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Let k be a global field containing the n'® roots of 1. We shall assume that n > 1 and
even occasionally that n > Z.

Let S be a set of places of k containing all places v with |n|, # 1.

Let [ be the ring of 5 integers. It is often useful to assume that K iz a principal ideal
domain.

Let kg = ]_[m_: g ky. Let e be an additive character on ks non-trivial but trivial on R.
It i= often useful to assume that

{reks:elzR=1}=R

(but this is sometimes not helpful).



Let jin(k) be the group of n'® roots of 1 in k. Let ¢ : p,(k) — C* be an injective
character. Let (=) be the n*® order Legendre-Jacobi symbol. Let (-.-) be the Hilbert
symbol on kZ % k2. Thus, if a and b are coprime in R we have

(%) = (a.b) (E)

Note - this is the opposite convention to others.

glr,e,e) = Z (g] e(rx /)

r (mod c)

Let

be the standard (Gauss sum.

It is often necessary to worry about the dependence of these concepts on S - we shall
supress that here.



We write
i.'i-'G(TL £, ]-I'h S_:| = z g(?'. £, c:' J-l‘ﬁ\"-{l::'_s

E.-u'i"ll

which converges in Re(s) > % Here we write ~ to indicate that two element lie in the
same coset of k7 /kZ". The sum is taken modulo R*".

This has an analytic continuation to the entire as a meromorphic function. There is

at most one pole in Re(s) = 1; it isat s = 1+ % We denote the residue there by
2o(r e ).



Goal: determine the p°(r,€e,n).



Let 7 be a prime in S and let S* be the union of 5 and the valuation associated with
7. Let ¢ = N (7). Then
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From this one and the Periodicity Theorem one deduces that for 0 < m < n — 2 one
has

E__i -;|'|1_+ 1
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and

plrom™ 1 e, n)=0.

These determine p essentially completely if n = 2 or 3. If n > 3 then they do not
suffice. What happens is an open question.



Let & be an irreducible simple root system, Le, one of 4, B, C,.. D. E. Fy Ga.

Let v be the rank of @ We assume that we have defined the positive roots and let
cvq, . ..o, be the corresponding set of simple roots. Let 7 be the ambient vector space;
let (-,-) be the inner product. Let Vo =V &g C. Let W be the Weyl group of &,

We shall assume that the short roots are of length 1.
Let A be the lattice generated by &. Let A be the dual lattice to A.

Let cvq,.... ¢, be the dual basis to ay....,a,. Here we assume that (&,, 0,) = 4,;.

Bump, Brubaker and Friedberg prove that if d{a) = 242:2) 4hen
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A second goal: we know that there
are g,(r,€,c) which extend the classical

Gauss sums in a natural fashion.
Give a construction of them in the

ring R analogous to the classical
definition of the Gauss sum.



Brubaker, Bump, Chinta, Friedberg, (Gunnells, Hoffstein introduce
gelm, =, c)

for m,c € R". Thissatisties forc = (c1,...,er)and ¢’ = (o],.. ., ) with ged(ey ... on. ) .. ) =
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We also have if m’ = (m/,... ,m.) and ged(m., ;) = (1) for 1 < i < r then
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Let A be the ring of polynomials =* where A is in A. Here % = 2%

r; = x** then we can identify A with Clxy, ..., Tpy ]y ene,s x 1.

We let W act on A by

I.u" ' 1 _:'l,'. . i |_1 .}l.
W LZ el Az = Z clw™ Az

A A
We then have w(w's) = ww'(g].
It is convenient to write 3, c(w™tA)z* as Yo c( Nz,

We shall write A for the field of fractions of A.

. If we write



We now let n be as before and
nia) = n/ged(n, ||al|?)

and
n; = nioy).

Here ||a|]* = (a. a).

Let

=[] #nlk

1<Cicr

We let this group act on A by

where A= Aoy + -+ Ao,

The dual group M to M is Hl e fnf and for £ = (...

Ae={deA:(,....¢ )0 =e((T

Likewise we define Ay,

) in M we let

rlr':-'}



We have ) ]
A= @ A,.
We allow ourselves parameters g and ([, ..., .)€ Zr. We also need a tamily (1)....,v(n—
1) satisfying v(k)y(n — k) = g. We set v(0) = 1 and extend « to Z by periodicity. Let
s; € W be the reflection corresponding to a;. We let S; map @9 Ae to itself by
] ' " — 3 i —_] 5 " N 1— -1
(6x) = (gt =t Dneg (g~ (o) ™)) ot o
. e 1y o 1—(g=
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Chinta and Gunnells prove that if we associate s; to 5; then we obtain an action of
W on A.
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Recall:

Bump, Brubaker and Friedberg prove that if d(a) = 218:9) thon
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Let

Al = H 1l — q”';ﬂ:'d';ﬂ:'l-“';ﬂ:'&)
o=
and
D(x) = J[ (1 - gr@de)=tprlee),
o=
Then one has for w e W
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where o denotes the action above. Then
Diz)h(x;q,1)

lies in A. This is the kernel of the loeal construction of the gg(m, =, ¢).



These formulae show how we should define
the multiple Dirichlet series. In this form it
is just a variant of the Chinta-Gunnells
construction. What is still missing is a
construction in the framework of the Dedekind

ring R.



The Periodicity Theorem in one variable
will extend in a straightforward way to
the several variable case. This will mean
that the linear relations between the
residues correspond to the action of

the non-identity elements of the Weyl
group. Note the similarity to the theory
of intertwining operators.



This means that there are cases in
which one can expect a uniqueness
result. Roughly - when the rank
is small compared to n the residues
will vanish, when large then there
will be no way of deducing the
values of the residues from finitely
many. There will be some special
values in between. One can guess
what they might be but I prefer
not to stick my neck out today.



Problems with general families of groups.
The general linear groups are not Chevalley

groups and they are different from these
in several ways. For example - the additive
characters on N are in one orbit under the

diagonal group.



Also - there is no Fourier synthesis in
the sense of (Kirillov,) Piatetski-Shapiro
and Shalika. That is - the general linear

group has the very special subgroup

whose bottom row is (00 ...0 1).



One can make various conjectures about
the arithmetic nature of the residues.
We shall not repeat them here - the
problem of building up humerical evidence for
them is extremely difficult as estimates
of the scale of the computations should
that they are vastly beyond what is practical

at the moment.



Finally - a salutory point. If we could
prove all that T have sketched could
we make real progress towards the
main problem, that of understanding

the arithmetic nature of the residues.

Unfortunately the answer seems to be

n

"no”. To get further one will need
radically new ideas.



