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© In the Beginning There Were Questions. . .
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The Quiz (1)

@ Frequentist testing: the standard test of Hy versus H; has only two
outcomes: Accept or Reject Hp. In HEP we typically have four outcomes:
Reject Hy and accept Hy, Accept Hy and exclude H;, Make no decision,
and Reject both Hy and H;. What is the error structure of such a test?

® Rejection threshold: traditionally set at 50, regardless of sample size,
prior evidence, accounting for look-elsewhere effect (LEE), etc. Can we
come up with a more rational, more flexible criterion?

@® Wilks’s theorem: in cases where it does not apply (e.g. LEE), we have to
run Monte Carlo toy experiments. What is the most efficient way of
doing this?

@ Peak searches: how should we calculate the significance of a possible
second peak in a spectrum?

@ Is there a LEE for exclusion? If at each Higgs mass we exclude Higgs
production at the 95% C.L., what is the confidence level for excluding
over the whole mass range?

@ Is there a look-elsewhen effect?
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The Quiz (2)

@ In a counting experiment: as the observed count sinks below the
expected background, what do we want the upper limit to do?

@® Parton Density Functions: they are hugely important in searches for new
physics, and yet we still do not have a statistically grounded
understanding of their uncertainties.

©® How can we convince high energy physicists to share their data?

@ How can two different experiments coherently combine their reference
posteriors for the same parameter of interest?

® Can statisticians help with prior selection?

® What is the best way to work with likelihood functions that have a
non-analytical dependence on some important nuisance parameters
(e.g. the likelihood for the dijet invariant mass spectrum as a function of
the jet energy scale nuisance parameter)?
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® ... Then Came Some Answers.
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The Jeffreys-Lindley Paradox

[Cousins]

Consider a model for some data X that depends on an unknown parameter 0,
and suppose that we wish to test Hy : § = 0 versus H; : 8 # 0. It is entirely
possible that for some observation x,,s the p-value calculated by a frequentist
will lead to rejection of Hy, whereas the Bayes factor calculated by a Bayesian
will strongly support Hy. Hence the paradox. Who can we blame?

e The frequentist, because she did not adjust her rejection criterion for the
power of the test;

e The experimenter, because he chose to test a point-null hypothesis
instead of an interval-null hypothesis;

e The objective Bayesian, because he used a vague prior for § under H;.

Only the subjective Bayesian is totally immune to this paradox! @



Bayes/non-Bayes: from Compromise to Cooperation?

[Berger, Cousins, Linnemann, Lockhart,. .. ]

The statistician I.J. Good had an approach to statistics that he called “the
Bayes/non-Bayes compromise”. One example is his resolution of the Jeffreys-
Lindley paradox by “renormalizing” p-values: p — min{p * v/N/100,1/2}.
Over the years there have been remarkable examples where the “compro-
mise” turns into “cooperation”, in the sense that Bayesian and frequentist in-
ferences agree exactly, thereby enriching the interpretation of measurement
results.

Earliest example in HEP literature is probably the Cousins-Highland paper,
where Bayesian marginalization is used to handle systematic uncertainties.
Later, Giunti proposed a modification of Feldman-Cousins intervals in which
the ordering rule incorporates a Bayesian posterior mean. This is still a fully
frequentist method, but the behavior of intervals and upper limits as the data
count sinks below background is improved.

This workshop offered several examples of this compromise/cooperation. . .
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Bayes/non-Bayes: Hypothesis Testing with a Prior on the Alternatives

[Lockhart]

If one has a range of alternatives to test against, and there is prior information
about “interesting targets”, then it makes sense to construct a prior density
over the space of alternatives so as to optimize the power of the test. This
does not affect the Type-| error rate of the test.

