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‘ Numer. Alg. Geometry Collaborators

= Daniel Bates* (CSU)

= Jonathan Hauenstein™ (Fields/Texas A&M)
= Chris Peterson (CSU)

= Charles Wampler* (GM R & D)

*Bertint Team
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‘ Biological Modeling Collaborators

= \Wenrul Hao (Notre Dame)
= Jonathan Hauensteln (Fields/Texas A&M)
= Bel Hu (Notre Dame)

= Yuan Liu (Notre Dame)
= Timothy McCoy (Notre Dame)

= Yong-Tao Zhang (Notre Dame)
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‘ Overview

= Numerical Algebraic Geometry
= Adaptive Multiprecision

= Local Dimension Test

= Regeneration

= Bertini
s Zebra Fish

s Tumor Growth

UNIVERSITY OF

Randomization, Relaxation, & Complexity A @ NOTRE DAME
BIRS, March 4, 2010



Numerical Algebraic Geometry

Robotics/Mechanism Theory

= Goal: To numerically manipulate algebraic sets

= Technical Challenge: To combine high performance
numerics with algebraic geometry

= Applications:
= Robotics and Mechanism Theory
= Chemical Reactions including combustion
= Computation of algebraic-geometric invariants

Combustion
= Solution of discretizations of nonlinear differential

equations 0y =20 kXo, = X3
Hy, =2H koXp, = X%
Ng = 2N kaXn, = X%
COy,=04+CO kaXco, = XoXco
OH=0+H keXon = XoXy
H>O=0+2H kXm0 = XoX5
NO=0O+N ke Xyvo = XoXy.

There are four conservation equations:

T =Xg+2Xg, + Xon +2Xp,0
Tc =Xco+ Xco,

graphics on right from Sommese-Wampler Book

To =Xo+ Xco +2Xo, + 2Xco, + Xow + Xu,0 + Xno
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‘ General References up to end of 2004

= A.J. Sommese and C.W. Wampler,
Numerical solution of systems of
polynomials arising in engineering and
science, (2005), World Scientific Press.

= T.Y. LI, Numerical solution of polynomial
systems by homotopy continuation
methods, in Handbook of Numerical
Analysis, Volume XI, 209-304, North-
Holland, 2003.
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‘ Three Recent Articles

= D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W.
Wampler, Adaptive multiprecision path tracking, SIAM
Journal on Numerical Analysis 46 (2008) 722-746.

= D.J. Bates, J.D. Hauenstein, C. Peterson, and A.J. Sommese,
A numerical local dimension test for points on the solution
set of a system of polynomial equations, SIAM Journal on
Numerical Analysis, 47 (2009), 3608-3623.

= J.D. Hauenstein, A.J. Sommese, and C.W. Wampler,
Regeneration homotopies for solving systems of
polynomials, to appear Math. Of Computation.
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‘ Adaptive Multiprecision

Is Costly!
double (52 bits) | 64 bits | 96 bits | 128 bits | 256 bits | 512 bits | 1024 bits
2.447 32.616 | 35.456 | 35.829 | 50.330 | 73.009 | 124.401

GMP is convenient, but because of Its relative

machine independence It takes almost no advantage
of the built in hardware floating point

Randomization, Relaxation, & Complexity
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‘ Adaptive multiprecision

96-hit AMP AMP2
time (sec)| 196.143 47.393 39.854
paths/sec|  1.305 5.402 6.423 Six revolute serial
link robot

Average time, in seconds,
needed to solve the Inverse
Kinematic Problem of General
6R Serial Robot using Bertini
with tracking tolerance of 10
and

final tolerance of 1012

2.4 GHz, Opteron 250 processor
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‘ Adaptive multiprecision

Near-singular conditions actually arise.

The Four-Bar Linkage

Out of 143,360 paths (for the 9-point problem): P Path Tracr Pt

1184 paths (0.826%) used higher precision and
then dropped back to double precision before
starting the endgame

680 paths (0.474%) used at least 96-bit
precision and then dropped back to double
precision before starting the endgame

Fixed Link
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‘ Continuation’s Core Computation

= Glven a system f(x) = 0 of N polynomials in
N unknowns, continuation computes a finite
set S of solutions such that:
= any Isolated root of f(x) = 0 Is contained In S;

= any isolated root “occurs” a number of times
equal to i1ts multiplicity as a solution of f(x) = 0;

= S Is often larger than the set of isolated
solutions.
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‘ LLocal Dimension Test

= The essential case: check if p is isolated

= Homotopy continuation yields a number
which bounds the multiplicity If the point
was Isolated.

