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QOutline

@ Discovering periodic phenomena: Exoplanets & pulsars
Detecting signals with (partially) known signatures

@ Discovering anomalies in the CMB
Detecting signals with unknown signatures

© Discovering sources of ultra-high energy cosmic rays
Assessing coincidences (similarity amidst measurement error)

O Recurring statistical themes
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@ Discovering periodic phenomena: Exoplanets & pulsars
Detecting signals with (partially) known signatures
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Finding Exoplanets via Stellar Reflex Motion

All bodies in a planetary system orbit wrt the system’s center of

mass, including the host star:

Astrometric Method

Sun’s Astrometric Wobble from 10 pc
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Doppler Shift due to
Stellar Wobble

exoplanets found using RV method
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RV Data Via Precision Spectroscopy
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This step involves nontrivial analysis that should be investigated!



Population Properties
California-Carnegie search of ~1300 FGKM stars

How many stars have planets?
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What about the non-detections?
Now that we know this, should it influence detection criteria?
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What are the orbits like?
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Plots ignore uncertainties & strong selection effects!
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A Variety of Related Statistical Tasks

Planet detection — |s there a planet present? Are multiple
planets present?

Orbit estimation — What are the orbital parameters? Are
planets in multiple systems interacting?

Orbit prediction — What planets will be best positioned for
follow-up observations?

Population analysis — What types of stars harbor planets?
With what frequency? What is the distribution of planetary
system properties?

Optimal scheduling — How may astronomers best use limited,
expensive observing resources to address these goals?

Spectral . | Radial Velocity o Plan_et .| Exoplanet Population
> » Detection & > ;
Data Curves Properties
Measurement




Velocity (m s™)

Velocity (m/s)

Conventional RV Orbit Fitting

Analysis method: Identify best candidate period via periodogram;
fit parameters with nonlinear least squares/min 2

1, Y +::';i,:’-;::.:+
1

]

T XEaN

ol R
1990 Ti;,“;gz, ) 2000

201 i

I

20F .

0 Lick and KQ;EJ( Obs

I
0.0

05
Orbital Phase

1.0

S0 .m;n
Lick
of- 3
s0F-
b E
10~ E|
J H L N N
o WA\ LN
10 100 1000 10000
Period (days)

System: HD 3651

P=62.23d
e=0.63
msini=0.20 M_J
a=0.28AU

Fisher et al. 2003

9/69



Schuster Periodogram (1898)

Setting
Find “hidden periodicities” in terrestrial phenomena: weather,
earthquakes, magnetic storms

Describe periodicity via:

® Period 7 (e.g., seconds, days)
® (Natural) frequency v = 1/7 (e.g., Hz, cycles/day)
® Angular frequency w = 27w (e.g., rad/s, rad/day)

Data are N uniformly sampled measurements contaminated by
additive noise:

di = f(t;) + €, ti = iot

Data spacing is 0t
Data span a total duration T = ty — t; Noise std dev'n o
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Periodogram
“It is convenient to have a word for some representation of a
variable quantity which shall correspond to the ‘spectrum’ of a
luminous radiation. | propose the word periodogram. .. "

By analogy with Fourier analysis of a signal:

1

Plw) = [Cz(w) + 52(w)] ,

=|

where

Cw) =Y % cos(wt),  Sw) =3 % sin(wty).

i i

Use to test compatibility of data with null hypothesis of just noise;
report p-value
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Frequency spacing
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Connection to (parametric) harmonic analysis (Lomb, Scargle)
Fit a single sinusoid model via least squares/max likelihood:

di = Acos(wti+ @)+ €
= Ajcoswt; + Apxsinwtie;

Sum-squared residuals (o log likelihood):

P(w, A, ¢) = Z_ [d; — Acos(wt; — ¢)]°

A (linearly) separable nonlinear model (linear in amplitudes)
— A(w) = [A1(w), Aa(w)] via linear least squares

Profile likelihood Lp(w) o e X5/ with

Xp(w) = (v, AWw))
(A=0)-Pl) = APWw)

Use this to define periodogram for non-uniformly sampled data —
Lomb-Scargle periodogram
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Bayesian counterpart (Jaynes, Bretthorst)
Marginal likelihood for frequency (flat or broad conjugate
prior):
Lm(w) = /dAl/dA2 (A1, A2) L(A1, Az, w)
R exp[P(w)/2]

