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1 Overview of Polynomial System Solving
Systems of polynomial equations arise naturally in applications ranging from the study of chemical reactions
to coding theory to geometry and number theory. Furthermore, the complexity of the equations we wish to
solve continues to rise: while engineers in ancient Egypt needed to solve quadratic equations in one variable,
today we have applications in satellite orbit design and combustive fluid flow hinging on the solution of
systems of polynomial equations involving dozens or even thousands of variables.

For example, the left-hand illustration above shows an instance of the orbit transfer problem, while the right-
hand illustration above shows a level set for a reactive fluid flow. More precisely, in the first problem, one
wants to use N blasts of a rocket to transfer a satellite from an initial orbit to a desired final orbit, using as
little fuel as possible. The optimal rocket timings and directions can then be reformulated as the real solutions
of a system of 45N sparse polynomial equations in 45N variables, thanks to recent work of Avendano and
Mortari [1]. For reactive fluid flow, a standard technique is to decimate the space into small cubes and
obtain an approximation to some parameter function (such as vorticity or temperature) via an expansion
into polynomial basis functions. Asking for regions where a certain parameter lies in a certain interval then
reduces to solving millions of polynomial systems — the precise number depending on the region and size
of the cubes.

Far from laying the subject to rest, modern hardware and software has led us to even deeper unsolved
problems concerning the hardness of solving. These questions traverse not only algebraic geometry but also
number theory, algorithmic complexity, numerical analysis, and probability theory. The need to look beyond
computational algebra for new algorithms is thus one of the main motivations behind this workshop.
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1.1 Historical Highlights
In the 1980s and 1990s, work in computational algebra culminated in singly exponential complexity bounds
for many fundamental problems involving polynomial equations. Highlights include: reducing arbitrary sys-
tems to an encoding involving a polynomial in a single variable (a.k.a. rational univariate reduction [31]),
bounding Betti numbers of semi-algebraic sets [3], and computing geometric decompositions for complex
algebraic sets [17]. 19th century techniques (such as resultants) and more recent techniques (such as Gröbner
bases) began to receive increasingly reliable and efficient software implementations, and the limits of compu-
tational algebra began to emerge: all of the aforementioned problems, in their decision form, are NP-hard.
Furthermore, it also emerged that the classical techniques of computational algebra largely ignore the special
structure of real solutions. So any new speed-ups must come from new mathematical ideas and/or relaxing
the statement of the problem. We now review some more recent advances, in 3 settings: detecting, counting,
and approximating solutions.

Detecting Solutions. Thanks to work of Koiran in the 1990s [23], it is now known that the truth of the
Generalized Riemann Hypothesis (GRH) implies that deciding the existence of solutions over the complex
numbers is doable in polynomial time if and only ifP = NP. This intersection of algebraic complexity with
two of the biggest unsolved problems in mathematics attests to the depth of polynomial system solving. One
can expand this study of complexity by looking for more special kinds of solutions. For example, deciding
the existence of integral solutions leads us to even higher complexity classes: The famous negative solution
to Hilbert’s Tenth Problem in 1970 [28] is a proof of the algorithmic impossibility of deciding the existence
of integer solutions to (completely general) systems of polynomial equations.

Caught between NP-hardness and complete intractability, one then clearly hopes that detecting real
solutions lies closer to NP, particularly since most applications require just the real solutions of systems of
polynomial equations. That detecting real solutions is at least theoretically tractable was proved in the early
twentieth century by Tarski [39]. More recently, various results have hinted at the possibility of polynomial-
time algorithms in special settings, e.g., real feasibility for quadratic polynomials [2] and certain sparse
polynomials [6]. These new algorithms take us farther and farther away from traditional commutative algebra.

Counting Solutions. Work of Bernstein, Khovanski, and Kushnirenko in the 1970s [5, 33] showed that
counting the number of complex solutions of a system of sparse polynomials is (with high probability) the
same as computing a mixed volume of polytopes. Later, in the 1990s, Dyer and other authors determined the
algorithmic complexity of computing volumes and mixed volumes of polytopes [14, 15]. One thus began to
see signs that counting complex solutions is close to being a#P-complete problem. Gurvits then made major
advances by finding efficient approximation algorithms for mixed volumes, also unifying earlier quantitative
results in convexity via the framework of hyperbolic polynomials [19, 18].

