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Overview

• Introduction
• Hidden volatility (variance) in chaotic systems

– Illustrated using a simple chaotic system and an even simpler
univariate example

• Using knowledge of errors in error variance estimates to
improve DA via Hybrid error covariance models
– Illustrated using Navy’s obs space 4D-VAR scheme NAVDAS-

AR

• Conclusions



Donald Rumsfeld

“There are known knowns; there are things we know we
know. We also know there are known unknowns; that is to
say we know there are some things we do not know. But
there are also unknown unknowns  ...”— Donald Rumsfeld,
2/12/2002, then U.S. Secretary of Defense.



Grimweld the groundhog interprets
Rumsfeld

• Vertical position of dropped ground-hog is a known known



Belief, Uncertainty and repeatable stochastic
phenomena



Belief, Uncertainty and repeatable stochastic
phenomena

Empirical quantification of uncertainty is straightforward forEmpirical quantification of uncertainty is straightforward for
(easily) repeatable stochastic phenomena like ball throwing(easily) repeatable stochastic phenomena like ball throwing

Not so easy for chaotic systems like atmosphere, stock-Not so easy for chaotic systems like atmosphere, stock-
market, politics, ocean, etc.market, politics, ocean, etc.



Grimweld the Ground-Hog

• Vertical position of dropped ground-hog is a known known

• Impact location of ground-hog thrown at X by Craig is a known
unknown provided we have previously empirically defined the
distribution of ground-hog locations through repeated Craig throws –
(assuming that Craig’s throwing accuracy never improves). In addition,
the error covariance P of the throws is precisely defined.

• Impact location of ground-hog thrown at X on wall by randomly
selected audience member is an unknown unknown (no empirical prior
distribution or P is available)

• Similarly, forecast error covariance associated with today’s weather is
an unknown unknown



Meteorological example of uncertainty that is
difficult to quantify

Deep trough over NE US

Ensemble based uncertainty prediction
Hidden volatility: When the error variance (volatility) depends on a flow pattern
that is unlikely to repeat itself, it is hidden because one or two realizations of error
do not enable an estimation of variance.



Replicate Earths for ultimate uncertainty quantification

• Imagine an unimaginably large number of quasi-identical Earths.

Each Earth has one true state and one prediction but these differ from one Earth to another. 

Collect all Earths having the same historical observations  but differing true atmospheric 
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(Slartibartfast – Magrathean designer of planets, D. Adams, Hitchhikers …)



Replicate Earths with simple model

Lorenz (2005, J. Atmos. Sci), model 1

Tim
e =>

Model grid point

Suppose Earth evolution governed by the following chaotic model

Initial state
State after
1 time step (“Earth” only has 30

varibles in this example)



Replicate Earths with simple model
(continued)

1. To reduce computational expense, only use 10 horizontal grid points.
2. Perform very long integration and call this the truth.
3. Create pseudo-observations at each time step and at every second grid

point by adding a random Gaussian number ζ~ N(0,R) to the truth at the
observation sites.

4. Create a large number of replicate Earths having the same truth but
differing time sequences of observations by repeating step 3 using
differing random number seeds.

5. At time zero, create an initial analysis xa by adding a random ζ to the truth
at each grid point so that initially xa ~ N(xt , R) so initially Pa=R.

6. Create replicate Earths having the same truth but differing initial analyses
by repeating 5 using differing random number seeds.

7. Create replicate Earths having the same truth but differing time
sequences of analyses and forecasts by running a deterministic 10
member ensemble Kalman filter on each of the replicate Earths.

8. Choose R to be quite small so that error dynamics are approximately
linear.



Climatological probability density of
innovation variance
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9. Compute squared innovation (y-Hxf)2 at each observation site at each forecast
time

10. Take the average value of squared innovation across all replicate Earths. This
is the true innovation variance at the observation site of interest at a given
point in time given the current true state. The corresponding true forecast-
error-variance=innovation-variance – R

11. Use values from step 10 to estimate climatological distribution of innovation
variances

Black bars give frequency
divided by bin size of
occurrences of innovation
variance

Red line gives inverse-
gamma distribution
having same mean and
variance as observed
innovation variances

Climatological probability density of 
innovation  variances
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Monte-Carlo approximation to replicate Earths

• Use models and observations to produce your single best-guess prediction

• Use your knowledge of unknowns in model and observations to produce an
ensemble of plausible perturbed forecasts.