Normality + linearity — extremizing and marginalizing lead to
similar inferences for estimation of w
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Frequentist vs. Bayesian detection

Frequentist approach: Bayesian approach:
Mazimize P(v) Integrate exp[P(v)]

0.2

0.3 . i
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Frequentist p-value must adjust for # of frequencies examined; p ~ Np
Change sinusoid to Keplerian RV curve — Kepler periodogram

Note: There is no fundamental requirement for a frequentist approach to maximize;
Bickel™ (2006) integrate a statistic derived from the score function, over phase and
frequency. 15/69



The Crab Pulsar
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Pulsars from Radio to Gamma Rays

CRAB PULSAR

PSR 1509-58

GAMMA-RAY PULSARS

VELA PULSAR

PSR 1706-44

GEMINGA

PSR 1055-52

RADIO

ﬂ

RADIO

RADIO

RADIO

RADIO
MO KNOWN PULSE

RADIO

OPTICAL

w
=
=
w
<]
=
o
=
153
z
=
T
<
@
<
@
z
i
=
z

GAMMA RAY

o b

1.0

PERIOD ~ 33 mSEC

0

OPTICAL

NO KNOWN PULSE

GAMMA RAY

g

10

PERIOD~ 150 mSEC

0

OPTICAL

GAMMA RAY

5

1.0

PERIOD ~ 88 mSEC

0

OPTICAL
NG KNOWN PULSE

NO KNOWN PULSE

GAMMA RAY

5

1.0

PERIOD~ 102 mSEC

0

OPTICAL
HO KNOWN PULSE

GAMMA RAY

5

1.0

PERIOD~ 237 mSEC

TIME IN FRACTIONS OF A PULSE PERIOD

0

QOPTICAL

NO KNOWN PULSE

GAMMA RAY

5

]

PERIOD~ 197 mSEC




Getting the Gammas: Fermi

1110 Layers ength Converter (pb)
M 12 Layers o n Strips

Exploded View:
One of Forty-nine Towers
~~% Gamma Rays

— Pasitrons/Electrons

Launched June 2008
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Fermi’s Large Area Telescope

Particle physics in space!

e High-Energy BGO
e Detector (1 of 2)
Low-Energy Nal (T1)
Detectors (3 of 12)
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Silicon Tracker:

Complex Data

Time, direction, energy

Photon
Conversion point,
followed by multiple
scatierng
Tungsten
Laye[ 3 * xsi\\?:on strips
i y silicon strips
/1 Multiple scattering here does not
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|
[
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\
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Calorimeter
Pulsar
LAT Tracker Gamma Ray _ )
. ¥ Detection &
Data Properties
Measurement
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Gamma Ray Data: Photon Arrival Times

Data D: {t;} fori=1to N

Non-homogeneous Poisson point process sampling distribution,
rate r(t; 0):

p(D|0, M) = exp [—/dtr Mﬂ[r

i=1
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Conventional Approaches

Try to reject a “null” (constant rate) hypothesis with an omnibus
test for candidate w; report p-value adjusted for # trials.

® Rayleigh statistic:

1 N 2 N 2
R} (w) = N (Z cos wt,-) + (Z sin wt,-)
i=1 i=1

® 72 statistic:

® >-Epoch folding:
® Fold data with trial period — phases 6; = wt; mod 27;
bin —n;, j=1to M
® Calculate Pearson’s x?(w) vs. nj = N/M; average over phase

22 /69



Needle in a Huge Haystack

Recall the frequency scale: ov ~1/T.

For gamma-ray pulsars T ~ weeks to months for N ~ 103 to 10°:

1/T ~ .1tol pHz Vmax ~ 3 kHz

— ~ 10° frequencies to examine

Actually much worse: pulsars spin down — need v parameter;
~ 103 © values to explore

Clever tricks reduce this burden by a few orders of magnitude:

® Tapered time difference FFTs (Atwood™ 2006)
® Tapering + dynamic programming (Meinshausen™ 2008)

Still need simple yet sensitive methods
What statistic is “best”? What role is there for Bayesian models?
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O New pulsars found in a blind search
O Miliisecond radio pulsars

Detected 46 (547) gamma ray pulsars to date, 16 (247) unknown
at other wavelengths




Population-Level Pulsar Science

Emission physics

* Radio & Gamma From Cap
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Neutron star formation (radio pulsars)
Dist’n of Pulsar Birth Kicks

0.03

Arzoumanian™ (2002):

