Mesoscale Predictability

Dale Durran1, P. Alex Reinecke2, James Doyle2

1University of Washington, Seattle, WA
2Naval Research Laboratory, Monterey, CA

July 13, 2011
Mesoscale: Pertaining to atmospheric phenomena having horizontal scales ranging from a few kilometers to several hundred kilometers.

- Thunderstorms, squall lines
- Fronts, precipitation bands in tropical and extratropical cyclones
- Mountain waves, downslope winds, sea breezes
Basics

Mesoscale: Pertaining to atmospheric phenomena having horizontal scales ranging from a few kilometers to several hundred kilometers.
- Thunderstorms, squall lines
- Fronts, precipitation bands in tropical and extratropical cyclones
- Mountain waves, downslope winds, sea breezes

Predictability: The extent to which future states of a system may be predicted based on knowledge of current and past states of the system.
At UW we run 69-hour forecasts with the WRF model (initialized from GFS analyses) twice daily nested down to 4-km spatial resolution.
At UW we run 69-hour forecasts with the WRF model (initialized from GFS analyses) twice daily nested down to 4-km spatial resolution.

Argue that it is ridiculous to expect forecast skill in features with scales of 16 km ($4\Delta x$) at hour 69.
The Issue

At UW we run 69-hour forecasts with the WRF model (initialized from GFS analyses) twice daily nested down to 4-km spatial resolution.

Argue that it is ridiculous to expect forecast skill in features with scales of 16 km ($4\Delta x$) at hour 69.

Argue that there is still hope for forecast skill at hour 69 in features with scales of 16 km.
At UW we run 69-hour forecasts with the WRF model (initialized from GFS analyses) twice daily nested down to 4-km spatial resolution.

Argue that it is ridiculous to expect forecast skill in features with scales of 16 km (4\(\Delta x\)) at hour 69.

Argue that there is still hope for forecast skill at hour 69 in features with scales of 16 km.

Are there other reasons for using fine resolution besides trying to forecast small-scale features that actually verify?
Errors migrate upscale in turbulent flows with a -5/3 energy spectrum.
The Lorenz Viewpoint

Errors migrate upscale in turbulent flows with a -5/3 energy spectrum.

- Predictability at a given scale decreases as the scale and the "eddy turnover time" decreases.
Errors migrate upscale in turbulent flows with a -5/3 energy spectrum.

- Predictability at a given scale decreases as the scale and the "eddy turnover time" decreases.
- Predictability times for motions with horizontal scale of 1,000 km estimated as 24 times that for motions with scales of 10 km

Time for Errors to Propagate Upscale

1 hour to 20 km, 1 day to 1,250 km
Estimates of mesoscale predictability from classical turbulence theory are too pessimistic.
Estimates of mesoscale predictability from classical turbulence theory are too pessimistic.

- Coherent structures in fluids may resist turbulent decay, e.g., supercell thunderstorms.
Estimates of mesoscale predictability from classical turbulence theory are too pessimistic.

- Coherent structures in fluids may resist turbulent decay, e.g., supercell thunderstorms.
- Physical forcing at the earth’s surface, such as mountains, may contribute to extended predictability.
The Anthes Viewpoint

Estimates of mesoscale predictability from classical turbulence theory are too pessimistic.

- Coherent structures in fluids may resist turbulent decay, e.g., supercell thunderstorms.
- Physical forcing at the earth’s surface, such as mountains, may contribute to extended predictability.
- Mesoscale phenomena, such as fronts, can evolve from purely large-scale initial conditions.

Anthes’ Update

July 7, 2011 UCAR magazine
Mesoscale Magic

(A enhances 1984: Predictability of mesoscale meteorological phenomena. In *Predictability of Fluid Motions*.)
Enhanced predictability in mesoscale forecast experiments arises because the same lateral boundary data were imposed in all simulations.

(Vukicevic and Errico 1990, Mon. Wea. Rev.)
Recent Evidence for the Lorenz Viewpoint

Fig. 15. (a) The 36-h accumulated precipitation difference (every 4 mm) between Cntl-30km and NoLZK. (b) Time evolution of the accumulated precipitation (mm) averaged over a 240-km \times 240 km box around Raleigh, NC, from each individual sounding experiment, Cntl-30km and EtaOnly. The location of the box is shown in (a).

(Zhang et al., 2002: Mon. Wea. Rev.)
Effects of Moist Convection on Mesoscale Predictability

Zhang et al., 2003: *JAS*—on the lack of predictability of the 24-25 January 2000 snowstorm.

