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Outline

• A testing example

• Why p-values can differ markedly from Bayesian answers

• Conditional frequentist testing

• Choice of priors for common nuisance parameters

• Choice of priors for non-common nuisance parameters

• LEE (Multiplicity) in testing: the choice of prior model probabilities
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A Testing Example
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Hypotheses, Data, and Classical Test:

• Alvac had shown no effect

• Aidsvax had shown no effect

Question: Would Alvac as a primer and Aidsvax as a booster work?

The Study: Conducted in Thailand with 16,395 individuals from the

general (not high-risk) population:

• 74 HIV cases reported in the 8198 individuals receiving placebos

• 51 HIV cases reported in the 8197 individuals receiving the treatment

Model: X1 ∼ Binomial(x1 | p1, 8198) and X2 ∼ Binomial(x2 | p2, 8197),
respectively, so that p1 and p2 denote the probability of HIV in the placebo

and treatment populations, respectively.

Classical test of H0 : p1 = p2 versus H1 : p1 ̸= p2 yielded a p-value of 0.04.
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Bayesian Analysis: Reparameterize to p1 and V = 100
(
1− p2

p1

)
,

so that we are testing

H0 : V = 0, p1 arbitrary

H1 : V ̸= 0, p1 arbitrary.

Prior distribution:

• Pr(Hi) = prior probability that Hi is true, i = 0, 1,

• Let π0(p1) = π1(p1), and choose them to be either

– uniform on (0,1)

– subjective (scientific?) priors based on knowledge of HIV

infection rates

Note: the answers are essentially the same for either choice.

• For V under H1, consider the priors

– uniform on (-20, 60) (apriori subjective – scientific? – beliefs)

– uniform on (−100c/3, 100c) for 0 < c < 1, to study sensitivity

(constrained also to V > 100(1− 1
p1
).
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Posterior probability of the null hypothesis:

Pr(H0 | data) = Pr(H0)B01

Pr(H0)B01 + Pr(H1)
,

where the Bayes factor of H0 to H1 is

B01 =

∫
Binomial(74 | p1, 8198)Binomial(51 | p1, 8197)π0(p1)dp1∫

Binomial(74 | p1, 8198)Binomial(51 | p2, 8197)π0(p1)π1(p2 | p1)dp1dp2
.

• For the prior for V that is uniform on (-20, 60),

B01 ≈ 1/4 ( recall, p-value ≈ .04)

• If the prior probabilitites of the hypotheses are each 1/2, the overall

posterior density of V has

– a point mass of size 0.20 at V = 0,

– a density (having total mass 0.80) on non-zero values of V :
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Robust Bayes: For the prior on V that is uniform on (−100c/3, 100c),

the Bayes factor is
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Thai B01; psi ~ Un(−c/3, c)

Note: There is sensitivity to c, indeed 0.22 < B01(c) < 1, but why would

this cause one to instead report p = 0.04, knowing it will be misinterpreted?

Note: Uniform priors are the extreme points of monotonic priors, and so

such robustness curves are quite general.
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Incorporating information from multiple tests: To adjust for the two

previous similar failed trials, the (exchangeable) Bayesian solution

• assigns each trial common unknown probability p of success, with p

having a uniform distribution;

• computes the resulting posterior probability that the current trial

exhibits no efficacy

Pr(H0 | x1,x2,x3) =

(
1 +

B01(x1)B01(x2) +B01(x1) +B01(x2) + 3

3B01(x1)B01(x2) +B01(x1) +B01(x2) + 1
× 1

B01(x3)

)−1

where B01(xi) is the Bayes factor of “no effect” to “effect” for trial i.

The result is Pr(H0 | x1,x2,x3) = 0.29.
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Sources of the difference between p-values and Bayes factors

1. A large part of the difference is due to a significant problem with

p-values: they, in effect, replace the observed data x by the tail area

{X : X ≥ x}. (Imagine the different scientific insight in being told that

x = 5, as opposed to being told that the measuring instrument

indicates only that x is somewhere in the interval from 5 to ∞.)

