Complex and Non-Archimedean (Co)amoebas, and Phase Limit Sets

Mounir NISSE

Université Pierre et Marie Curie - Paris 6, IMJ (UMR 7586) Randomization, Relaxation, and Complexity Join works with P. Johansson, M. Passare. & F. Sottile

1 March, 2010

< 同 > < 三 > < 三 >

Summary

(ロ) (四) (注) (注) (注) (三)

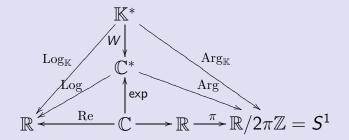
Let $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$, and $\mathbb{K}^* := \mathbb{K} \setminus \{0\}$ the field of Puiseux series.

$$w : \mathbb{K}^* \longrightarrow \mathbb{C}^*$$

 $a \longmapsto w(a) = e^{\operatorname{val}(a) + i \operatorname{arg}(\xi_{-\operatorname{val}(a)})},$
or any $a \in \mathbb{K}$ with $a = \sum_{j \in A_a} \xi_j t^j.$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Description of the Complex Algebraic Torus



We apply the maps coordinatewise.

A (1) > A (2) > A

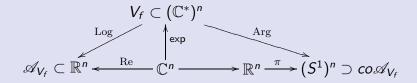
Let V_f be the complex algebraic hypersurface defined by the polynomial

$$f(z) = \sum_{\alpha \in \operatorname{supp}(f)} a_{\alpha} z^{\alpha},$$

with $a_{\alpha} \in \mathbb{C}^*$, and $\operatorname{supp}(f)$ finite subset of \mathbb{Z}^n

$$V_f = \{z \in (\mathbb{C}^*)^n \mid f(z) = 0\}$$

Description of the Complex Algebraic Torus



DEFINITION

The complex amoeba of V_f is $\mathscr{A}_{V_f} := \operatorname{Log}(V_f)$

The complex coamoeba of V_f is $co \mathscr{A}_{V_f} := \operatorname{Arg}(V_f)$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition of Non-Archimedean Amoebas and Coamoebas

DEFINITION

The Non-Archimedean amoeba of V_f is $\mathscr{A}_{V_f} := \operatorname{Log}_{\mathbb{K}}(V_f)$

The Non-Archimedean coamoeba of V_f is $co\mathscr{A}_{V_f}:=\mathrm{Arg}_{\mathbb{K}}(V_f)$

Theorem (Nisse, 2009)

Let V be a complex algebraic hypersurface defined by a polynomial f with Newton polytope Δ . Let us denote by τ_f the subdivision of Δ dual to the spine of the amoeba of V. Then there exists a complex tropical hypersurface $V_{\infty, f}$ satisfying the following :

(日) (同) (三) (三) (二)

Theorem (Nisse, 2009)

Let V be a complex algebraic hypersurface defined by a polynomial f with Newton polytope Δ . Let us denote by τ_f the subdivision of Δ dual to the spine of the amoeba of V. Then there exists a complex tropical hypersurface $V_{\infty, f}$ satisfying the following :

(i) The closure of the coamoebas of $V_{\infty,f}$ and V in the real torus $(S^1)^n$ have the same homotopy type;

Theorem (Nisse, 2009)

Let V be a complex algebraic hypersurface defined by a polynomial f with Newton polytope Δ . Let us denote by τ_f the subdivision of Δ dual to the spine of the amoeba of V. Then there exists a complex tropical hypersurface $V_{\infty,f}$ satisfying the following :

- (i) The closure of the coamoebas of $V_{\infty,f}$ and V in the real torus $(S^1)^n$ have the same homotopy type;
- (ii) The lifting of the coamoeba of $V_{\infty,f}$ in the universal covering of the torus $(S^1)^n$ contains an arrangement \mathscr{H} of codual hyperplanes to the set of edges of τ_f which determine completely the topology of the complex coamoeba of V.

イロト イポト イヨト イヨト 二日

Theorem (Johansson-Nisse-Passare, 2009)

Let k, and m be two positives natural integers , and $\mathscr{P}(k) \subset (\mathbb{C}^*)^{k+m}$ be an affine linear space of dimension k. Then, the dimension of the (co)amoeba (co) \mathscr{A}_k of $\mathscr{P}(k)$ satifies the following :

 $k+1 \leq \dim((co)\mathscr{A}_k) \leq \min\{2k, k+m\}.$

In particular, if $\mathscr{P}(k)$ is in general position, then the dimension of its (co)amoeba is maximal.

(日)

For example, there are two types of amoebas of lines in $(\mathbb{C}^*)^{1+m}$ for m > 1, amoebas with boundary and without boundary. All real line in $(\mathbb{C}^*)^{1+m}$ for $m \ge 1$ are with boundary.