= |f not isolated, the space of truncated Taylor
series around p of functions on the solution
space Is strictly increasing in dimension

= The Macaulay matrix (as presented by
Dayton-Zeng) computes this dimension
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‘ Implementation Considerations

= Computation of the rank of the
Macaulay matrix requires
= Different levels of precision

= Reliable multiple precision endgame to
compute point p to needed accuracy
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‘ Some Comparisons Using Bertini

1s_1solated membership test
m | slicing | cascade slicing cascade
3 0.12 0.15 0.12 0.17
4 0.71 1.12 1.15 1.32
5 4.96 7.30 11.86 10.68
§ 29.26 71.51 149.59 02.28
7| 183.14 288.70 2036.73 854.33
8 | 1157.74 | 1714.35 | 17362.71 8720.14
9 | 7296.78 | 9533.50 | 219509.84 | 83060.43

Comparison for computing a numerical irreducible decomposition for G, in seconds

2xm adjacent minors of 3xm matrix
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‘ Parallel VVersion (64 cores)

= 8 dual quad-core Xeon 5410s (2.33 GH)

vs_1solated membership test
m | slicing | cascade | slicing | cascade
7 | 15.83 16.36 82.59 30.03
8 | 35.87 49 .88 350.96 168.46
9 | 138.91 | 213.23 | 3320.04 | 1399.43
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‘ Equation-by-Equation Methods

= Potential to solve systems with relatively few
solutions that are completely outside of the
beyond the pale of standard continuation

methods

= Intersection Method by Sommese, Verschelde,
and Wampler

= Regeneration Method by Hauenstein, Sommese,
and Wampler
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‘ Basic ldea
It is a natural and ancient approach to work equation by

equation.

First Solve fi(x) = 0;

s
o2
S——

then solve = ();

then solve f5(z) | = 0:;...and so on.
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*—

Both methods generate a witness set for fy,..,f, .4

I fi(z)
Regeneration — (. ¢) = E
fk(:)l |
(L= 1) frr (2) + AL Ly (2) |
I from |
H(w.t) = : (I =)W (w)+~tP(w)) <«— Intersection
fkom
| freiomy
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i fi(z)

fk.( )
(U= ) frer (2) + TS L ()
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‘ Hardware

= Continuation is computationally intensive.
On average:

= 1N 1985: 3 minutes/path on largest mainframes.

UNIVERSITY OF

Randomization, Relaxation, & Complexity 20 @ NOTRE DAME
BIRS, March 4, 2010



‘ Hardware

= Continuation is computationally intensive.
On average:

= 1N 1985: 3 minutes/path on largest mainframes.

= In 1991: over 8 seconds/path on an IBM 3081,
2.5 seconds/path on a top-of-the-line IBM 3090.
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‘ Hardware

= Continuation is computationally intensive.
On average:

= 1N 1985: 3 minutes/path on largest mainframes.

= In 1991: over 8 seconds/path on an IBM 3081,
2.5 seconds/path on a top-of-the-line IBM 3090.

= 2008: 10+ paths a second on an single processor
desktop CPU; 1000’s of paths/second on
moderately sized clusters.
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Bertini

= Developed by Daniel Bates, Jonathan
Hauenstein, Charles Wampler, and myself

= Binaries for Linux (including clusters and
multiple core workstations), Macs,
Windows are freely available at

www.nd.edu/~sommese/bertini
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Randomization, Relaxation, & Complexity 23 @ NOTRE DAME
BIRS, March 4, 2010



Bertini

= Bertini is designed to

Be efficient and robust, e.g., straightline
evaluation, numerics with careful error
control

With data structures reflecting the underlying
geometry

Take advantage of parallel hardware

To dynamically adjust the precision to
achieve a solution with a prespecified error.
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‘ Major Ingredients in Bertini
= Adaptive Multiprecision
= Straightline evaluation
= Special Homotopies
= Genericity
= Endgames & ODE Methods
= Intersections

= Deflation
= Multiplicity & Local Dimension Testing

- Regeneration
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‘ Solving Differential Equations

= E.L. Allgower, D.J. Bates, A.J. Sommese,
and C.W. Wampler, Solution of Polynomial
systems derived from differential equations,

Computing, 76 (2006), 1-10.
s Direct solution and refinement.
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‘ Predator-prey system (Hauenstein, Hu, & S.)