Once viewed from the point of view of toric geometry, the connections between convex geometry and
complex algebraic geometry are more natural than surprising. In a more topological vein, there has beenmuch
recent progress on understanding the complexity of counting connected (and even irreducible) components
of algebraic sets over the complex numbers [10]: one sees new complexity classes, including some from the
more recent BSS model of computation [8].

Similar progress was made over the real numbers (see, e.g., [9]), but precise complexity bounds remain
more elusive over the real numbers than over the complex numbers. In particular, it was discovered in the
1980s that the number of real solutions for systems of sparse polynomials could be dramatically smaller than
the number of complex solutions [22]. Taking full advantage of sparsity (or other types of structure) when
counting real roots remains a challenging problem in algorithmic complexity.

In a different direction, using toric geometric methods, Huber and Sturmfels presented an algorithm
for computing mixed volume, thus counting exactly the number of complex solutions for certain sparse
polynomial systems [20]. Even better, their methods also yielded a new numerical method for approximating
complex solutions: polyhedral homotopy.

Approximating Solutions. The complexity of numerical solving presents new difficulties not present in
the more discrete problems of detecting and counting solutions. In this setting, ideas from numerical linear
algebra have entered algebraic geometry via the notion of the condition number.

The condition number is an invariant one can now associate to families of semi-algebraic sets [12] to
extract important information about the complexity of numerical optimization questions, just as Betti numbers
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extract important topological information. And while condition numbers are about as difficult to compute as
numerical solutions themselves, they admit useful expectation bounds when considered as random variables
attached to families of random algebraic sets [37, 27, 11]. This has led to average case complexity bounds for
polynomial system solving. Recasting traditional algebraic complexity results to incorporate the condition
number is now a lively subarea of algorithmic algebraic geometry. So far, only classical homotopy algorithms
have fully benefited from this point of view, so condition number analysis is still an open problem for many
other algorithms. For instance, even polyhedral homotopy still lacks rigourous complexity bounds.

Nevertheless, some very recent algorithms show great performance in practice. For instance, Parrilo’s
seminal work [30] blends 19th century ideas (sums of squares and Hilbert’s 17th Problem) with 20th cen-
tury optimization (semidefinite programming, a.k.a. SDP) to yield an efficient algorithm for solving certain
relaxations of polynomial systems. Much recent effort in the optimization community has then focussed on
quantifying how close these relaxations are to the original systems of equations (see, e.g., [24]).

Extending the idea of numerical conditioning, one can ask what is the most theoretically sound method to
solve a numerically ill-posed problem. This leads one to the study of the nearest ill-posed problem, andmajor
advances by Zeng and others [21, 40] have already yielded numerically reliable algorithms for problems that
would have been impossible to solve with earlier software.

One can also study the geometry of zero sets of random polynomials, independent of numerical condi-
tioning. This has lead to deep connections with several complex variables and mathematical physics [13, 36].
The behavior of real roots of random systems, particularly with respect to sparsity, has proven even more
challenging [16, 32, 35].

Goals of the Workshop. The study of systems of polynomial equations has thus led us to a greater un-
derstanding of the complexity of detecting, counting, and numerically approximating solutions. However,
for many structured systems of equations (e.g., those with few real solutions and many complex solutions),
polynomial-time algorithms remain only a tantalizing possibility. Also, on a more fundamental level, many
of the advances in polynomial system solving involve so many different techniques that refining them to
specially structured systems is daunting. This workshop thus focusses on emerging methods to attain such
speed-ups, and the resulting interactions between optimization, theoretical computer science, and algebraic
geometry.

2 Emerging Directions
Much how probabilistic methods are just beginning to enter algebraic geometry [35, 29], randomized com-
plexity bounds for polynomial system solving (and precise general estimates on numerical stability) were
virtually unknown until recently. In particular, Smale’s 17th Problem [38] beautifully captured what was
sorely missing from computational algebra:

“Can a solution of n complex polynomial equations in n unknowns be found approximately, on
the average, in polynomial time with a uniform algorithm?”