® Data = Locations, velocities,
spins, luminosities of radio
pulsars

® Model birth, motion, beam
geometry, lifetime

® Bayesian multilevel model
accounts for selection &
uncertainties

® Compare rival models with
Bayes factors

cumulative f(v)

L o L
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o

[ B
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Birth velocity (km/s)
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QOutline

@ Discovering anomalies in the CMB
Detecting signals with unknown signatures
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Measuring the Cosmic Microwave Background
From space: WMAP

1.4 x 1.6 m primary

o upper omni antenna
reflectors

dual back-to-back
Gregorian optics
secondary FPA box
reflector
feed horns

passive thermal radiator
thermally isolating
instrument cylinder

ton deck (RXB inside)
op decl

star tracker
warm S/C and
instrument
electronics

reaction
wheels (3)

deployed solar array w/web shielding

Measures the whole sky
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From the South Pole

BOOMERanG

Measure small patches at high resolution to learn about small
angular scales
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What are we seeing when we look at the
CMB?

Az~200
2 Universe fully

| ionized

- Partially ionized
region

Redshift, z CMB surface
of last

scattering

T~

Universe no
longer ionized

Partial reionization caused by

first generation of stars, acts as a
secondary surface of scattering

Church (2005)
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CMB Measurements

Diff'l
Radiometer
Time Series

/

Angular scale (deg)
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Data
points

U1+1)c, /2m (uK?)
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Also get polarization maps and spectra
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Modeling the CMB

Expand temperature fluctuations in spherical harmonics:

ATm) _ T -T
T T
[e'e) i
— Z Z alelm(n)
=1 m=—1

Make two assumptions (approximations?):

® Large-scale isotropy
® (Gaussianity

Then a theory with parameters 6 predicts variances (power
spectrum) C;(#) such that:

1 1|a/m|2
p(am| Ci) = ¢ P\ 2 ¢

Note: Only 2/ 4+ 1 measurements constrain C; — “cosmic variance”
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What the Universe is Made Of

74% Dark Energy

4% Atoms

Coles 2009
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Testing Assumptions

Look for non-Gaussianity, unusual anisotropy (e.g., from nontrivial
topology):

Angular scale (deg)
2 0.5 0.2

7000 T T . L Bennett et
al. 2003
6000
® | ow quadrupole? o]
® Patterns in m-dependence? %mo “Cosmic Vriane" - Acoustic peaks
® Hot/cold spots? 2 orfy 1 universe
.i{ 3000 \
® Alignment of multipoles? &
= 2000 Data
int:
i 1000 perme \<\\ Theoretical
prediction
Methods use wavelets, needlets, ° Pt i
higher-order corr’'n functions. .. Multipole moment ¢
Issues:

® \What can spatial statistics offer?

® \When you look so hard for something
unusual in voluminous data, aren’t
you bound to find something?
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QOutline

© Discovering sources of ultra-high energy cosmic rays
Assessing coincidences (similarity amidst measurement error)
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The Highest Energy Particle Physics

Pierre Auger Observatory

® 3000 sq km sites, Argentina - i’—‘-ﬁ-‘«

e SDs: 1600 H20 Cerenkov tanks/site 4 DADS .

® FDs: 4 flourescence tel/station

e Northern (CO): R&D funded; plan
4000 improved SDs over 20k sq km
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Ultra-High Energy Cosmic Rays

CRs with E > 101> eV are suppressed by interaction with the

CMB.
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Coincidences Among UHE Cosmic Rays?
AGASA data above GZK cutoff (Hayashida et al. 2000)

AGASA + A20

él]pergalactic Plane

® 58 events with E > 4 x 1012 eV

® Energy-dependent direction uncertainty ~ 2°

® Significance test — Search for coincidences < 2.5°:
® 6 pairs; S1% significance
® 1 triplet; <1% significance
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Auger UHE CR Data: AGN Association?
Auger data above GZK cutoff (Nov 2007)

27 events with E > 5.7 x 101? eV
Energy-dependent direction uncertainty <1°
Crosses = 472 AGN with distance D < 75 Mpc
Significance test of correlation with AGN:

® Tune E, D, angle cutoffs with early events
® Apply to 13 new events — p-value 1.7 x 1073
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Issues In Coincidence Assessment

Directional, spatial, spatio-temporal

Directional uncertainties — “Hard” box/annulus, spherical
“normal” distributions; extended sources