2. Part of the difference will also typically arise from the Ockham’s razor

effect of Bayes factors, when the original model for H1 contains more

unknown parameters that the original model for H0.

3. The third source of the difference is that the Bayes factor is comparing

the null and alternative hypotheses, while the p-value is only computed

based on the null model (although the choice of test statistic X will

often, at least informally, depend on considerations of alternatives).

10



Workshop on statistical issues related to discovery claims Banff, Canada; July 14, 2010'

&

$

%

For some insight into this latter point, consider the situation where there is

an unknown additive systematic bias b in the experiment, so that we really

observe X ′ = X + b, which has density fi(x
′ − b) under Hi. We don’t know

this, however, so we end up testing the “statistical hypotheses” (as distinct

from the original scientific hypotheses)

H0 : X ′ ∼ f0(x
′)

H1 : X ′ ∼ f1(x
′).

The Bayes factor we compute is

B(x′) =
f0(x

′)

f1(x′)
=

f0(x+ b)

f1(x+ b)
= B(x+ b) .

and, likewise, the p-value is

p(x′) =

∫ ∞

x′
f0(y) dy = p(x+ b) .

Now suppose p(x+ b) is small because b is large, while B(x+ b) is not small.
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Example: Jefferys (1990) analyzed a pyschokinesis experiment:

H0 : the subjects did not exhibit psychokinesis

H1 : the subjects did exhibit psychokinesis.

Results: p-value was 0.0003, while the Bayes factor varied between 0.01 and

12, depending on the prior utilized for the parameters under H1 (with

Bayes factors less than one arising only from priors that would have been

very unreasonable apriori). Two interesting aspects:

1. The Bayes factor seems considerably more resistant to bias than does

the p-value for the primary goal of determining if psychokinesis was

exhibited, because it is comparing hypotheses, and the bias may have a

similar effect on the evidence under each hypothesis.

2. The p-value is useful for the secondary goal of indicating that some

bias is likely present; indeed, when the p-value is small and the Bayes

factor is not, this would seem to be a strong indication of bias (or some

other misspecification of the models).
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Conditional Frequentist Testing

Often Bayesian tests are also conditional frequentist tests arising as follows

(see Berger, Brown and Wolpert (1994), Berger, Boukai and Wang (1997a,

1997b), Dass (1998), and Dass and Berger (2001)):

• The Bayes test having equal prior probabilities of H0 and H1 yields

posterior probability

Pr(H0 | x) =
∫
f0(x | θ0)π(θ0)dθ0∫

f0(x | θ0)π(θ0)dθ0 +
∫
f1(x | θ1)π(θ1)dθ1

.

• The priors produce a conditioning statistic, T (x) = max{p0(x), p1(x)},
defining parts of the sample space containing ‘equivalent evidential

strength’, where pi is the p-value for H∗
i : X ∼

∫
fi(x | θi)π(θi)dθi.

• If the rejection region is R = {x : p0(x) < p1(x)},
– the conditional Type I error probability α(x) = Pr(R | H∗

0 , T ) then

equals Pr(H0 | x) numerically,

– the conditional Type II error probability β(x) = Pr(R̄ | H∗
1 , T ) then

equals Pr(H1 | x) numerically.
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• If the null model is simple or possesses a group invariance structure

with nuisance parameters, α(x) = Pr(R | H0, T ), so this is a fully valid

frequentist error probability for the original hypothesis.

• One computes the marginal likelihoods only once, whereas computation

of the unconditional error probability would require simulation from

the marginal distribution.

• Note there are many other conditional frequentist tests, so the range of

frequentist answers is much larger than the range of Bayesian answers.

• The unconditional frequentist test (for a given test statistic) achieves

uniqueness by being the uniformly worst procedure among the family

of conditional frequentist tests.
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Choosing priors for “common parameters” in testing

If pure subjective (scientific?) choice is not possible, here are some

guidelines:

• Gold standard: if there are parameters in each hypothesis that have

the same group invariance structure, one can use the right-Haar priors

for those parameters (even though improper) (Berger, Pericchi and

Varshavsky, 1998)

• Silver standard: if there are parameters in each hypothesis that have

the same scientific meaning, reasonable default priors (e.g. the constant

prior 1) can be used (e.g., in the vaccine example, where p1 meant the

same in H0 and H1).