Smale’s statement elegantly highlights 3 issues in polynomial system solving: (1) average case complexity,
(2) the notion of approximation for solutions, and (3) the possibility of a polynomial-time solution for a
numerical problem known to be NP-hard in its decision form. Indeed, observe how Smale’s 17th Problem
asks for just one complex root, since the number of complex solutions is exponential in the input size (here
measured to be the number of monomial terms of the input polynomial system). Note also that Smale’s
introduction of randomization and approximation (to enable a polynomial-time solution) is very much in
parallel to the idea of relaxation in optimization: simplify a seemingly intractable problem by softening the
notion of a solution.

While the role of real solutions does not enter in Smale’s statement, advances in the study of sparse
systems of polynomial equations (a.k.a. fewnomial systems) over the real numbers also blossomed in the
early 2000s: Li, Rojas, and Wang proved dramatically improved bounds (independent of the degree of the
underlying polynomials) for the number of real roots of certain sparse polynomial systems [26]. This was the
first significant evidence that the famous earlier bounds of Khovanski [22] could be significantly improved.
Furthermore, completely general and explicit bounds over the p-adic rational numbers were initiated in 2004
by Rojas [34], following Lenstra’s seminal results in one variable [25].
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Smale’s 17th Problem was, from a practical point of view, settled positively by Beltran and Pardo in
2008 [4].1 Based on this advance, and progress in algorithmic fewnomial theory, Rojas began to form new
conjectures on the complexity of solving real polynomial systems. (See Section 4 below.)

Other sources for new speed-ups have emerged recently: Pablo Parrilo discovered in his Ph.D. thesis that
Semi-definite Programming (SDP) can sometimes be used to maximize multivariate polynomial much faster
than the classical methods of computational algebra [30]. Also, perhaps one of the earliest 20th century
signs that real solving could go faster than complex solving comes from work of Barvinok: he showed that
detecting real roots for homogeneous multivariate quadratic polynomials could be done in polynomial time,
contrary to known methods for computational algebra at the time [2].

3 Presentation Highlights
A central activity in our workshopwas 22 talks delivered by our diverse group of researchers. Full information
(including abstracts, slides for almost all talks, and video for 2 talks) is available from the BIRS website.
So we outline the talks below, from the point of view of their major themes. Afterward, we include some
information not listed at the BIRS website: Details from the talks of Greg Blekherman, Mihai Putinar, Leonid
Gurvits, and Victor Vinnikov. (These 4 talks were done on the blackboard without slides.) We then conclude
with a condensed list of the talks.

3.1 Algebra of Polynomial System Solving
The talk ofBernardMourrain focussed on moment matrices and border bases as a means of finding a canon-
ical form (for more efficient solving) for certain polynomial systems. LauraMatusevich then described deep
connections between monomial ideals (which are an important ingredient in Gröbner basis algorithms) and
hypergeometric functions. On a related note, Sue Margulies spoke on the connection between algorithms
for polynomial ideals and the resolution of certain conjectures in graph theory.

Closer to our next theme, Martin Avendaño presented an elegant new approach to Descartes’ Rule of
Signs that connects to an extension of a famous result of Polya: the number of real roots of a univariate
polynomial f is exactly the number of sign alternations in the ordered coefficient sequence of (1 + x)Nf(x)
for N sufficiently large.

3.2 Sums of Squares and Real Solving
Chris Hillar spoke on rational solutions to sums of squares certificates of positivity, raising many intriguing
open problems. For instance, let A0, . . . , An be rational m × m symmetric matrices and define a (rational)
spectrahedron to be any set of the form {(x1, ..., xn) ∈ Rn | A0 + x1A1 + · · · + xnAn ≥ 0}, where the
inequality indicates positive semidefiniteness. Determine those real algebraic numbers that can be obtained
as the coordinates of a finite spectrahedron. This question is open already for n=1!
Martin Harrison, a graduate student at UCSB, spoke on expressing certain non-commutative polynomi-

als as a sum of a minimal number of squares. Korben Rusek, a graduate student at Texas A&M, presented a
new class of fewnomial bounds which give dramatically sharper upper bounds on the number of real solutions
of certain specially structured sparse polynomial systems.