“The errors in the convective-scale motions subsequently influence the development of meso- and larger-scale forecast aspects such as the position of the surface low and the distribution of precipitation, thus providing evidence that growth of initial errors from convective scales places an intrinsic limit on the predictability of larger scales.”
Roadmap

We will look at the sensitivity to initial conditions in two specific contexts:

- Downslope windstorms
- Distinguishing between rain and snow in the Puget-Sound lowlands
We will look at the sensitivity to initial conditions in two specific contexts:

- Downslope windstorms
- Distinguishing between rain and snow in the Puget-Sound lowlands

We will ignore:

- Other important phenomena (e.g., convection)
- Measures of forecast skill
Does Topography Help?

“Topographic forcing increases the predictability of atmospheric flows" (Vukicevic and Errico 1990, *Mon. Wea. Rev.*)
Does Topography Help?

“Topographic forcing increases the predictability of atmospheric flows" (Vukicevic and Errico 1990, *Mon. Wea. Rev.*)

- "... synoptic-scale perturbations are most sensitive to the change of topography..."
- Cases involved lee-cyclongenesis
- Simulations used $\Delta x = 120$ km
Does Topography Help?

What happens at smaller scales?
Does Topography Help?

What happens at smaller scales?

"Most of the region's [Pacific NW] mesoscale circulations are created by the interaction of the synoptic-scale flow with the mesoscale terrain; thus, mesoscale predictability is substantially controlled by longer-lived synoptic predictability." (Mass et al., 2002. BAMS)
Does Topography Help?

What happens at smaller scales?

“Most of the region’s [Pacific NW] mesoscale circulations are created by the interaction of the synoptic-scale flow with the mesoscale terrain; thus, mesoscale predictability is substantially controlled by longer-lived synoptic predictability.” (Mass et al., 2002. *BAMS*)

The large-scale gives the mesoscale extended predictability.
Downslope Wind Predictions–1975

Multi-layer linear mountain-wave model using coarse resolution large-scale forecasts.

Fig. 16. Comparison of the maximum predicted surface winds with the maximum recorded by the Southern Hills anemometer in the interval 2–5 h after the soundings were taken. A box around a data point indicates that the recorder pegged at 100 mph.

(Klemp and Lilly, 1975: J. Atmos. Sci)
Downslope Wind Predictions–2000

Nonlinear 2D mountain-wave model using Eta-model forecasts.

Obs-Forecast: black/stippled bars for cases with/without mean-state critical level

(Nance and Colman, 1995: J. Atmos. Sci)
2D Sensitivity Study

- Ensemble of perturbed January 11, 1972 soundings, 20 members.
- Large spread near the regime boundary between mountain waves and wave breaking.

![Graph](image)

Fig. 5. Maximum leeside wind speed (m s\(^{-1}\)) at the lowest model level (100 m) for each ensemble member as a function of the mountain height (m) at the 4-h simulation time.
2D Sensitivity Study

- Ensemble of perturbed January 11, 1972 soundings, 20 members.
- Large spread near the regime boundary between mountain waves and wave breaking.

Fig. 5. Maximum leeside wind speed (m s\(^{-1}\)) at the lowest model level (100 m) for each ensemble member as a function of the mountain height (m) at the 4-h simulation time.

How predictable are downslope winds?
How predictable are downslope winds?

- Cases from T-REX in the Sierra Nevada.
How predictable are downslope winds?

- Cases from T-REX in the Sierra Nevada.
- 70-member ensemble forecasts using the COAMPS model
How predictable are downslope winds?

- Cases from T-REX in the Sierra Nevada.
- 70-member ensemble forecasts using the COAMPS model.
- Ensemble members generated using an ensemble Kalman filter.
How predictable are downslope winds?

- Cases from T-REX in the Sierra Nevada.
- 70-member ensemble forecasts using the COAMPS model.
- Ensemble members generated using an ensemble Kalman filter.
- Two types of downslope wind events considered:
 - Induced by wave breaking
 - Induced by strong low-level static stability with weak stability aloft
Owen’s Valley lee-slope winds are averaged between 0 and 350 m AGL in the region outlined in white in panel c.

27 km / 9 km / 3 km
500-hPa Flow for the Wave-Breaking Case

High winds at 00 UTC March 26, 2006 (IOP 6)
500-hPa Flow for the Case with Strong Low-Level Stability

Forecast at 6 hours

Verification at 12 hours

High winds at 06 UTC April 17, 2006 (IOP 13)
Ensemble Distributions of Owens-Valley Surface Winds

Breaking

Layered

Layered

Shading shows the weakest and strongest 10-member subsets
Contrasting the Weakest and Strongest 10 Events

Vertical velocity (colors) and isentropes of potential temperature

Dale Durran (UW Atmos. Sci.)
Contrasting the Weakest and Strongest 10 Events

Zonal velocity (colors) and turbulent kinetic energy (heavy contours)
At the time of the downslope winds