• Bronze standard: to try to obtain parameters that have the same

scientific meaning (beware the “fallacy of Greek letters”), one strategy

often employed is to orthogonalize the parameters, i.e., reparameterize

so that the partial Fisher information for those parameters is zero.
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Example: (location-scale)

Suppose X1, X2, . . . , Xn are i.i.d with density

f(xi | µ, σ) =
1

σ
g

(
xi − µ

σ

)
Several models are entertained:

MN : g is N(0, 1)

MU : g is Uniform (0, 1)

MC : g is Cauchy (0, 1)

ML: g is Left Exponential ( 1
σ ex−µ , x ≤ µ)

MR: g is Right Exponential ( 1
σ e−(x−µ) , x ≥ µ)

All models have location-scale parameters (µ, σ), for which the right-Haar

prior density is

π(µ, σ) =
1

σ
.
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The marginal densities

m(x | M) =

∫ ∞

0

∫ ∞

−∞

n∏
i=1

[
1

σ
g

(
xi − µ

σ

)]
1

σ
dµ dσ

for the five models are given by

1. Normal: m(x | MN ) =
Γ((n−1)/2)

(2 π)(n−1)/2
√
n (

∑
i(xi−x̄)2)

(n−1)/2

2. Uniform: m(x | MU ) =
1

n (n−1)(x(n)−x(1))
n−1

3. Cauchy: m(x | MC) is given in Spiegelhalter (1985).

4. Left Exponential: m(x | ML) =
(n−2)!

nn(x(n)−x̄)n−1

5. Right Exponential: m(x | MR) =
(n−2)!

nn(x̄−x(1))
n−1
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The objective posterior probabilities of the five models, for each data set

are as follows:

Data Models

set Normal Uniform Cauchy L. Exp. R. Exp.

Darwin .390 .056 .430 .124 .0001

Cavendish .986 .010 .004 4×10−8 .0006

Stigler 9 7×10−8 4×10−5 .994 .006 2×10−13

Cauchy 5×10−13 9×10−12 .9999 7×10−18 1×10−4
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Choosing priors for non-common parameters

If subjective (scientific?) choice is not possible, here are some guidelines:

• Vague proper priors are horrible (related to the Jeffreys-Lindley

paradox): for instance, if X ∼ N(µ, 1) and we test H0 : µ = 0 versus

H1 : µ ̸= 0 with a Uniform(−c, c) prior for θ, the Bayes factor is

B01(c) =
f(x | 0)∫ c

−c
f(x | µ)(2c)−1dµ

≈ 2c f(x | 0)∫∞
−∞ f(x | µ)dµ

for large c, which depends dramatically on the choice of c.

• Improper priors are problematical, because they are unnormalized; is

B01 =
f(x | 0)∫∞

−∞ f(x | µ)(1)dµ
or B01 =

f(x | 0)∫∞
−∞ f(x | µ)(2)dµ

?

• Robust solution: if one can specify a plausible range c1 ≤ c ≤ c2, look

at B01(c) over this range and hope the conclusion is robust. (Not

obvious for higher dimensional parameters, but there is a literature.)
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Case 1: π(µ) is Uniform(0, 10) (e.g., known upper limit on µ)

• Observe x = 2: p = 0.025, while Pr(H0 | x = 2) = 0.54

• Observe x = 4: p = 3.1× 10−5, while Pr(H0 | x = 4) = 1.3× 10−3

• Observe x = 6: p = 1.0× 10−9, while Pr(H0 | x = 6) = 6.0× 10−8

Case 2: π(µ) is Normal(4, 1) (arising from a previous experiment)

• Observe x = 4: p = 3.1× 10−5, while Pr(H0 | x = 4) = 4.7× 10−4

• Observe x = 6: p = 1.0× 10−9, while Pr(H0 | x = 6) = 5.8× 10−8

Case 3: π(µ) is a point mass at 4 (the prediction of a new theory).

