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Overview

 Effect of targeted observations on forecast
error variance and signal variance.

« Effect of observations on analysis error

variance in the presence of strong non-
linearity




Adaptive Sampling
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Main results from WSR programs

(based on data from winters 1998-2002)

60-80% of forecasts
improved because of
targeted observations

12-hour gain in forecast

lead time

RMS forecast errors
reduced by 10-20%

Improvement similar to that
achieved in last 20 years of
advances in numerical
modeling and data
acquisition

x West coast
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e Eastern US Toth et al. (2000)
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How the ETKF works

Ensemble Decision Adaptive sampling Verification
Initialization time  time (analysis) time time

ti td 1:a tv

Balddrmartes ~ |~

ETKF attempts to predict the “signal covariance” S¢:
reduction in error covariance for any deployment g
of adaptive observations:

Sa=PN—Pa=MPN(t,) HIT (HIPN(t,)HaT)-1 HaPN(t,) MT
= ZN(t YR .Co ESEERRaCHT X LZN TG
“Signal variance” = diagonal of S9, calculated rapidly




ETKF targeting approach

Definitions:

Z/ is matrix of ensemble perts divided by JK-1 at the targeting time

v/ (tv ) is matrix of ensemble perts divided by JK-1 at the verification time

Step 1: Get square root of routine analysis error covariance matrix at targeting time using ETKF or ET

Z'=2/C,(T,+1)°C/, fromsvd Z"H'R;'H,Z’ =C,I",C!

r r r

Step 2: Find square root of analysis error covariance matrix associated with qth feasible deployment of

adaptive observations.

z: -7:c,(r,+1) C/, fromsvd Z“H'R;'H,Z* =C,T',C’

9 49 9

Step 3: Propagate square root of analysis error covariance matrix from q th feasible observational network

W2z s

to the verification time. Linear propagation would be (Q is model error)

1/2

Z! =Mz +Q"* =Mz:C,(T,+1) C,/+Q"> =MZ’ [c.(r,+ )"’ ] lcq (r,+1) CqT] +Q"”

But Z/ (tv ) is the non-linear equivalent of Z”/ (tv ), hence ETKF sets

1/2

2 =7/ ()[c. (r,+1)""c]|c, (r,+1) ¢/
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Summary Maps of Signal Variance=*

ETKF predicts signal variance (reduction in
forecast error variance) for all feasible
deployments of targeted observations.

Summarize these predictions in the form of
a map or bar chart.
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Serial adaptive sampling

Many combinations and permutations of
adaptive observations are available.

Suppose that two sets of observations can be
deployed simultaneously.

First, find the optimal first deployment. Next,
calculate the best second deployment given that
the first set of observations are to be assimilated
by the ETKF at the same time.

Reduces observational redundancy.




Serial adaptive
sampling
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Question

« Can an ETKF predict signal variance for any
deployment of targeted observations?
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Evolution of
predicted ETKF
signal variance
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Targeted Observing Time
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Conclusions

The Kalman filter provides a rigorous means for
quantitatively predicting the reduction in analysis
and forecast error variance due to assimilating
observations.

The Ensemble Transform Kalman Filter enables
the reduction in forecast error variance due to
targeted observations to be rapidly estimated for
a large number of feasible deployments of
observational resources.

Proved useful in the Winter Storms
Reconnaissance Program

More quantitative testing of accuracy of
predictions is required.
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