Let ne N, For1 <7< nand 1< j <4, define

1
fij = 5% (Uit1,5 — 2u4 5 +wi—1,5)
1 1
+ [_?1 + 1)2 (.u'i:.j‘kl o Quiaj + 'H-t"j_l) + 25[?*1 + 1}2 Ui, j (1 - Ui’j)
1
9ij = 3¢ (Vit15 — 2015 + Vi—1,5)
1 1

-+ n T 1) (Vi j+1 — 2vi 5 +vij—1) + 5(n + 1)215,._; (ui; — 1)

with ug ; =V = Uny41,j = Uny1,; = U0 =Vip =Ui5 = Vi5 = 0.
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i_

= 8n quadratics with 8n variables
= Total degree 2°"
= Actually has 2*" nonsingular isolated solutions

total degree 2-homogeneous | polyhedral regeneration

a| paths paths paths paths slices moved

1 256 70 16 60 42

2 65,536 12.870 256 1020 762

3 16,777,216 2.704.156 4096 16,380 12,282

4 4.294.967.296 601,080,390 65.536 262,140 196,602

5 | 1,099.511.627.776 | 137.846.528.820 | 1,048,576 | 4,194.300 3,145,722
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PHC HOM4PS5-2.0 Bertini
1 polyvhedral polyvhedral regeneration | parallel regeneration
1 0.6s 0.1s 0.3s
2 4mbTs 7.3s 15.6s
3 | 18d10h18mb56s Om32s 9m4 3s
4 - 3d8h28m30s 5h22m15s Tma32s
5 - - 6d16h27m3s 3h41m?24s

n =5 (40 equations & 40 variables): < 80 min.
with 200 cores (25 dual Xeon 5410 nodes)

Randomization, Relaxation, & Complexity
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‘ Zebra Fish

= Why do the siripes on a zebra fish or the
spots on a tiger form the patterns they do?

= Alan Turing (1952), The chemical basis of
morphogenesis: nonlinear diffusion equations.

= A good reference for this story Is
Mathematical Biology by J.D. Murray
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= Based on the model developed in

= Y.—T.Zhang, A. Lander, and Q. Nie, Computational
analysis of BMP gradients in dorsal-ventral patterning of
the zebrafish embryo, Journal of Theoretical Biology,
248(4) : 579 — 589, 2007.

s Our work

= W. Hao, Y. Liu, J. Hauenstein, B. Hu, A. Sommese, and
Y.-T. Zhang, Multiple stable steady states of a reaction-
diffusion model on zebrafish dorsal-ventral patterning, to
appear Discrete and Continuous Dynamical Systems -
Series S.
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| The differential equation system
J[L] &2[L]

o7 = Pr—. 5 — konlL](Fo — [LR]) + koss[LR] = jon|L][C] + (Joss + 7)ILCT + VL5
.
AL onlL) (o — [LE]) ~ (kogs + haeg) LR
IlLC]  _ O’LC] | . .
5 = Dps 92 T don IL[C] — (Jogg + ) LCT;
d[C] 92[C]

= Do 5+ — Jon[LI[C] + Gop /ILC] + Ve

ot
/ — V. . Ve ,—at if r > 7., ]
V v, + LCTH-&-.’I‘ LC-Tm?,n Clorg€ ., I r - g‘f-'ma:m
C — VCmin '
1 +~c[LR] 0, otherwise.
Lf:[xma:ﬂ T L:’me —bt
—l_ LLmaij e .

L«L — L*Lmin + 1 i "}"L[L-R]_l
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Solutions

1 1 f 4
0s
05 05F 05 4
0 . . . . . . . . a0 1 L 1 L . . . . 5 . . . . . . . . ) . . . , . . \ \
0 001 002 003 004 005 008 007 008 0 001 002 003 004 005 006 007 0.08 o 001 002 003 004 005 006 007 008 0 o0t 002 003 004 005 0O0B 007 008
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‘ Some timings

= Total degree 16" (which = 4,294,967,296
When N = 9).

