot)\}$$

and

$$\partial\overline{\partial}\psi\geq\partial\log(-g(\cdot,w)+1)\wedge\overline{\partial}\log(-g(\cdot,w)+1)$$

Hence $|\overline{\partial}\chi|_{\partial\overline{\partial}\psi}\lesssim 1$.

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction:
Background and

Basic properties of

Neighted L²-estimates for the ∂-operator

luricomplex

Jpper Estimates

► Notice that

Supp
$$\overline{\partial}\chi(*)\subset \{-e\leq g(\cdot,w)\leq -1\}\subset \{C\delta|\delta|^{-1/\varepsilon}\leq \delta(\cdot)\}$$

and

$$\partial\overline{\partial}\psi \geq \partial\log(-g(\cdot,w)+1)\wedge\overline{\partial}\log(-g(\cdot,w)+1)$$

Hence $|\overline{\partial}\chi|_{\partial\overline{\partial}\psi}\lesssim 1$.

▶ By Demailly:

$$\int_{\Omega} |u|^2 e^{-\psi} \le \int_{\Omega} |v|^2_{\partial \overline{\partial} \psi} e^{-\psi} < \infty.$$

Hence u(w) = 0.

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and main results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

pper Estimates

$$\operatorname{\mathsf{Supp}} \overline{\partial} \chi(*) \subset \{-e \leq g(\cdot, w) \leq -1\} \subset \{C\delta |\delta|^{-1/\varepsilon} \leq \delta(\cdot)\}$$

and

$$\partial\overline{\partial}\psi \geq \partial\log(-g(\cdot,w)+1)\wedge\overline{\partial}\log(-g(\cdot,w)+1)$$

Hence $|\overline{\partial}\chi|_{\partial\overline{\partial}\psi}\lesssim 1$.

▶ By Demailly:

$$\int_{\Omega} |u|^2 e^{-\psi} \le \int_{\Omega} |v|^2_{\partial \overline{\partial} \psi} e^{-\psi} < \infty.$$

Hence u(w) = 0.

Let $g = \chi(-\log(-g(\cdot,z)))f - u$. Then g is holomorphic on Ω , g(w) = f(w), and g = -u near $b\Omega$.

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

and

$$\partial\overline{\partial}\psi \geq \partial\log(-g(\cdot,w)+1)\wedge\overline{\partial}\log(-g(\cdot,w)+1)$$

Hence $|\overline{\partial}\chi|_{\partial\overline{\partial}\psi}\lesssim 1$.

▶ By Demailly:

$$\int_{\Omega} |u|^2 e^{-\psi} \le \int_{\Omega} |v|^2_{\partial \overline{\partial} \psi} e^{-\psi} < \infty.$$

Hence u(w) = 0.

Let $g = \chi(-\log(-g(\cdot,z)))f - u$. Then g is holomorphic on Ω , g(w) = f(w), and g = -u near $b\Omega$. Furthermore,

$$\|g\|_{b\Omega}^2 = \lim_{r \to 1^-} (1-r) \int_{\Omega} |g|^2 \delta^{-r} \lesssim \frac{|\delta(z)|^{1/\varepsilon}}{\delta(z)} \|f\|^2.$$

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Introduction: Background and

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Jpper Estimates

Notice that

$$\operatorname{\mathsf{Supp}} \overline{\partial} \chi(*) \subset \{-e \leq g(\cdot,w) \leq -1\} \subset \{C\delta |\delta|^{-1/\varepsilon} \leq \delta(\cdot)\}$$

and

$$\partial \overline{\partial} \psi \ge \partial \log(-g(\cdot, w) + 1) \wedge \overline{\partial} \log(-g(\cdot, w) + 1)$$

Hence $|\overline{\partial}\chi|_{\partial\overline{\partial}\psi}\lesssim 1$.

▶ By Demailly:

$$\int_{\Omega} |u|^2 e^{-\psi} \le \int_{\Omega} |v|^2_{\partial \overline{\partial} \psi} e^{-\psi} < \infty.$$

Hence u(w) = 0.

Let $g = \chi(-\log(-g(\cdot,z)))f - u$. Then g is holomorphic on Ω , g(w) = f(w), and g = -u near $b\Omega$. Furthermore,

$$\|g\|_{b\Omega}^2 = \lim_{r \to 1^-} (1-r) \int_{\Omega} |g|^2 \delta^{-r} \lesssim \frac{|\delta(z)|^{1/\varepsilon}}{\delta(z)} \|f\|^2.$$

► Make precise: convolute with the Friderichs' mollifiers.

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

Background and main results

Basic properties of

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

Pluricomplex Green Function

Upper Estimates

Thank You!

Comparison of the Bergman and Szegö kernels

Siqi Fu based on joint work with Boyong Chen

ntroduction: Background and nain results

Basic properties of the kernels

Weighted L^2 -estimates for the $\overline{\partial}$ -operator

luricomplex

pper Estimates