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Overview

 Numerical Algebraic Geometry
 Adaptive Multiprecision

 Local Dimension Test

 Regeneration

 Bertini

 Zebra Fish

 Tumor Growth
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Numerical Algebraic Geometry

 Goal:  To numerically manipulate algebraic sets

 Technical Challenge:  To combine high performance 
numerics with algebraic geometry

 Applications:

 Robotics and Mechanism Theory

 Chemical Reactions including combustion

 Computation of algebraic-geometric invariants

 Solution of discretizations of nonlinear differential 
equations

Robotics/Mechanism Theory

Combustion

graphics on right from Sommese-Wampler Book
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General References up to end of 2004

 A.J. Sommese and C.W. Wampler, 
Numerical solution of systems of 
polynomials arising in engineering and 
science, (2005), World Scientific Press.

 T.Y. Li, Numerical solution of polynomial 
systems by homotopy continuation          
methods, in Handbook of Numerical 
Analysis, Volume XI, 209-304,  North-
Holland, 2003.
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Three Recent Articles

 D.J. Bates, J.D. Hauenstein, A.J. Sommese,  and C.W. 

Wampler, Adaptive multiprecision path tracking, SIAM 

Journal on Numerical Analysis 46 (2008) 722-746.

 D.J. Bates, J.D. Hauenstein, C. Peterson, and A.J. Sommese, 

A numerical local dimension test for points on the solution 

set of a system of polynomial equations, SIAM Journal on 

Numerical Analysis, 47 (2009), 3608-3623.

 J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, 

Regeneration homotopies for solving systems of 

polynomials, to appear Math. Of Computation.
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Adaptive Multiprecision

double (52 bits) 64 bits 96 bits 128 bits 256 bits 512 bits 1024 bits

2.447 32.616 35.456 35.829 50.330 73.009 124.401

Table 1: A verage t ime, in seconds using Ber t ini, of 10 runs of t he

Chebyshev polynomial of degree 10 wit h ¿ = 8; for di®erent levels

of ¯xed precision.
Fr om B at es, H au en st ei n , Som m ese, W am p l er : A d ap t i v e m u l t i p r ec i si on p at h t r ack i n g .

Is Costly!

GMP is convenient, but because of its relative 
machine independence it takes almost no advantage 
of the built in hardware floating point
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Adaptive multiprecision

Six revolute serial 
link robot

Average time, in seconds, 
needed to solve the Inverse 

Kinematic Problem of General 
6R Serial Robot using Bertini 
with tracking tolerance of 10-6

and

final tolerance of 10-12

2.4 GHz, Opteron 250 processor
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Adaptive multiprecision

Near-singular conditions actually arise.

Out of 143,360 paths (for the 9-point problem):

• 1184 paths (0.826%) used higher precision and

 then dropped back to double precision before

 starting the endgame

• 680 paths (0.474%) used at least 96-bit 

 precision and then dropped back to double

 precision before starting the endgame
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Continuation’s Core Computation  

 Given a system f(x) = 0 of N polynomials in 

N unknowns, continuation computes a finite 

set S of solutions such that:

 any isolated root of f(x) = 0 is contained in S; 

 any isolated root “occurs” a number of times 

equal to its multiplicity as a solution of f(x) = 0;

 S is often larger than the set of isolated 

solutions.
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Local Dimension Test

 The essential case: check if p is isolated

 Homotopy continuation yields a number 

which bounds the multiplicity if the point 

was isolated.

 If not isolated, the space of truncated Taylor 

series around p of functions on the solution 

space is strictly increasing in dimension

 The Macaulay matrix (as presented by 

Dayton-Zeng) computes this dimension
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Implementation Considerations

 Computation of the rank of the 

Macaulay matrix requires

 Different levels of precision

 Reliable multiple precision endgame to 

compute point p to needed accuracy
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Some Comparisons Using Bertini

2xm adjacent minors of 3xm matrix
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Parallel Version (64 cores)

 8 dual quad-core Xeon 5410s (2.33 GH)
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Equation-by-Equation Methods

 Potential to solve systems with relatively few 

solutions that are completely outside of the 

beyond the pale of standard continuation 

methods  

 Intersection Method by Sommese, Verschelde, 

and Wampler

 Regeneration Method by Hauenstein, Sommese, 

and Wampler
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Basic Idea
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Both methods generate a witness set for f1,..,fk+1

Regeneration 

Intersection
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Hardware

 Continuation is computationally intensive.     