Choice of statistic — How to measure “close”?
Nearest neighbor distance, correlation functions, Mahalanobis
distance, likelihood ratio, Bayes factor

Proximity criterion — How close is “close enough”?
Significance level /p-value, power, odds/Bayes factor

Multiple testing — How to account for number of
candidates? Bonferroni, FDR, Bayes; exploration algorithms
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Bayesian Model Comparison

® Calculate p(D|H;) for each H;
® Favor the hypothesis that makes the observed data most
probable (up to a prior factor)

H,
Hy
Hy

p(D|H,)

P Dobs /

If the data are improbable under Hp, the hypothesis may be wrong,
or a rare event may have occured. Significance tests reject the
latter possibility at the outset.
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Bayesian Coincidence Assessment
Two-Source Case

Not associated Associated

n(n) m(n)

ORON
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Direction uncertainties accounted for via likelihoods for object
directions:

¢i(n) = p(diln), normalized w.r.t. n (convention)

E.g., Fisher distribution for azimuthally symmetric errors

Hp: No repetition
p(di, da|Ho) = /dnl p(n1|Ho) £1(n1) X/d"2"'

1 1
= E/dnlﬁl(nl) XE/dHQ---
1

(47)2
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Hi: Associated (same direction!)

p(dh, dolHp) = / dn p(n|Ho) (1(n) £x(n)

Odds favoring association:

0 = 47r/dn ¢1(n) £2(n)
2
2C exp [_ C912} 52

%

_ 2 2
5 5 ) 01p = 01 +0'2
012 012

Odds O
010 =26° 610 =0°

Angular error

0'120'2:].0O ~ 15 ~T7b

01 =0y = 25° ~7 ~ 12

45 /69



Challenge: Large hypothesis spaces

For N = 2 events, there was a single coincidence hypothesis, M;
above.

For N = 3 events:

® Three doublets: 1+2, 1 +3,0r2+3

® One triplet

The number of alternatives (partitions, w) grows combinatorially:

® Must assign sensible priors to partitions

® Must deal with computational challenge of summing over
them
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Astrophysical model parameters:
hosts, luminosity, B field...

Site distribution, partition
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Small-N Brute Force Example

Bayesian Coincidence Assessment for AGASA UHECRs

N = 58 directions; search for coincidences

ny n3 N

1 0 1653

2 0 1,272,810

3 0 607,130,370
0 1 30,856

0 2 404,753,580
Method:

® |dentify all pairs (13) and triplets (3) with
multiplet Bayes factors > 1

® Generate & sum over all partitions including
those multiplets (gives lower bound)

® Use flat prior over all possible (n2, n3)

Odds for repetition: 1.4 (i.e., no significant
evidence)

[}

48 /69



Advantages of Bayesian Approach

Several “tuning” issues in conventional approaches are addressed
by averaging over choices:

® No angular cuts: Introduce latent n; and marginalize

® Energy cut may be similarly dealt with by introducing
distances and B field parameters and marginalizing

® Inter/intra-galactic B field scatter similarly dealt with via
parameters controlling inflation of uncertainties

Remaining issue: Choice of candidate population(s) to associate
with.

Is there any non-subjective way to handle this?
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QOutline

O Recurring statistical themes
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Some Recurring Statistical Themes

® Accounting for hypothesis multiplicity (“look elsewhere?")
® Choosing a test statistic

® Building chains of discovery & measurement
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Penalizing for Searching

Bayes factors arLdL “Occam factors”
' Likelihood

¢]

p(DIM) = / do; p(6:M) £(6;) ~ p(6;M)L(6;)06;

00;
JANC]
= Maximum Likelihood x Occam Factor

Q

L(67)

Models with more parameters often make the data more
probable — for the best fit

Occam factor penalizes models for “wasted” volume of
parameter space

Quantifies intuition that models shouldn’t require fine-tuning
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Frequentist multiplicity corrections

4.5

1.0

35

M) \

0.0 0.1 0.2

0.3 0.4 0.5
v (Hz)

Frequentist periodicity searches test the null at N statistically
independent frequencies. If p is the largest p-value, the
reported p-value is calculated with a Bonferonni correction for
test multiplicity:

p=1—(1—-p)N~Np for small p

This controls the “family-wise error rate” (FWER) at level p;
we seek to not have a single false rejection among any of the
N tests.
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Questions
Since N  the frequency range, this behaves similarly to the
Occam factor. Does this ameliorate the Jeffreys-Lindley
“paradox” in this setting (in favor of Bayes-like behavior)?