• Assume that the ensemble distribution of forecasts either gives
or

• Compute the required measures of uncertainty from these distributions

• If the ensemble variance is smaller than the error variance of the ensemble
mean, do something ad-hoc to account for the unknown sources of forecast
error; e.g. amplify perturbations by some factor or add some sort of random
noise to the perturbations.
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Example of Monte-Carlo ensemble from
Houtekamer et al. (2005, Mon. Wea. Rev.)



Example of Monte-Carlo ensemble from
Houtekamer et al. (2005, Mon. Wea. Rev.)

Comparison ofComparison of
predicted std ofpredicted std of
difference ofdifference of
forecast andforecast and
observation (solidobservation (solid
line) andline) and
ensembleensemble
prediction ofprediction of
same thing (.-same thing (.-
line) indicatesline) indicates
that, in anthat, in an
average sense,average sense,
the Monte-Carlothe Monte-Carlo
approachapproach
worked.worked.



Prior and posterior state estimates of poorly
observed billiard balls

All balls in ensemble are moving from left to right

Prior initial time state



Prior and posterior state estimates of poorly
observed billiard balls (particle filter).

( )
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Particle filter

1. Compute |  
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2. Define weights
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 reject ith ball
end
4. Repeat step 3
for all balls.

Prior final time state

These balls
moving from
right to left
having
bounced off
wall

These balls still moving from
left to right.

Observation of position at final 
time is taken that is 
accurate in y-direction 
but inaccurate in x-direction.

( )
Likelihood pdf 

| of observation  given truth  t tL y x y x



Prior and posterior state estimates of poorly
observed billiard balls (particle filter).

( )
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Particle filter

1. Compute |  

for observation 
and th ball 
2. Define weights
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 reject ith ball
end
4. Repeat step 3
for all balls.

All balls in ensemble are moving from left to right

True posterior initial time state (from particle filter) ( )
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Prior and posterior state estimates of poorly
observed billiard balls (particle filter).

True posterior final time state (from particle filter) It is this final
time posterior
distribution of
states that
should be used
to initialize the
next ensemble
forecast. The
resulting
ensemble
forecast will be
used to
assimilate
observations in
the next data
assimilation
window.

( )
Likelihood pdf 

| of observation  given truth  t tL y x y x



Prior and posterior state estimates of poorly
observed billiard balls (EnKF).

EnKF posterior, initial time state This initial time
posterior state
from the EnKF
is very
accurate.



Prior and posterior state estimates of poorly
observed billiard balls (EnKF).

EnKF posterior, final time state This initial time
posterior state
from the EnKF
is very
inaccurate.
Initializing next
ensemble with
this set of
particles would
give a very
inaccurate
mean and
covariance for
the next DA
window.

Note that particle filter beats Monte-Carlo EnKF
because EnKF incorrectly assumed Gaussian prior

EnKF falsely suggests particles 
passing through wall and then
heading back to wall !!



Recapitulation
• Uncertainty quantification not so easy for chaotic

systems in which it is difficult to find “repeat” or “near
repeat” events

• Replicate Earth thought experiment represents “ideal”
quantification of certainty and uncertainty

• In Monte-Carlo approach all known unknowns of a
prediction system are varied across an ensemble of
predictions. The resulting ensemble of predictions may
be viewed as a proxy for an ensemble of replicate
Earths.

• However, if the system fails to accurately account for the
effect of observations and/or model error on uncertainty,
the measures of uncertainty derivable from the ensemble
will be inaccurate.

• The desired conditioned forecast error covariance is
hidden from observations because in aperiodic chaotic
systems the conditions do not repeat.