• Observe x = 4: p = 3.1× 10−5, while Pr(H0 | x = 4) = 3.4× 10−4

• Observe x = 6: p = 1.0× 10−9, while Pr(H0 | x = 6) = 1.1× 10−7

Conservative conversion of p to Pr(H0 | x): Pr(H0 | x) = (1 + (−ep log p)−1)−1:

• Observe x = 4: p = 3.1× 10−5, while Pr(H0 | x = 4) = 8.8× 10−4

• Observe x = 6: p = 1.0× 10−9, while Pr(H0 | x = 6) = 5.7× 10−8
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Various proposed default priors for non-common parameters

• Fractional priors (O’Hagan): use a fraction γ of the model likelihood

(usually γ =‘parameter dimension’/‘sample size’) as the prior, with

L(θ)1−γ as the likelihood.

• Intrinsic priors (Berger, Pericchi and others): generate priors from

“training samples” (either actual subsets of the data, or imaginary data

generated under the null model).

• Conventional priors that have at least some nice properties: e.g.,

Zellner-Siow priors for linear models are

– invariant to scale changes in covariates

– consistent (the true model will be selected as n → ∞)

– information-consistent (e.g., will reject as t or F statistics → ∞)

– coherent (roughly, are logically connected)

• Various efforts at ‘predictive matching’ priors.

• Approximations (such as BIC); these can capture part of the prior

influence, but not all.
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Random (and likely incoherent) thoughts about Bob’s talk:

• If the parameter prior is part of the proposed theory (e.g., general

relativity, standard Higgs prediction?), it should be subjected to

Bayesian updating.

– At the extreme, if the theory predicts mass in (5,10), and that range

is excluded, the theory is wrong (though resurrection is possible).

• Bayes is really about how to process information from different sources

and, in such a way, that all known uncertainties are accounted for:

– The temporal view of Bayes as the way knowledge accumulates is

silly, in that it assumes priors are perfect.

∗ Priors do often get updated by data, but also often change by –

ooopppss, I can’t believe I forgot about that, or wow – that’s a

piece of knowledge I had never imagined.

– All that really matters is that, when presenting the analysis, the

prior(s) are defensible.
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• If the theory says nothing about the parameter (e.g., axion theory),

any prior will be solely an “investigative prior” proposed as a way to

interrogate the data.

– Use of Bayes factors helps a lot here, in that one leaves the current

estimate of the prior probability unspecified; everyone can process

the effect of exclusions informally.

– The ‘default’ Bayesian choices of priors for testing are only based on

the current situation, not on what happened before.
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Bayesian Approach to LEE (Multiplicity)

Key Fact: Bayesian analysis deals with multiplicity adjustment solely

through the assignment of prior probabilities to models or hypotheses.

Simple Example: Multiple Testing under Exclusivity

Suppose one is testing mutually exclusive hypotheses Hi, i = 1, . . . ,m, so

each hypothesis is a separate model. If the hypotheses are viewed as

exchangeable, choose P (Hi) = 1/m.

Example: 1000 energy channels are searched for a signal:

• if the signal is known to exist and occupy only one channel, but no

channel is theoretically preferred, each channel can be assigned prior

probability 0.001.

• if the signal is not known to exist (e.g., it is the prediction of a

non-standard physics theory) prior probability 1/2 should be given to

‘no signal,’ and probability 0.0005 to each channel.

This is the Bayesian solution regardless of the structure of the data.
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Example: In each channel, one tests H0i : µi = 0 versus H1i : µi > 0.

Data: Xi, i = 1, ...,m are normally distributed with mean θi, variance 1,

and correlation ρ.

If ρ = 0, one can just do individual tests at level α/m (Bonferroni) to

obtain an overall error probability of α.

If ρ > 0, harder work is needed:

• Choose an overall decision rule, e.g., “declare µi to be the signal if Xi

is the largest value and Xi > K.”