The periodogram is just a log MLR (for periodic vs. constant
alternatives). Why is period uncertainty treated differently
here than in the usual Wilks's theorem setting (Ax? with
DOF = # new params)?

Put differently: Bayesian model assessment always takes into
account the range of the space searched; MLR tests usually
only account for the dimension. What conditions require
range-dependent corrections (from frequentist POV)?
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Optimal Searching Under Cost Constraints

The number of periodogram bumps grows linearly with size &
duration of data; the size of period-drift search space grows
quadratically. How to efficiently search?

Meinshausen, Bickel & Rice (2009):
“Recursive coarsening”

® Throw out some information in the
data (e.g., tapered time series)

05
L

® Reduces sensitivity to small
signals (decreases power)

® But also reduces
computational cost for
searching

05 10 15 00

® Use search with coarsened data to
focus subsequent search with
less-coarsened data ' i

T 1
a76114 976116 76118 976120

15 20 25 30

Frequency

® Use dynamic programming to
optimally search subject to cost
constraints



Alternatives and Choice of Test Statistic

Setting
® Construct a test with small Type | error rate o for Hy
® Seek large power 3(Ha) against alternatives
® Focus on local alternatives: Distance from Hy ~ C/\/n

Y1
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Limitations of Omnibus Goodness-of-Fit Tests

Theorem (Janssen 2000; Lehman & Romano 2005)

® (3~ « for all Hy except those along a finite set of directions
(independent of n)

® The number of directions grows with «

“The results are not surprising. Every statistician knows that it is impossible to
separate an infinite sequence of different parameters simultaneously if only a finite
number of observations is available.”
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Freedman's Theorems (3 of 5)

“Diagnostics cannot have much power against general
alternatives” (Freedman 2009 & forthcoming book)

® Consider a GoF test for smoothness of data pdf (no
d-functions):
There are pdfs with large d's for which G ~ «

® Consider a GoF test for 2-D IID hypothesis, o < 1/2:
There are some alternatives with p ~ 1 for which 5~ 0

® Consider a GoF test of Hy against all Hy:
There are some remote Ha (various metrics) with

B(Ha) — 0
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Outlook

® “Specification error is extremely difficult to evaluate using
internal evidence.”

® Diagnostics should be performed more often; they can pick up
gross modeling errors.

® “Skepticism about diagnostics is warranted . . . a model can
pass diagnostics with flying colors yet be ill-suited for the task
at hand.”

® “A proper choice of test must be based on some knowledge of
the possible set of alternatives for a given experiment.” (L&R
2005)
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Pulsar searching: Bickel, Kleijn & Rice (2007)

No matter how clever you are, no matter how rich the dictionary
from which you adaptively compose a detection statistic, no matter
how multilayered your hierarchical prior, your procedure will not be
globally optimal.

® Uses Bickel™ (2006) framework to concentrate power in set of
a priori specified orthogonal directions

® Uses a finite Fourier basis
® Uses score (derivative of log-L£ at null) rather than £ ratio
® Handles frequency uncertainty via averaging

® Handles frequency derivative
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Score Tests: Lazy Scientist’'s MLR?

Maximum likelihood ratio (MLR) test
Consider a model with parameter ¢, and two (simple)
hypotheses:

Ho:(9:90 H1:(9:91

The most powerful test of H; vs. Hy rejects Hy if likelihood
ratio exceeds a critical value:

L(61) _ p(Dl[6h) - C

L(6o)  p(Dl6o)

If Hy is composite, the MLR test plugs in the MLE for 61,

L(61)

£(0o) > C

Requires fitting both null and alternative
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Score test
Consider log-likelihood ratio test for 61 = 0y + €:

L(6p +¢€)— L(6y) > logC for L(6) = log L(9)

— " > log C

Define the score function S(0) = dL/d0; build a test statistic
from S(6).

Can show that:
E[S(6)|6] = 0, E[S?(0)|0] = Z(#) (Fisher info)

So test the null using Q = 512((6(95) ~ X2 (asymp.)