N | Iin. prod. bound | solutions over C | solutions over R | computing nodes | time

3 25 16 6 serial 2.7s

4 125 98 16 serial 14.4s
5! 625 H44 28 1 21.1s
§ 3,125 2,882 184 5 51.6s
7 15,625 14,896 930 25 2m43s
8 78,125 75,938 3,720 25 35m?2s
9 390,625 384,064 17,974 25 11h3m

Table 2.1: Summary of solving the discretized system for 3 < N < 9

Randomization, Relaxation, & Complexity
BIRS, March 4, 2010

34

UNIVERSITY OF
@NGTRE DAME




‘ Tumor growth

g — Ao —0 in (1)
—Ap (o —a) in Q(t)

o = 1 on J€)(t)
p = K on J€)(t)
7
= = —V on 0€)(t)
Randomization, Relaxation, & Complexity ~ 4¢ &5 NOTRE DAME
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‘ Assumptions

= In vitro

()(t) denotes the tumor region, ¢ denote the concentra-
tion of nutrients, p denote the pressure, ¢ denote the
concentration of nutrients needed for sustainability, and
1t denote the aggressiveness of the tumor. Let x denote
the mean curvature, n denote the outward normal direc-
tion, and V,, denote the velocity of 9€)(t) in the outward
normal direction n.
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i Governing equations:

@ Diffusion of the nutrients:

ogr—Aoc+a=0 inQt).

@ Conservation of mass: divV = S, S = proliferation rate.
Assuming linear dependence ono: S = (o0 — ), (here 5 > 0 is
the death rate)

@ Porous medium in tumor region: Darcy’s law: V = —Vp. Thus

Ap = —pu(oc— &) InQ(t).

@ Continuity: V, = —% on 9Q(t)

where V,= velocity in the normal n direction.
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‘ Radial solution iIs quite cheap: < 1 sec. (one core)
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‘ Moving Grid

3

: -3 -2 -1 0 1 2 3 SITY OF
Randomiz DAME
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‘ 3rd Order Stencil

ol ]
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i Critical Points 3 minutes with 200 cores

I I I I I I
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‘ Far Along the Branch

4
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‘ Further work

= Stability

= More realistic models
= Three Dimensional Models
= Necrotic Core Models (disconnected free

boundaries)

= Model presented Iin
for a free boundary

—riedman & Hu, Bifurcation
problem modeling tumor

growth by Stokes equation, SIAM J. Math.

Anal., 39, 174-194.
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| Stationary Problem

or—Ac+o0=0, xeQ(i), t>0,

o=1, xeQi), t >0,

AV +Vp= %V(n—ﬁ). x € Q(t), t >0,

divV = pu(oc —5), xeQ(t), t>0 (5<1).
T(V.p)fi = (— Y+ gm _ a))ﬁ. X eT(t), t >0,
TWV.p)= (V) +VV—pl, =)}
Vo=Vv-n onTl(t),

subject to the constraints

[ Vdx —0. [ VX dx=0.
Ja(t) Ja(t)
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Governing equations:

@ Diffusion of the nutrients: o; — Ao + o =0 in Q(1).

Conservation of mass: divV = S, S = proliferation rate.
Assume linear dependence on o: S = u(o — &), (here & > 0is the death rate)

Q

@ Instead of Darcy’s law, Stoke’s equation is used: —vAV + Vp — %uvdiw =0 inQ(f).

Q Introducing the stress tensor Q = v(VV + (V F]T} —(p+ %udiﬁ]! with components
av; 3""}'

T . 2V Aivaif
Qj = u(m}r + ET,-) — Eg(p+ T”dlw) ., we then have

Qi = —~ywxfd onfl(t), t >0,

here the cell-to-cell adhesion equal to a constant ~, « is the mean curvature.

@ Continuity: V, = V-7 on 9Q(f)
where V= velocity in the normal n direction.

Since ¥ is determined up to b x X, some additional constraints are needed.
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solution behavior
2 1 1 1 1

1.5F .

15 1 I 1 L
2 2.5 3 3.5 4 4.5

o A &
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‘ Algebraic Geometry

= Infinite Dimensional Algebraic Sets =
Solutions of Differential Equations?

= Coupled Towers of Finite Dimensional
Algebraic Sets?
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Randomization, Relaxation, & Complexity 48 @ NOTRE DAME
BIRS, March 4, 2010



‘ Summary

= Basic but difficult questions about Scientific
Models lead to algebraic sets defined by highly
structured, sparse systems of polynomials that
are extremely large by classical standards.

= Numerical Algebraic Geometry can make
contributions when coupled with moderate
amounts of computer power and appropriate
numerical software.
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