Continuing the topic of fewnomials, Dan Bates spoke about a new homotopy algorithm that follows
a remarkably small number of solution paths and finds all real solutions of any nondegenerate polynomial
system. The number of paths followed is between a certain fewnomial bound recently derived by Bates and
Sottile and the true number of real solutions. Rojas spoke on an alternative homotopy algorithm, based on a
simple modification of polyhedral homotopy, that follows a number of paths that is exactly the number of real
roots. Rojas’ method works for any polynomial system lying outside of a particular discriminant amoeba,
thus leading to interesting questions on real random polynomial systems.

1Strictly speaking, the problem is still open because Smale asked for a deterministic algorithm, and the solution from [4] is a
randomized algorithm with a small, but controllable, failure probability.
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3.3 Numerical Methods
Tien-Yien Li spoke about his most recent algorithm for computing the mixed volume of polytopes, and how
it leads to one of the fastest current implementations of homotopy solving. Andrew Sommese spoke about
his methods for homotopy solving. Thanks to his extensive use of parallelization, Sommese’s implementation
is currently the only software that can beat Li’s implementation for certain massive polynomial systems.

Turning to more theoretical issues, Zhonggang Zeng lectured on how to reliably solve univariate poly-
nomials that are known to be degenerate, and even how to find the degeneracy structure. Anton Leykin then
spoke on how homotopy solving can be made completely rigourous (via exact arithmetic and the use of recent
quantitative bounds of Shub and Smale), even demonstrating a preliminary implementation in Macaulay2.

3.4 Geometry and Complexity
Mounir Nisse, a graduate student from Paris 6, gave us highlights of the connections between complex
amoebae and amoebae over non-Archimedean fields. (Amoebae are the images of algebraic sets under a
valuation map: over the complex numbers, the valuation is the log-absolute value map.) In particular, Nisse
presented very recent work on characterizing co-amoebae. Co-amoebae are the image of algebraic sets under
the phase map, and are a vital ingredient to a deeper understanding of the geometry of complex algebraic
sets. The impact of co-amoebae for algorithmic algebraic geometry will be at least as great as that of amoeba
theory.
Pascal Koiran gave an enlightening talk on Valiant’s version of the P versus NP problem and the

derandomization of polynomial identity testing. It turns out that circuit complexity provides a useful link be-
tween both problems, and a deeper study leads to the study of shallow circuits with high powered inputs. In
particular, one is led to study the number of real roots of polynomials that are sums of products of sparse poly-
nomials. Such polynomials are just beyond the current reach of fewnomial theory, and thus yield fascinating
new directions in fewnomial theory.

3.5 Optimization and Beyond
Levant Tuncel gave a timely survey on the state of the art of interior point methods in conic programming.
His talk helped clarify some misconceptions behind the complexity of semidefinite programming, and fo-
cussed on barrier functions and locally quadratic convergence. Brendan Ames, a graduate student at the
University of Waterloo, spoke on SDP relaxations for compressive sensing and maximum clique problems
via the nuclear norm (sum of singular values) of a matrix.
Jim Renegar gave a stimulating evening talk on the frontiers of optimization. In particular, he spoke

about optimizing over hyperbolic cones (a problem which includes SDP as a very special case) and how
variations of Smale’s α-Theory allow new convergence bounds.

3.6 4 Talks Without Slides

Greg Blekherman: Blekherman considered criteria for determining when a real n-variate homogeneous
polynomial of degree 2d is convex. (For homogeneous polynomials, convexity clearly implies nonnegativity,
and thus convexity is a stronger restriction.) He showed how recent advances on quantifying how often
nonnegative forms are sums of squares have analogues in the setting of convexity. In particular, Blekherman
proved that there are convex forms that are not sums of squares. However, unlike the classical examples of
Motzkin and others, not a single convex form is known that is not a sum of squares! Blekherman went on to
give an elegant sufficient condition for convexity in terms of tight clustering of the values of a form, and then
developed some of the quantitative bounds necessary for his existence proof.