Quantifying uncertainty in presence of Hidden
Volatility (1D idealization)
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• Assumption 1 is supported by replicate Earth experiment using Lorenz model

Black bars give frequency
divided by bin size of
occurrences of innovation
variance

Red line gives inverse-
gamma distribution
having same mean and
variance as observed
innovation variances

Climatological probability density of 
innovation variances

de
ns

ity

innovation variance

( )Prior climatological pdf  ! "



Quantifying uncertainty in presence of Hidden
Volatility (1D idealization)

( )2 2 2
min

2. Assume that ensemble sample variance is a gamma distribution with

mean  and variance determined by an effective ensemble size .

 is the observation error variance and  is a constant.
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Distribution width 
increases as ensemble
size decreases
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Quantifying uncertainty in presence of Hidden
Volatility (1D idealization)

( ) ( )
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3. Use Bayes' theorem to combine prior  and likelihood |  to obtain

posterior pdf |  of true variances given the ensemble sample variance .
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Quantifying uncertainty in presence of Hidden
Volatility (1D idealization)
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Quantifying uncertainty in presence of Hidden
Volatility (1D idealization)

• It may be shown that all of the parameters defining this
simple model of error variance prediction in the presence
of hidden volatility may be obtained using appropriate
regression formula from a large number of independent
(ensemble-variance, innovation) pairs.

• This enables
– Weights for Hybrid error covariance models
– Measurement of hidden volatility prediction accuracy in terms of

“effective-ensemble size”.
– Ensemble post-processing that accounts for hidden volatility

prediction inaccuracy.

!



Effective ensemble size of 32 member ET
ensemble T49L42 only conventional obs

!

• Effective number of ensemble members:
Northern Hemisphere:     6.3
Tropics:                         5.1
Southern Hemisphere:     6.0

• i.e. the 32 member ensemble is behaving as if it were
comprised of 6 random draws from a distribution having
the true innovation variance.

• Suggests that a Hybrid forecast error covariance model
that mixes ensemble covariances with static covariances
would be superior to one based on ensemble
covariances alone.



Hybrid in Navy 4D-VAR

• Terminology
– Navy 4D-VAR is in observation space and is called NAVDAS-AR
– Have created a new form of NAVDAS-AR that allows for the

incorporation of localized ensemble covariances. We will call this
Hybrid form Ensemble-AR



How is ensemble-AR different from
NAVDAS-AR?

( )

0 0

0 0

0 _ 0 _ 0

NAVDAS-AR has

                   

         

Ensemble-AR currently enables the following option for the initial covariance
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Description of Experiment

• Cycling analysis from Nov. 20, 2008 to Dec. 31, 2008
• Assimilating only conventional observations (no

radiances)
• Background error covariance matrix at beginning of DA

time window (Pb0) is a combination of 75% Pb0_static
and 25% Pb0_ensemble

Pb0_hybrid=0.75*Pb0_static+0.25*Pb0_ensemble
• 32 member ET ensemble (Bishop&Toth, 99,McLay et al

08)
• Model resolution: T119L42 Outer, T47L42 Inner
• Skip first 10 days of analysis for spin-up
• 5-day forecasts from each analysis
• Verification of forecasts with Radiosondes
• Comparison with current NAVDAS-AR at same resolution

using static covariance model



Global: TLM-AR (blue) vs. pb0_a025 (red)

Contours filled with red indicate regions where Pb0_hybrid reduced rms error (as
measured by radiosondes) by more than 5% relative to Pb0_static. The stronger the tone
of red the greater the percentage reduction. Colored blocks indicate the significance of
difference with red again signifying superiority of Pb0_hybrid.

0 _ 0 _ 0 _ 0 _

The red in the panels below show the improvement of the DA system when the
initial Hybrid error covariance model 

0.25 0.75  is used instead of  just  

These res

b b b b
Hybrid Ensemble Static Static= +P P P P

ults are for a relatively small ensemble (32 members).

