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Overview

• Effect of targeted observations on forecast
error variance and signal variance.

• Effect of observations on analysis error
variance in the presence of strong non-
linearity
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Main results from WSR programs
• 60-80% of forecasts

improved because of
targeted observations

• 12-hour gain in forecast
lead time

• RMS forecast errors
reduced by 10-20%

• Improvement similar to that
achieved in last 20 years of
advances in numerical
modeling and data
acquisition TothToth  et al.et al. (2000) (2000)

(based on data from winters 1998-2002)



How the ETKF works

ETKF attempts to predict the “signal covariance” Sq:
reduction in error covariance for any deployment q
of adaptive observations:

Sq = PN – Pq = M PN(ta) HqT (HqPN(ta)HqT)-1 Hq PN(ta) MT

                         = ZN(tv) TN Cq Γq (Γq+I)-1 CqT TNT ZNT(tv)
“Signal variance” = diagonal of Sq, calculated rapidly
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ETKF targeting approach
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 is matrix of ensemble perts divided by K-1 at the targeting time

 is matrix of ensemble perts divided by K-1 at the verification time
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Step 3: Propagate square root of analysis error covariance matrix from q th feasible observational network
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Signals and Signal Variance
Squared NCEP MRF signal

1/2 (u’2+v’2) + (cp/Tr) T’2
valid at analysis time ta

Predicted ETKF signal variance
Sq, using ensembles initiated 36h

prior to analysis time ta



Summary Maps of Signal Variance

ETKF predicts signal variance (reduction in
forecast error variance) for all feasible
deployments of targeted observations.

Summarize these predictions in the form of
a map or bar chart.
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Serial adaptive sampling

• Many combinations and permutations of
adaptive observations are available.

• Suppose that two sets of observations can be
deployed simultaneously.

• First, find the optimal first deployment. Next,
calculate the best second deployment given that
the first set of observations are to be assimilated
by the ETKF at the same time.

• Reduces observational redundancy.
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Question

• Can an ETKF predict signal variance for any
deployment of targeted observations?
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• The Kalman filter provides a rigorous means for
quantitatively predicting the reduction in analysis
and forecast error variance due to assimilating
observations.

• The Ensemble Transform Kalman Filter enables
the reduction in forecast error variance due to
targeted observations to be rapidly estimated for
a large number of feasible deployments of
observational resources.

• Proved useful in the Winter Storms
Reconnaissance Program

• More quantitative testing of accuracy of
predictions is required.

Conclusions
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