Contrasts in the 500-hPa Flow

500 hPa wind speed (contoured) and geopotential heights

- At time of high winds

Dale Durran (UW Atmos. Sci.)
Contrasts in the 500-hPa Flow

500 hPa wind speed (contoured) and geopotential heights

- At time of high winds
- Upper: IOP 6: almost no difference

Dale Durran (UW Atmos. Sci.)
Contrasts in the 500-hPa Flow

500 hPa wind speed (contoured) and geopotential heights

- At time of high winds
- Upper: IOP 6: almost no difference
- Lower: IOP 13: Jet axis is further south in the weak events
Contrasts in Vertical Section Above Ridge Crest

Total wind speed and isentropes looking west at time of maximum winds

- **Weak Members** (a)
- **Strong Members** (b)

IOP 6: Little difference upstream of Owens Valley
IOP 13: Stronger subset has (1) stronger low-level stability, (2) weaker upper-level stability, (3) weaker winds
Contrasts in Vertical Section Above Ridge Crest

Total wind speed and isentropes looking west at time of maximum winds

- **Upper: IOP 6:** Little difference upstream of Owens Valley
Contrasts in Vertical Section Above Ridge Crest

Total wind speed and isentropes looking west at time of maximum winds

- Upper: IOP 6: Little difference upstream of Owens Valley
- Lower: IOP 13: Stronger subset has (1) stronger low-level stability, (2) weaker upper-level stability, (3) weaker winds
At termination of a 1-hour mid-level back trajectory.

Strongest subset (solid), weakest (dashed)
One hour prior to the time of strongest winds

At termination of a 1-hour mid-level back trajectory.

Strongest subset (solid), weakest (dashed)

Differences are less than typical errors in radiosonde data
Low-Level Stability: Soundings 1-Hour Prior to Wind Max

- At termination of a 1-hour mid-level back trajectory.
- Strongest subset (solid), weakest (dashed)
Low-Level Stability: Soundings 1-Hour Prior to Wind Max

- At termination of a 1-hour mid-level back trajectory.
- Strongest subset (solid), weakest (dashed)
- Significant differences in wind speed and stability.
Terrain induced downslope winds (and breaking mountain waves?) do not appear to be predictable at time scales longer than those suggested by Lorenz.
Terrain induced downslope winds (and breaking mountain waves?) do not appear to be predictable at time scales longer than those suggested by Lorenz.

- The IOP 6 wave breaking event and downslope windstorm probably could not be accurately predicted via a deterministic forecast that assimilated upstream data collected just one hour prior to the event.
Conclusions

Terrain induced downslope winds (and breaking mountain waves?) do not appear to be predictable at time scales longer than those suggested by Lorenz.

- The IOP 6 wave breaking event and downslope windstorm probably could not be accurately predicted via a deterministic forecast that assimilated upstream data collected just one hour prior to the event

- Deterministic forecasts of the IOP 13 event have some skill using data 6 hours prior to the event, but little skill using data from 12 hours prior.
Beyond what lead time is deterministic forecasting of snow in the Puget-Sound lowlands crippled by initial condition uncertainty?
The Next Question

Beyond what lead time is deterministic forecasting of snow in the Puget-Sound lowlands crippled by initial condition uncertainty?

Focus on the growth of initial perturbations.
Beyond what lead time is deterministic forecasting of snow in the Puget-Sound lowlands crippled by initial condition uncertainty?

- Focus on the growth of initial perturbations.
- Ignore model errors
Prototypical PNW Snow Events

- Composite of 11 of 13 events producing more than 4" of snow at SEATAC over a 27-year period.

- Top: 24 hours prior

- Bottom: Onset time of the heavy snow

Ferber et. al. 1993
Ensemble Implementation

Two cases:
- 12-13 December 2008
- 17-18 December 2008

100-member ensemble:
- 6-hr EnKF DA cycle
- 12 UTC 05–18, December 2008
Forecast of 6-hour mean-square error in ensemble at radiosonde sites
≈ (forecast 6-hour ensemble variance + observational uncertainty) at same sites.
Avoiding Details of the Model Parameterizations

Characterize the likelihood of snow by the:

- Presence of precipitation.
- 850-mb temperature
Avoiding Details of the Model Parameterizations

Characterize the likelihood of snow by the:

- Presence of precipitation.
- 850-mb temperature
- Sidestep sensitivities to
 - Ice microphysical parameterizations
 - Boundary layer parameterizations
Climatological Conditions for Snow at SEATAC

Precipitation type at SEATAC as a function of 850-mb temperature.

“Sharp rain-snow transition between about -4°C and -8°C”

(Ferber et al., 1993: Snowstorms over the Puget Sound Low-Lands Wea. Forecasting)
Ranking the Ensemble Members

- Rank by average temperature over metric box
- 17 warmest and 17 coldest members at verification time
Ensemble Mean Analysis—Case 1

1200 UTC, 12 December
1200 UTC, 13 December
SLP
500-hPa Z
Spread of Metric at Various Lead Times

- Whiskers → outer sextiles.
- Increased uncertainty with longer lead times.
Spread of Metric at Various Lead Times

Initialized: 0000 UTC 12 Dec.