On average:

 in 1985: 3 minutes/path on largest mainframes.
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Hardware

 Continuation is computationally intensive.     

On average:

 in 1985: 3 minutes/path on largest mainframes.

 in 1991: over 8 seconds/path on an IBM 3081; 

2.5 seconds/path on a top-of-the-line IBM 3090.
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Hardware

 Continuation is computationally intensive.     

On average:

 in 1985: 3 minutes/path on largest mainframes.

 in 1991: over 8 seconds/path on an IBM 3081; 

2.5 seconds/path on a top-of-the-line IBM 3090.

 2008: 10+ paths a second on an single processor 

desktop CPU; 1000’s of paths/second on 

moderately sized clusters.
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Bertini

 Developed by Daniel Bates, Jonathan 

Hauenstein, Charles Wampler, and myself

 Binaries for Linux (including clusters and 

multiple core workstations), Macs, 

Windows are freely available at

www.nd.edu/~sommese/bertini
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Bertini

 Bertini is designed to 

 Be efficient and robust, e.g., straightline 

evaluation, numerics with careful error 

control

 With data structures reflecting the underlying 

geometry

 Take advantage of parallel hardware

 To dynamically adjust the precision to 

achieve a solution with a prespecified error.  
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Major Ingredients in Bertini

 Adaptive Multiprecision

 Straightline evaluation

 Special Homotopies 

 Genericity

 Endgames & ODE Methods

 Intersections

 Deflation

 Multiplicity & Local Dimension Testing

 Regeneration
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Solving Differential Equations

 E.L. Allgower, D.J. Bates, A.J. Sommese, 

and C.W. Wampler, Solution of Polynomial 

systems derived from differential equations, 

Computing, 76 (2006), 1-10.

 Direct solution and refinement.
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Predator-prey system (Hauenstein, Hu, & S.)
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 8n quadratics with 8n variables

 Total degree 

 Actually has        nonsingular isolated solutions 

n82
n42
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n = 5 (40 equations & 40 variables): < 80 min. 

with 200 cores (25 dual Xeon 5410 nodes)
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Zebra Fish

 Why do the stripes on a zebra fish or the 

spots on a tiger form the patterns they do?

 Alan Turing (1952), The chemical basis of 

morphogenesis: nonlinear diffusion equations.

 A good reference for this story is 

Mathematical Biology by J.D. Murray
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 Based on the model developed in

 Y.–T. Zhang, A. Lander, and Q. Nie, Computational 

analysis of BMP gradients in dorsal–ventral patterning of 

the zebrafish embryo, Journal of Theoretical Biology, 

248(4) : 579 – 589, 2007.

 Our work

 W. Hao, Y. Liu, J. Hauenstein, B. Hu, A. Sommese, and 

Y.-T. Zhang, Multiple stable steady states of a reaction-

diffusion model on zebrafish dorsal-ventral patterning, to 

appear Discrete and Continuous Dynamical Systems -

Series S.
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The differential equation system
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Solutions
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Some timings

 Total degree           (which = 4,294,967,296

When N = 9).

116 N
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Tumor growth
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Assumptions

 In vitro
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Radial solution is quite cheap: < 1 sec. (one core)
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Moving Grid
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3rd Order Stencil
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Critical Points  3 minutes with 200 cores
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Far Along the Branch
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Further work

 Stability

 More realistic models

 Three Dimensional Models

 Necrotic Core Models (disconnected free 

boundaries)

 Model presented in Friedman & Hu, Bifurcation 

for a free boundary problem modeling tumor 

growth by Stokes equation, SIAM J. Math. 

Anal., 39, 174-194.
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Stationary Problem
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Algebraic Geometry

 Infinite Dimensional Algebraic Sets  = 

Solutions of Differential Equations?

 Coupled Towers of Finite Dimensional 

Algebraic Sets?
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Summary

 Basic but difficult questions about Scientific 

Models lead to algebraic sets defined by highly 

structured, sparse systems of polynomials that 

are extremely large by classical standards.

 Numerical Algebraic Geometry can make 

contributions when coupled with moderate 

amounts of computer power and appropriate 

numerical software.