Hybrid_Ensemble_AR performed  significantly better than current system



Temp: TLM-AR (blue) vs. pb0_a025 (red)

Height: TLM-AR (blue) vs. pb0_a025 (red)



Rel. Humid.: TLM-AR (blue) vs. pb0_a025 (red)

Vec-Wind: TLM-AR (blue) vs. pb0_a025 (red)



Derivation of Hybrid weights from analysis of
innovations

• Assuming that all of the assumptions of  simple model of
error variance prediction are satisfied, Hybrid weights for
optimal error variance prediction may be derived using
appropriate regression formula from a large number of
independent (ensemble-variance, innovation) pairs.

!



Comparison of variances from globally tuned Hybrid weights with
those from theoretically optimal weights for 6 regions (SH, Tropics,
NH all below 400 hPa and then all 3 again above 400 hPa)

Average ensemble variance Static variance from Pb0

Hybrid variance (theoretical weights) Hybrid variance (tuned weights)



U-wind 850mb

Raw 6 hr ET variance
exhibits large regions of
very small variance. This
spot is on the West Coast
where radiosondes are
present but the ensemble
variance is below 2.

Equation hybrid variance
exhibits a smaller range of
variances. The analysis
will be able to draw to the
observations near the
West Coast.



Test of ensemble-AR using eq
Hybrid

• Machine: 8 processor Linux cluster
• 32 member ET ensemble
• Observations: All conventional obs
• Period: 11/20/08 to 12/31/08 (1st week

removed from assessment and last 5 days
from assessment of 120 hr forecasts)

• 6 hr DA cycle.



Equation Hybrid

Globally, performance of Equation Hybrid and standard Hybrid is about the
same – but no costly tuning experiments are required for equation Hybrid

Global: TLM-AR (blue) vs. pb0206E1 (red)



Global: TLM-AR (blue) vs. pb0_a025 (red)

Standard Hybrid

Globally, performance of Equation Hybrid and standard Hybrid is about the
same – but no costly tuning experiments are required for equation Hybrid



Temp: TLM-AR (blue) vs. pb0_206E1 (red)

Height: TLM-AR (blue) vs. pb0_206E1 (red)

Equation Hybrid

Regionally, the equation-
Hybrid is better at avoiding
areas of degradation than

the standard-Hybrid.
(tropics particularly)



Temp: TLM-AR (blue) vs. pb0_a025 (red)

Height: TLM-AR (blue) vs. pb0_a025 (red)
Standard Hybrid

Regionally, the equation-
Hybrid is better at avoiding
areas of degradation than

the standard-Hybrid.
(tropics particularly)



Rel. Humid.: TLM-AR (blue) vs. pb0_206E1 (red)

Vec-Wind: TLM-AR (blue) vs. pb0_206E1 (red)

Equation Hybrid

Regionally, the equation-
Hybrid is better at avoiding
areas of degradation than

the standard-Hybrid.
(tropics particularly)



Rel. Humid.: TLM-AR (blue) vs. pb0_a025 (red)

Vec-Wind: TLM-AR (blue) vs. pb0_a025 (red)

Standard Hybrid

Regionally, the equation-
Hybrid is better at avoiding
areas of degradation than

the standard-Hybrid.
(tropics particularly)



Summary
• All error variance predictions are inaccurate
• When two or more independent error variance

predictions are available, linear combination is more
accurate than either one individually – hybrid allows such
combinations

• Brute force tuning of Hybrid weights is very expensive
• Analytical theoretical model for error variance prediction

has been developed that allows weights to be derived
directly from archive of (ensemble-variance, innovation)
pairs.

• Theory estimates accuracy of static and flow-dependent
error variance predictions – quantifies errors in error-
variances.

• Low-resolution experiments using Navy forecast model
indicate that (a) standard-Hybrid and equation-Hybrid
superior to NAVDAS-AR (b) standard-Hybrid and
equation-Hybrid about the same but weights for
equation-Hybrid are computationally inexpensive.



Furthermore,
There once was a ground-hog called Grimweld
Who wanted to interpret Rumsfeld
He fell on the floor
Got shot at the screen
And now wise Grimweld lies pummeled

… thank you Grimweld