Mihai Putinar: Putinar developed a beautiful analytic framework starting from the following basic problem:
How does one determine if n given disks are non-overlapping? Putinar related this problem to positive semi-
definite matrices and then proceeded to explore connections with orthogonal polynomials and tomography.
Via some delicate estimates, he proceeded to prove new growth estimates of complex orthogonal polynomials
with respect to certain area measures.
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Leonid Gurvits: Gurvits’ evening talk was an entertaining tour through hyperbolicity, convex geometry, and
physics. First, Gurvits showed how the volume of a scaled Minkowski sum of convex bodies is a hyperbolic
polynomial. He then proceeded to an elegant proof of the #P-hardness of computing the mixed volume of
parllelograms. Gurvits then continued by giving a deterministic polynomial-time algorithm for (1 +

√
2)n-

factor approximation of the mixed volume of any n convex bodies, given access to a weak membership
oracle. He then concluded with a fascinating account of the connections between quantum linear optics and
the permanents of unitary matrices.

Victor Vinnikov: Vinnikov gave a fascinating talk on constructing determinantal representations of polyno-
mials via noncommutative algebra. These results give deep insights into representations of convex sets as
the feasible sets for linear matrix inequalities, i.e., spectrahedra. Such representations have deep implications
for optimization as they are behind the question of how much more general hyperbolic programming is than
SDP.

3.7 A Condensed List of the Talks (in order of presentation)
March 1, 2010 (monday)
J. Maurice Rojas (Texas A&M): Simple Homotopies for Just Real Roots
Tien-Yien Li (Michigan State): The mixed volume computation: MixedVol-2.0 vs. DEMiCs
Zhonggang Zeng (U Illinois, Carbondale): Solving Ill-posed Algebraic Problems: A Geometric Perspective
Pascal Koiran (ENS Lyons): Shallow circuits with high-powered inputs
Mounir Nisse (Institut de Mathématiques de Jussieu): Complex and Non-Archimedean (Co)Amoebas, and
Phase Limit Sets
March 2, 2010 (tuesday)
Chris Hillar (UC Berkeley): Do rational certificates always exists for sum of squares problems?
Greg Blekherman (VBI): Volume of the Cone of Convex Forms and new Faces of the Cone of Sums of
Squares
Levant Tuncel (Waterloo): Local Quadratic Convergence of Polynomial-Time Interior-Point Methods for
Nonlinear Convex Optimization Problems
Mihai Putinar (UCSB): Discretization of Shapes via Orthogonal Polynomials
Martin Harrison (UCSB): Minimal Sums of Squares in a Free-* Algebra
Susan Margulies (Rice): Vizing’s Conjecture and Techniques from Computer Algebra
Brendan Ames (Waterloo): Convex relaxation for the clique, biclique and clustering problems
Leonard Gurvits (Los Alamos National Labs): Mixed Volumes of Parallelograms and Other Cool Things
March 3, 2010 (wednesday)
Bernard Mourrain (INRIA Sophia-Antipolis): Moment matrices and border basis
Laura Matusevich (Texas A&M): Monomial ideals and hypergeometric equations
Jim Renegar (Cornell): Optimizing Over Hyperbolicity Cones By Using Their Derivative Relaxations
March 4, 2010 (thursday)
Dan Bates (Colorado State): Khovanskii-Rolle continuation for finding real solutions of polynomial systems
Andrew Sommese (Notre Dame): Recent work in Numerical Algebraic Geometry
Anton Leykin (Georgia Tech): Certified numerical homotopy continuation
Software Demos (by Dan Bates and Anton Leykin)
Martin Avendaño (Texas A&M): Descartes’ Rule of Signs is exact!
Korben Rusek (Texas A&M): On Certain Structured Fewnomials
Victor Vinnikov (Ben-Gurion): Constructing determinantal representations via noncommutative techniques
March 5, 2010 (friday)
Impromptu Problem Session (featuring Leonid Gurvits, Pascal Koiran, and J. Maurice Rojas)

4 Scientific Progress Made
The best part of our workshop was the opportunity for experts who rarely see each other to speak freely about
their work in a comfortable environment. An important aspect of these discussions was an impromptu open
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problem session.
At our problem session, Leonid Gurvits raised intriguing open questions on the approximability of mixed

volume: should the best current factor for polynomial-time approximability really be so large? Gurvits also
pointed out unusual parallels between polyhedral lifting and recent approaches to Boolean satisfiability.