• Compute the corresponding error probability:

α = EZ

[
1− Φ

(
K −√

ρZ
√
1− ρ

)m]
,

where Φ is the standard normal cdf and Z is standard normal.

Note that this gives (essentially) the Bonferroni correction when ρ = 0, and

converges to 1− Φ[K] as ρ → 1.
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General Approach to Bayesian Multiplicity Adjustment

1. Represent the problem as a model uncertainty problem: Models Mi, with

densities fi(x | θi) for data x, given unknown parameters θi; prior

distributions πi(θi); and marginal likelihoods mi(x) =
∫
fi(x | θi)πi(θi)dθi.

2. Specify prior probabilities, P (Mi), of models to reflect the multiplicity

issues; Bayesian analysis controls multiplicity through P (Mi)
a

• Subjective Bayesian Analysis: If the P (Mi) are real subjective

probabilities, that’s it: multiplicity correction has been done.

• Objective Bayesian Analysis: One has to be careful to make choices of the

P (Mi) that ensure multiplicity correction (e.g., specifying equal prior

probabilities does not generally control multiplicity)!

3. Implement Bayesian model averaging (model selection?), based on

P (Mi | x) =
P (Mi) mi(x)∑k

j=1 P (Mj) mj(x)
.

asee, e.g., Jeffreys 1961; Waller and Duncan 1969; Meng and Demptster 1987; Berry
1988; Westfall, Johnson and Utts 1997; Carlin and Louis 2000.
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Variable Selection

Problem: Data X arises from a normal linear regression model, with m

possible regressors having associated unknown regression coefficients

βi, i = 1, . . .m, and unknown variance σ2.

Models: Consider selection from among the submodels Mi , i = 1, . . . , 2m,

having only ki regressors with coefficients βi (a subset of (β1, . . . , βm)) and

resulting density fi(x | βi, σ
2).

Prior density under Mi: Zellner-Siow priors πi(βi, σ
2).

Marginal likelihood of Mi: mi(x) =
∫
fi(x | βi, σ

2)πi(βi, σ
2) dβidσ

2

Prior probability of Mi: P (Mi)

Posterior probability of Mi:

P (Mi | x) =
P (Mi)mi(x)∑
j P (Mj)mj(x)

.
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Common Choices of the P (Mi)

Equal prior probabilities: P (Mi) = 2−m

Bayes exchangeable variable inclusion:

• Each variable, βi, is independently in the model with unknown

probability p (called the prior inclusion probability).

• p has a Beta(p | a, b) distribution. (We use a = b = 1, the uniform

distribution, as did Jeffreys 1961, who also suggested alternative choices of

the P (Mi). Probably a = b = 1/2 is better.)

• Then, since ki is the number of variables in model Mi,

P (Mi) =

∫ 1

0

pki(1− p)m−kiBeta(p | a, b)dp =
Beta(a+ ki, b+m− ki)

Beta(a, b)
.

Empirical Bayes exchangeable variable inclusion: Find the MLE p̂ by

maximizing the marginal likelihood of p,
∑

j p
kj (1− p)m−kjmj(x), and use

P (Mi) = p̂ki(1− p̂)m−ki as the prior model probabilities.
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Controlling for multiplicity in variable selection

Equal prior probabilities: P (Mi) = 2−m does not control for multiplicity

here (as it did in the simpler examples); it corresponds to fixed prior

inclusion probability p = 1/2 for each variable.

Empirical Bayes exchangeable variable inclusion does control for

multiplicity, in that p̂ will be small if there are many βi that are zero.

Bayes exchangeable variable inclusion also controls for multiplicity (see

Scott and Berger, 2008), although the P (Mi) are fixed.

Note: The control of multiplicity by Bayes and EB variable inclusion usually

reduces model complexity, but is different than the usual Bayeisan Ockham’s

razor effect that reduces model complexity.

• The Bayesian Ockham’s razor operates through the effect of model priors

πi(βi, σ
2) on mi(x), penalizing models with more parameters.

• Multiplicity correction occurs through the choice of the P (Mi).