マロト イラト イラト 一戸

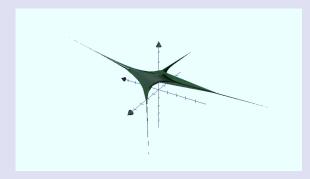


Figure: Amoeba of real line in $(\mathbb{C}^*)^3$

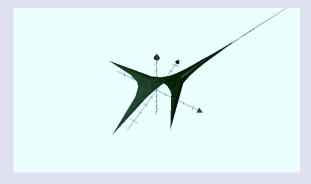


Figure: Amoeba of real line in $(\mathbb{C}^*)^3$

- 4 同 2 4 日 2 4 日 2

Theorem (Johansson-Nisse-Passare, 2009)

Let $V \subset (\mathbb{C}^*)^n$ be an algebraic variety with defining ideal $\mathcal{I}(V)$. Then the (co)amoeba of V is given as follows :

$$(co)\mathscr{A}(V) = \bigcap_{f \in \mathcal{I}(V)} (co)\mathscr{A}(V_f)$$

Let S(V) be the set of sequences $\{z_n\} \subset V$ such that z_n converge to the infinity. Let $q = \{z_n\}$ be an element of S(V), and acc(q) be the set of accumulation points, in the real torus $(S^1)^n$, of the sequence $\{\operatorname{Arg}(z_n)\}$.

Definition (Nisse-Sottile, 2009)

Let $V \subset (\mathbb{C}^*)^n$ be an algebraic variety. The *phase* limit set of V is the subset of the real torus $(S^1)^n$ denoted by $\mathscr{P}^{\infty}(V)$ and defined by : $\mathscr{P}^{\infty}(V) := \bigcup_{q \in \mathcal{S}(V)} acc(q).$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Nisse-Sottile, 2009)

Let V be an algebraic variety of dimension k in $(\mathbb{C}^*)^n$. Let $co\mathscr{A}$ be its coamoeba and $\mathscr{P}^{\infty}(V)$ its phase limit set. Then $\overline{co\mathscr{A}} = co\mathscr{A} \cup \mathscr{P}^{\infty}(V)$, where $co \mathscr{A}$ denotes the closure of $co \mathscr{A}$ in the universal covering of the real torus. Moreover, $\mathscr{P}^{\infty}(V)$ is the union of some arrangement $\mathscr{H}(V)$ of k-torus and the coamoebas of some complex algebraic varieties of dimension I with $I \leq k - 1$.

Theorem (Nisse-Sottile, 2009)

Let V be an algebraic variety over \mathbb{K} with defining ideal $\mathcal{I}(V)$, and with non-Archimedean amoeba $\mathscr{A}_{\mathbb{K}}(V)$. Then, its non-Archimedean coamoeba is the union of the non-Archimedean coamoebas of the varieties with defining ideals $in_w(\mathcal{I}(V))$ for $w \in \operatorname{Vert}(\mathscr{A}_{\mathbb{K}}(V))$:

$$\mathit{coA}_{\mathbb{K}}(V) = \cup_{w \in \operatorname{Vert}(\mathscr{A}_{\mathbb{K}}(V))} \mathit{coA}_{\mathbb{K}}(V(\mathit{in}_{w}(\mathcal{I}(V)))).$$

Moreover, each $co\mathscr{A}_{\mathbb{K}}(V(in_w(\mathcal{I}(V))))$ is a complex coamoeba of varieties with maximally sparse defining polynomials, and such that the spine of their amoebas contains only one vertex.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

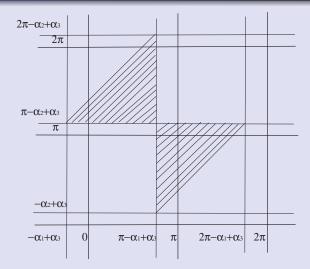


Figure: The coamoeba of the line in $(\mathbb{C}^*)^2$ defined by the polynomial $f(z, w) = r_1 e^{i\alpha_1} z + r_2 e^{i\alpha_2} w + r_3 e^{i\alpha_3} where r_i$ are real mountr NISSE Complex and Non-Archimedean (Co)amoebas, and Phase Limit S

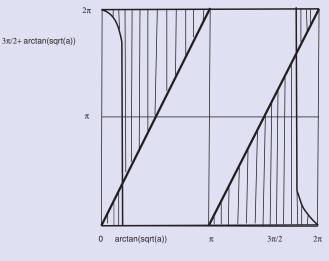


Figure: Coamoeba of parabola with solid amoeba (not Harnack).

• • = • • = •

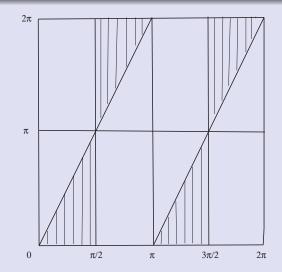


Figure: Coamoeba of a complex tropical parabola with solid amoeba

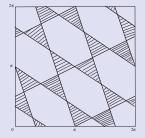


Figure: The coamoeba of the curve defined by the polynomial $f(z, w) = w^3 z^2 + w z^3 + 1$

A (1) > A (1) > A

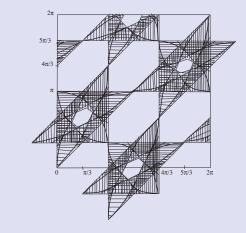


Figure: Coamoeba of a cubic with solid amoeba

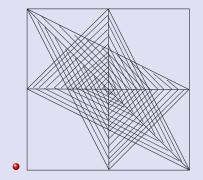


Figure: Coamoeba of a Harnack curve

< ロ > < 同 > < 三 > < 三 >