The questions Pascal Koiran raised revealed that certain advances in fewnomial bounds over the real
numbers would enable an attack on a constant-free version of Valiant’s Problem, i.e., a variant of theVP

?
=

VNP problem. Koiran also pointed out a fascinating recent paper of Aaronson showing that if quantum
linear optics is efficiently simulable, then the polynomial hierarchy collapses.

Finally, Rojas pointed out some unusual parallels between real algorithmic fewnomial theory and p-
adic algorithmic fewnomial theory. In particular, at a coarse level, the complexity of detecting roots for
sparse polynomials has similar complexity in both settings. However, sporadic differences occur already for
univariate trinomials: detecting real roots is doable in polynomial-time but detecting p-adic rational roots is
only known to be inNP.

To obtain some additional perspective on the advances made during our workshop, it will be useful to
return to Smale’s 17th Problem (as described in Section 2) and see how the ideas arising from our workshop
helped extend this question in a new direction.

DEFINITION 1 We call an f ∈R[x1, . . . , xn] (with f(x) =
∑n+k

i=1 cix
ai , ci %=0 and xai = x

a1,i

1 · · ·xan,i
n for

all i, and the ai distinct) an nnn-variate (n+ k)(n+ k)(n+ k)-nomial. We also define supp(f) := {a1, . . . , an+k} to be
the support of f . The collection of n-variate (n + k)-nomials in R[x1, . . . , xn] is denoted Fn,n+k. Also,
if F := (f1, . . . , fn) with fi ∈Fn,n+k and supp(fi) = {a1, . . . , an+k} for all i then we call F an (n+ k)(n+ k)(n+ k)-
sparse n× nn× nn× n polynomial system (over R). &
DEFINITION 2 LetΩ(n, k) denote the maximal number of non-degenerate roots, with all coordinates positive,
of any (n+ k)-sparse n× n polynomial system over R. &

CONJECTURE 1. (OPTIMAL REAL FEWNOMIAL BOUNDS) There are absolute constants C2≥C1>0 such
that, for all n, k≥2, we have (n+ k)C1 min{k−1,n} ≤ Ω(n, k) ≤ (n+ k)C2 min{k−1,n}.

CONJECTURE 2. (SPARSE REAL ANALOGUE OF SMALE’S 17TH PROBLEM) Suppose we fix either n or k,
and we consider random systems (n+ k)-sparse n×n systems F overR. Then there are uniform algorithms
that:

A: compute a positive integer in polynomial-time that, with high probability, is exactly the number of roots
of F in the positive orthant.

B: approximate a single solution of F in Rn, on the average, in polynomial time.

The intuition that the complexity of finding just the real roots of polynomial systems depends only weakly on
the number complex roots, for systems of equations with few real roots and many complex roots, is captured
in a rigourous way by these last 2 conjectures. Note also how we progress from bounding the number of
positive roots, to computing the exact number of positive roots with high probability, to approximating a
single positive root efficiently.

Progress toward these conjectures has been made from different points of view. For instance, Rojas’
bound over the p-adic numbers, and a more recent bound over the real numbers of Bihan and Sottile [7],
provided evidence toward Conjecture 1. Conjecture 2 is heavily based on [6] and recent Chamber Cone
methods, the latter covered in the first talk at this workshop.

5 Final Notes
Rojas proposed an AMS Contemporary Mathematics proceedings volume for this workshop which has now
been provisionally approved. The editors will be Philippe Pébay, J. Maurice Rojas, and David C. Thompson.
As of this writing, we have submissions from the following sets of authors:

Dan Bates & Andrew Sommese
Carlos Beltran & Luis-Miguel Pardo
Anton Leykin
Tien-Yien Li
Zhonggang Zeng
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We also have commitments for papers from:

Martin Avedano & Ashraf Ibrahim
Saugata Basu
O. Bastani, C. Hillar, D. Popov, & J. M. Rojas
Bernard Shiffman & Steve Zelditch

All editors and authors are either attendees of our workshop or invitees who were unable to attend.
In closing, we would like to extend our humble thanks for the wonderful facilities and magnificent setting.

BIRS is truly a treasure, and it was a privilege to hold our workshop here.
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