
BANFF CHALLENGE 2

RICHARD’S INTERPRETATION

We imagine turning on an experiment and letting it run. As it runs events are generated.
Each time an event is generated a set of associated measurements is collected. If we think
of the set of possible measurement values for an individual event as a mark space then we
have a marked Poisson process.

The number of events is typically huge. The events are preprocessed in software which
has the effect of retaining only those events in some tiny part of the mark space; the
preprocessing cuts (see the “Jargon” list at the end of these notes) the number of events to
the range of say 101 to 103. We are going to model the retained events as follows. Calendar
time is ignored1. There are N retained events; N has a Poisson distribution. The marks
of the retained events are summarized into some rather simple numerical measurement
denoted X; the summarization process is itself quite complex and typically involves outputs
from some machine learning algorithm trained on very large Monte Carlo data sets.

We therefore have, in the end, data of the form X1, . . . ,XN which take values in some
set which can often be thought of as just the unit interval. The Xs are the points of a
Poisson process on this set. I will denote the intensity of this process by λ(x).

Our goal is the detection of some new phenomenon – the Higgs particle, say. We think
of each Xi as having been produced either by well known phenomena, called background,
or this new phenomenon. If the new phenomenon does not exist then the intensity is just
λ(·) = λb(·). If the new phenomenon exists then λ(·) = λb(·)+λs(·). The goal is to use the
data N and X1, . . . ,XN to decide between these two possibilities. It is likely that we will
want to treat the background only model as a null hypothesis and require, in the ancient
Neyman-Pearson way, strong evidence against the background only model before claiming
discovery2. In summary the null hypothesis is λs(·) ≡ 0.

We can attack the problem at various levels of realism. I make a list below with the sim-
pler ones generally earlier in the list, I hope. Potentially important wrinkles are relegated
to footnotes. The Banff Challenge 2 will be to compare methods for solving these problems

1In fact the rate at which events are produced is not really constant in time. It is proportional to “beam
luminosity” which varies with time and integrated luminosity would replace calendar time. Moreover the
rate at which interesting events are produced and the rate at which bad background events are produced
both change with luminosity. These effects are often ignored.

2These notes focus on hypothesis testing. If we conclude that the signal is not 0 (and physicists would
conventionally look for a one sided P -value p < 2.85× 10−7 — 5 standard errors for a normally distributed
test statistic) then there will be lots of interest in the values of the parameters; the original Banff challenge
concerned confidence intervals for µs =

R

λs(x)dx. Physicists are very much interested in the coverage
probabilities after such a preliminary test and in adjusting intervals to take account of the preliminary test.
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on the basis of some artificial data sets. The various functions described in the Frame-
works below are not know analytically, but are provided as (training) samples — outputs
of large Monte Carlo runs. The Banff Challenge 2 problem will be discussed further at
the workshop; if there is sufficient interest, methods may be compared quantitatively on
more realistic versions of the problem. The problem is a stylized version of a typical real
problem, as encountered, for example, at the LHC in the search for elusive Higgs Boson,
but in many other contexts as well.

Framework 1: We begin by imagining that λb(·) is a known non random intensity3. In this
case under the background model N has a Poisson distribution with mean µb =

∫
λb(x)dx.

Given N the X1, . . . ,XN are an independent and identically distributed sample from the
density

fb(x) =
λb(x)∫
λb(u)du

.

We might approach this then by testing both the hypothesis that N has mean µb and that
the conditional density f of the Xi is fb. The former problem is a standard one sided
Poisson mean problem4 and the latter is a goodness of fit problem since so far no clear
form of the alternative density is proposed. The problem is to provide a single sensible
summary P -value for testing this joint null; the P -value should be well calibrated (have as
close as possible to a uniform distribution under the null or as close as possible to a known
distribution under the null) and highly sensitive (that is have high power).

Framework 2: In Framework 1 we did not specify the signal intensity. That led to a
classical goodness-of-fit problem. In fact there are often theoretical calculations of what
the signal should look like if it exists. That is, under the alternative to the all background

3In fact it is subject to uncertainty of the “systematic errors” variety; see later Frameworks.
4It is standard and simple and there are therefore many suggestions for the solution and many suggestions

for confidence intervals or limits for λµ. See Banff Challenge 1.
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model we have the following specification:

N ∼ Poisson(µ)

X1, . . . ,XN |N ∼ iid with density f

µ = µb + µs

µb =

∫
λb(x)dx

µs =

∫
λs(x)dx

fb(x) =
λb(x)

µb

fs(x) =
λs(x)

µs

f(x) =
µbfb(x) + µsfs(x)

µ

With this model and completely known intensities λs and λb we would just use the
Neyman Pearson test if the intensities were computable and if we could compute the
distribution of the likelihood ratio. This computation would automatically take care of
the question of how to combine a test based on N with a test examining the conditional
distribution of the Xi given N .