This can be used to design goodness-of-fit tests. There are also examples
in the literature where this approach is used to develop standard tests for the
look-elsewhere effect (i.e. tests with chisquared distributions under the null).
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Bayes/non-Bayes: Prior-Predictive p-Values

Linnemann discussed some prior-predictive p-values for the Poisson problem
with unknown background:

e Zr:uses al prior on the Poisson mean. Numerically this gives exactly
the same result as a purely frequentist calculation where information
about the background comes from an auxiliary Poisson measurement.
Therefore Z “covers”. Perfect Bayes/non-Bayes cooperation!

e Zy: uses a normal prior on the Poisson mean, and tends to undercover
for very high significances.

The coverage calculations done here are with respect to an ensemble where
only the data vary, and the unknown parameters (background magnitude) are
fixed. Personally | have no problem in considering “extended” ensembles,
where detector properties and other model parameters can vary. In the prior-
predictive spirit, such extended ensembles represent our state of knowledge,
not potentially true states of nature. The crucial point however, is to prop-
erly model the uncertainties on the nuisance parameters: Gaussian is usually
wrong in HEP, Gamma is better, but sometimes we need something with even
heavier tails, e.g. log-normal.



Bayes/non-Bayes: Hypothesis Testing

[Berger] Partition sample space according to the evidential strength Q of pos-
sible observations, where Q = min{(1 —po)/(1 — ), (1 —p1)/(1 — 3)}. Then,
frequentist error rates conditioned on Q agree exactly with Bayesian posterior

probabilities of hypotheses.
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Bayes/non-Bayes: Reference Priors

[Prosper] High energy physicists have now learned that indiscriminately used
flat priors may lead to improper posteriors. A better alternative is provided by
reference priors, which have reasonable frequency behavior:
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The Sensitivity Problem

[Cowan, Cranmer, Murray, van Dyk. . .]

Bill M. gave a touching recantation of CLs, but not quite for the best (imho)
of reasons...He does not like the way the CLg upper limit varies with the
observation in a Gaussian measurement. Unfortunately the CLg limit for this
problem coincides exactly with the Bayesian limit (for a flat prior). You can’t
reject one without rejecting the other.

There are better reasons to abandon CLg, foremost that it does not have a
well-defined interpretation (not even as a conditional probability, as is some-
times claimed), and that it only guarantees a lower bound on the frequentist
coverage.

Cowan, Cranmer, Gross proposed an alternative, called “power-constrained
upper limits”: can’t reject a parameter value unless you have a decent proba-
bility of detecting that value when it is the true value. So if the observed upper
limit is “too low”, we reset it to a minimum.

Van Dyk proposes to always report both the observed upper limit and a mini-
mum sensitivity bound (caveat: his terminology interchanges the concepts of
upper limit and upper bound as understood in HEP).
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The Sensitivity Problem (2) |
Example: measuring the mean of a Gaussian distribution with unit variance.
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The Look-Elsewhere Effect

[Berger, Bloom, Cranmer, Gross, Linnemann, Lyons, Vitells, Woodroofe,. . .]

In the statistics literature this effect shows up under various guises:

o Nuisance parameters that are “not identified under the null hypothesis”,
or “only present under the alternative”;

Multiple tests;

Testing for the number of components in a mixture;

Change-point detection;

Level crossings of random fields;

Singular information matrix.

Many solutions have been worked out over the years (lack-of-fit tests, Euler
characteristics, Hotelling’s volume of tube formula, penalized likelihood, pa-
rameter transformations, directed graphs,...)
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The Look-Elsewhere Effect (2) |

Eilam showed an interesting result for the LEE-corrected tail probability in the
case of a Gaussian signal with unknown mean, on top of a smooth back-
ground:

P [thou > 1] =~ Pyz (N),  when Pyz (N) <« 1. (1)

The derivation is somewhat heuristic. In fact, this problem has been studied
many times in the statistics literature, see for example R. B. Davies, “Hypoth-
esis testing when a nuisance parameter is present only under the alternative,”
Biometrika 74, 33 (1987). Suppose that for each value of 6 € [L, U], your
test statistic is (asymptotically) chisquared with s degrees of freedom. Davies
derives the following formula for the LEE-corrected tail:

{sup S(0) > u| <P(xE > u) / ¥(6) d (2)

L<o<U

where
ys=1/2 g=u/2

SV (V)

P(0) =

15
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| The Look-Elsewhere Effect (3) |

For one degree of freedom (s = 1), S(§) = Z%(6), where Z is standard normal,
and Davies’s formula reduces to:

P [ sup S(6) > u] < P(GE > u) + KiP(x3 > u). (4)
L<O<U

This is a linear combination of two 2 tails (only turns out this way for s = 11).
The coefficient of the X3 tail is

K, — l/U,/var {%ﬂ ao. (5)
™ JL

Davies worked out an approximation for this:

Ulaal/2
Von Ky ~ /L %9(9)‘ do — |S"/2(6,) — S'3(L))|

1+ 18"2(62) — 8"2(01)] + ...+ [SV3(U) — 82(0m)]. (6)

where 65,. .., 0, are the turning points of S'/2(6). So K; is proportional to the
total variation of a Gaussian random field, which is related to the number of
local maxima in Eilam and Ofer’s formula.
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The Look-Elsewhere Effect (3) |
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Background-only experiment example from arXiv:1005:1891v1 [physics.data-
an]. Bottom panel shows local minima and maxima of inverse likelihood ratio.
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The Look-Elsewhere Effect (4) \
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Top: integrand of the quantity K(0) of equation (5), as a function of 6. Bot-
tom: survivor function of sup S: toy experiments (solid), Davies formula (dot-
dashes), x3/2 (dashes), and x3/2 (dots) [Demortier 2008].
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The Look-Elsewhere Effect (5) |

Note that in the Davies formula:

P [ sup S(0) > u] < POE > u) + KiPOG > u), @)
L<O<U

the quantity P(x5 > u) is the “fixed mass” significance, i.e. the significance
without accounting for the LEE. For the ratio of the floating- to the fixed-mass
significances, Eilam and Ofer obtain:

trial#ohscrvcd = <N> \/?Zﬁx- (8)

However, this expression of the trial factor in terms of Z, is an artefact of
mathematical identities that take place in the case s = 1; it does not generalize
to s # 1 and should therefore not be taken too seriously.
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The Look-Elsewhere Effect (6) |

Signal Magnitude n
Solid line: Bayes factor for a peak search, as a function of peak height,
when the peak location is unknown. This is the Bayes factor in favor of the
background-only hypothesis. Its denominator is averaged over a uniform prior

for the signal location.
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The Look-Elsewhere Effect (7) |

Some additional issues on this topic:

e Linnemann presented an interesting graphical method to prioritize
subsets in the space of alternative hypotheses, in such a way that the
LEE causes less significance dilution for the alternatives we care most
about. However it is not clear how high energy physicists would set up
such a graph for the large number of complex models they have to
contend with.

e Lyons wondered about the “Look-ElseWhen Effect”, and claimed it
doesn’t matter because “relevant data is (essentially) all data up to the
present”. Strictly speaking, if this is how we proceed, then we should
adjust « for the sample size.
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Other Intriguing Topics

© Asimov data [Cowan, Cranmer]: can we avoid time-consuming
expectation-value calculations by using only one, cleverly chosen
datapoint? Although there is some evidence that this can be done, more
understanding is needed. Cranmer suggested that we can use Asimov
data to compute Jeffreys’ prior. This may work for exponential models,
but how general is it?

® Profile likelihood versus marginal likelihood [Loredo]: helps us
understand when the former is reliable and when it is not.

@® Banff Challenge 2 [Fisher, Junk, Scargle, Schafer, Vitells]: some
interesting ideas to analyze these datasets were presented. However
we will probably need ensembles in order to study the effectiveness of
the methods proposed.

22/23



This was a workshop rich in interesting and useful ideas, and | couldn’t
do justice to all the beautiful talks that were given. Thank you all for
your contributions!
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