30



Workshop on statistical issues related to discovery claims Banff, Canada; July 14, 2010'

&

$

%

Equal model probabilities Bayes variable inclusion

Number of noise variables Number of noise variables

Signal 1 10 40 90 1 10 40 90

β1 : −1.08 .999 .999 .999 .999 .999 .999 .999 .999

β2 : −0.84 .999 .999 .999 .999 .999 .999 .999 .988

β3 : −0.74 .999 .999 .999 .999 .999 .999 .999 .998

β4 : −0.51 .977 .977 .999 .999 .991 .948 .710 .345

β5 : −0.30 .292 .289 .288 .127 .552 .248 .041 .008

β6 : +0.07 .259 .286 .055 .008 .519 .251 .039 .011

β7 : +0.18 .219 .248 .244 .275 .455 .216 .033 .009

β8 : +0.35 .773 .771 .994 .999 .896 .686 .307 .057

β9 : +0.41 .927 .912 .999 .999 .969 .861 .567 .222

β10 : +0.63 .995 .995 .999 .999 .996 .990 .921 .734

False Positives 0 2 5 10 0 1 0 0

Table 1: Posterior inclusion probabilities for 10 real variables in a simulated data set.

31



Workshop on statistical issues related to discovery claims Banff, Canada; July 14, 2010'

&

$

%

Comparison of Bayes and Empirical Bayes Approaches

Theorem 1 In the variable-selection problem, if the null model (or full model)

has the largest marginal likelihood, m(x), among all models, then the MLE of p is

p̂ = 0 (or p̂ = 1.) (The naive EB approach, which assigns

P (Mi) = p̂ki(1− p̂)m−ki , concludes that the null (full) model has probability 1.)

A simulation with 10,000 repetitions to gauge the severity of the problem:

• m = 14 covariates, orthogonal design matrix

• p drawn from U(0, 1); regression coefficients are 0 with probability p and

drawn from a Zellner-Siow prior with probability (1− p).

• n = 16, 60, and 120 observations drawn from the given regression model.

Case p̂ = 0 p̂ = 1

n = 16 820 781

n = 60 783 766

n = 120 723 747
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Is empirical Bayes at least accurate asymptotically as m → ∞?

Posterior model probabilities, given p:

P (Mi | x, p) =
pki(1− p)m−kimi(x)∑
j p

kj (1− p)m−kjmj(x)

Posterior distribution of p: π(p | x) = K
∑

j p
kj (1− p)m−kjmj(x)

This does concentrate about the true p as m → ∞, so one might expect that

P (Mi | x) =
∫ 1

0
P (Mi | x, p)π(p | x)dp ≈ P (Mi | x, p̂) ∝ mi(x) p̂

ki(1− p̂)m−ki .

This is not necessarily true; indeed∫ 1

0

P (Mi | x, p)π(p | x)dp =

∫ 1

0

pki(1− p)m−kimi(x)

π(p | x)/K × π(p | x) dp

∝ mi(x)

∫ 1

0

pki(1− p)m−kidp ∝ mi(x)P (Mi) .

Caveat: Some EB techniques have been justified; see Efron and Tibshirani (2001),

Johnstone and Silverman (2004), Cui and George (2006), and Bogdan et. al. (2008).
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Theorem 2 Suppose the true model size kT satisfies kT /m → pT as

m → ∞, where 0 < pT < 1. Consider all models Mi such that

kT − ki = O(
√
m), and consider the optimal situation for EB in which

p̂ = pT +O(
1√
m
) as m → ∞ .

Then the ratio of the prior probabilities assigned to such models by the

Bayes approach and the empirical Bayes approach satisfies

PB(Mi)

PEB(Mi)
=

∫ 1

0
pki(1− p)m−kiπ(p)dp

(p̂)ki(1− p̂)m−ki
= O

(
1√
m

)
,

providing π(·) is continuous and nonzero.
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Summary

“I shall resist the temptation of saying more, because model
selection is a can of worms for both objectivists and
subjectivists and frequentists∗.”

∗Bob Cousins, Tuesday.
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Thanks!
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