® Does not require any fitting of Hy
® Approximately the MLR test for 8; = g + ¢

Bickel™ (2006) use this for pulsar searching, testing against
alternatives in a Fourier family.
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Chains of Discovery

Exoplanets
Spectral _ | Radial Velocity o Plan_et Exoplanet Population
> > Detection & > ;
Data Curves Properties
Measurement
Gamma-ray pulsars
LAT Tracker Gamma Ray o Puls_ar Pulsar Population
. > Detection & .
Data Properties Properties
Measurement
Cepheids, SN Ia,
Galaxy Surveys
cmB Lambda CDM
Parameters
Diff! T Fluctuation _ Angular  L—71
Radiometer Sky Maps > Power ‘
Time Series y Map Spectrum [T
Anomalies,
Non-Gaussianity
UHE cosmic rays
Cerenkov & | Cosmic Ray - Sé:.f:ggg; Associations With
Particle Data Properties Candidate Hosts

Dist'n Features

63 /69



“Feedback” Paths

Exoplanets
Spectral _ | Radial Velocity o Plan_et Exoplanet Population
> > Detection & > ;
Data Curves Properties
Measurement
‘\M/ K
Gamma-ray pulsars
LAT Tracker Gamma Ray o Puls_ar Pulsar Population
. > Detection & .
Data Properties Properties
Measurement
\
Cepheids, SN Ia,
Galaxy Surveys
cmB Lambda CDM
Parameters
Diff! T Fluctuation _ Angular  L—71
Radiometer Sky Maps > Power
Time Series y Map Spectrum [T
Anomalies,

UHE cosmic rays

Cerenkov &

»| Cosmic Ray

Particle Data

Non-Gaussianity

SN

Properties

\ 4

Spectrum &

Associations With

Directional
Dist'n Features

Candidate Hosts
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Implementing Chains of Discovery

Discoveries must be communicated to facilitate reuse:

® Bayes: report marginal likelihoods for interesting parameters
But priors must be chosen carefully if many possibly related
parameters are marginalized

® Frequentist: report profile likelihoods
But we know that profiling can be bad, tragically so in
measurement error problems

® Frequentist: InCA group's method for propagating uncertainty
by inverting tests

How to implement “feedback” /adaptivity?
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Feedback Example: Adaptive Threshold vs.
Multilevel Modeling

Setting: Counting sources (real vs. spurious)

Measure N = 100 objects with additive Gaussian noise, o = 1:

® 30 have A=2.2
® 70 have A=0
Detect via 100 tests of Hy : A=10

Detection Result:
Source Present | Negative Positive | Total

Ho: No T_ F_|_ 1Z0)
Hi: Yes F_ T, 1

Total N_ N4 N
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Thresholding Controlling FWER and FDR

Threshold criteria:

® Control family-wise error rate at level o: accept objects with
p-valuesp = /N, aiming to not make a single false discovery
— 9 (accurate) discoveries for FWER = 20%

® Control false discovery rate, (Fy/Ny) = 20% via
Benjamini-Hochberg — 25 discoveries (4 false)

® Other choices possible

p—value

0.4]

0.2]

—100% nll predlctlon
20% F »
., #D8 ha accepted &

++++ FDR null rejected B
« FW null rejected

Rejected 25 nulls in 100 tests
30 true non-nulls present & 1
4 false discoveries

Issue with FRD control:
Astronomers will use detections to
infer distributions; will be biased
for dim sources
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Multilevel Model Approach

Let f = fraction of objects with A =2.2.

If f were known, it would the prior probability for a Bayesian odds

calculation.

Treat f as unknown (flat prior); infer it from the data:

1. T T T T
[, p(f]D)
o
ﬁ} 1.
08l + 0.8 1 |
- + 0.6 4
By 0.4f f=0.32 1
+ 0.2F q
0.61- ® ) q
- 09T 0.3 0.5
< ®
.o
0.4f ] 1
o
®
0.2F 1
o 20 40 60 80 1
Rank

One can say there are about 30
sources present, without being
able to say for sure whether many
of the candidates are sources or
not.

Caution: The “upper level” prior
needs some care in more complex
settings (Scott & Berger 2008;
MLM literature)
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Final Provocation

Thesis: Important data analyses are often used sequentially

® Sequential experimentation /exploration
® Chains of discovery (individual — population)

Herman Chernoff on sequential analysis (1996):

| became interested in the notion of experimental design in a
much broader context, namely: what'’s the nature of scientic
inference and how do people do science? The thought was not
all that unique that it is a sequential procedure. ..

Although | regard myself as non-Bayesian, | feel in sequential
problems it is rather dangerous to play around with
non-Bayesian procedures.... Optimality is, of course, implicit in
the Bayesian approach.
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