Framework 3: We can extend framework 2 by acknowledging that the background inten-
sity λb is not exactly known5. Its value depends on measured features of the experimental
set up and on computed values of various physical quantities. Both the measurements and
the computations have uncertainties; giant Monte Carlo studies play an important role
in the computations. From a statistician’s perspective λb depends on many parameters.
These parameters are measured with error and it is not easy and likely not possible to
propagate these errors to modelled uncertainty in λb.

Typically µb might be regarded as having some sort of prior mean µ̂b and an uncertainty
captured by some “systematic error variance” σ2

b
.6 Usually only those two numbers are

available, and the analyst is left to decide what information they represent about a putative
prior model for lambdab, though it will typically be agreed that the true mub > 0.

The problem cannot be approached as goodness of fit test for a parametric model with
completely unknown parameters because the systematic errors are much more well charac-
terized than could be estimated just from X1, . . . ,XN (in spite of my remarks above about
the vague information). We cannot hope to estimate parameters in λb just from these data
and then test fit in the statistician’s usual way. At the same time the systematic error is

5That is, in this framework the signal intensity λs is known. This is not realistic. More realistic is to
suppose that fs, the “shape” of λs, is known or fairly well known but that µs is not at all well known.

6Jim tells me “often has only vague information on µ̂b and σ̂2
b ” but I am not sure what a Bayesian would

make of this sort of uncertainty unless it means hierarchical priors are called for.
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not so small that λb can be taken to be fully known. We probably need some prior model
for λb which summarizes the uncertainties into a distribution on a random function and
tests the joint hypothesis:

λb(·) ∼ Some random function / stochastic process model

X1, . . . ,Xn|λb ∼ Poisson process with intensity λb.

Framework 4: If we add a parameter, say m, to the function λs and go back to Framework
2 we seem to have again a likelihood ratio problem. The null hypothesis is still “simple” in
the language of Neyman and Pearson but the alternative is “composite”. The parameters
here are part of what we are trying to find out about. While we have some prior expecta-
tions about λs (which enable us to cut the data set back from N = huge to N = 102ish)
we want to use the measured events to pin down details. I am unclear about the extent to
which a prior on λs would be tolerated.

Framework 5: We really want to add a fully or partially specified λs to Framework 3
leaving us with uncertainty both on the null and on the alternative about the intensity
of the Poisson process. Statistics being what it is there is no chance worth mentioning
that we will agree on “the right way” to do this problem. Apparently physicists will have
stronger prior opinions about fs than about µs. In the direction of further realism, the
background and signal means may be written in terms of a product of a few quantities, or
further developed into a sum of such terms. If this is done then there might be useful prior
information about some of the terms in the products; at the same time one of the terms in
the product or products leading to µs would be a quantity of great interest and physicist
would not like any prior on this term to play any important role.

The Challenge

The idea is that someone will generate realistic data in the context of one of the low
numbered Frameworks above, probably Framework 3, and we will make suggestions for
methods for testing for the null hypothesis of no signal. Participants would likely be
provided with information about λb, λs and the associated shapes and means in the form
of training (Monte Carlo) samples. Notice, for instance, that when a specification such
as in Frameworks 4 or 5 is parametric there would be a need for training samples from a
variety of values of the parameter m.

Jargon

Here is my take on some jargon which will probably arise during the Workshop. We
might want to add to this list from time to time; at the moment we certainly want to
correct the definitions below:

High stats / low stats: describes large and small sample sizes (or perhaps large
and small Fisher information).
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Triggering: the hardware in the LHC discards nearly all events on the fly; retained
events have, I suppose, triggered the acquisition and retention of data. The rate at
which events are generated is so enormously large (on the order of 107 per second)
that retaining all data is impossible.

Cuts: In the opening paragraph I described the process of reducing the number of
events to a number like 10 to 1000. This process happens by setting down rules for
discarding events; these are the cuts. They happen after the triggering process has
already removed the vast majority of events. The cuts hopefully narrow the focus
in the mark space to a region where the signal intensity might be distinguishable
from the background intensity. Without the cuts the number of signal events is
totally negligible relative to the number of background events.

Cross-section: when you shoot some particle at a target a bigger target is easier to
hit. The cross-section of a target is essentially the probability of an event (usually
an event of some specific interesting type) per unit area of target (and per incident
particle?) The signal mean µs is proportional to the cross-section for the production
of the particle of interest. This is the crucial term mentioned in Framework 5 above.