Valid: 12 UTC, 13 Dec.
Spread of Metric at Various Lead Times

Initial: 1200 UTC 12 Dec.
Valid: 12 UTC, 13 Dec.
SLP and 850 hPa Temperature (36-hr Forecast)

Cold Subset

Warm Subset
>10-mm difference in Puget Sound precipitation

- Cold Subset: 10 mm liquid equivalent fell when $T_{850\text{hPa}} < -4^\circ C$
- Warm Subset: All precipitation fell with $T_{850\text{hPa}} > -4^\circ C$
Contrast the Development

Cold Subset

Warm Subset

Color Fill: θ on tropopause (2 PVU); Contours: 850 hPa temperature (White), SLP (Black)
Contrast the Development

Case 1: 12–13 December 2008
Forecast Initialized: 0000 UTC, 12 December 2008

Color Fill: \(\theta \) on tropopause (2 PVU); Contours: 850 hPa temperature (White), SLP (Black)
Contrast the Development

Cold Subset

Warm Subset

T=36 hr

Color Fill: θ on tropopause (2 PVU); Contours: 850 hPa temperature (White), SLP (Black)
Case 2: Ensemble Mean Analysis

SLP

1200 UTC, 17 December

1200 UTC, 18 December

500-hPa Z
Spread of Metric at Various Lead Times

Initialized: 0000 UTC 17 Dec.

Valid: 12 UTC, 18 Dec.

850 hPa Temperature (°C)
Forecast Hour
-4
-8
-12
-16
0
12 24 36

850-hPa Temperature (°C)
Forecast Lead Time
0
-5
-10
-15
-20 0612
2436
Spread of Metric at Various Lead Times

Initialized: 1200 UTC 12 Dec.

Valid: 12 UTC, 18 Dec.
SLP and 850 hPa Temperature (36-hr Forecast)

Cold Subset

Warm Subset
24-hr Accumulated Precipitation

- **Cold Subset:** 20.0 mm liquid equivalent total, all fell when \(T_{850\, hPa} < -6^\circ C \)
- **Warm Subset:** 25.7 mm liquid equivalent total, 3.6 mm fell with \(T_{850\, hPa} > -6^\circ C \)
Initial Conditions

Cold Sextile Mean

Warm Sextile Mean

T=0 hr

T=0 hr

Color Fill: θ on tropopause (2 PVU); Contours: 850 hPa temperature (White), SLP (Black)
Is the sensitivity driven from the boundaries?
Case 1: 12–13 December

Ensemble Boundary Data

Identical Boundary Data
Case 2: 17–18 December

Ensemble Boundary Data

Identical Boundary Data
Summary

- Those ensemble members one-standard deviation away from the mean show large 850-mb temperature spread at it 36 hours
 - Climatological rain-snow transition over 4°C range.
 - Case 1: Range between cold and warm sextile means is 6°C.
 - Case 2: Range between cold and warm sextile means is 9°C.

Dale Durran (UW Atmos. Sci.)
Those ensemble members one-standard deviation away from the mean show large 850-mb temperature spread at it 36 hours.

- Climatological rain-snow transition over 4°C range.
- Case 1: Range between cold and warm sextile means is 6°C.
- Case 2: Range between cold and warm sextile means is 9°C.

Substantial differences in synoptic-scale pattern at 36 hours:
- Case 1: Position of low centers differ by more than 400 km.
- Case 2: Position of low centers differ by more than 800 km.
Conclusions

Summary

- Those ensemble members one-standard deviation away from the mean show large 850-mb temperature spread at it 36 hours
 - Climatological rain-snow transition over 4°C range.
 - Case 1: Range between cold and warm sextile means is 6°C.
 - Case 2: Range between cold and warm sextile means is 9°C.

- Substantial differences in synoptic-scale pattern at 36 hours
 - Case 1: Position of low centers differ by more than 400 km.
 - Case 2: Position of low centers differ by more than 800 km.

- More pessimistic than Zhang et al., 2002, 2003
 - Significant differences in surface pressure pattern at 36 hours.
 - Error growth likely not dependent on moist convection.
Why does the error grow so fast?

- Nontrivial initial errors at large scales.
Why does the error grow so fast?

- Nontrivial initial errors at large scales.
- Downscale error growth is very rapid†

†Rotunno and Snyder: A Generalization of Lorenz’s Model for the Predictability of Flows with Many Scales of Motion, JAS, 2008
Tentative Conclusion

- A *theoretical* limit to atmospheric predictability arises due to the impossibility of correctly specifying all arbitrarily small-scale atmospheric circulations (Lorenz).
A theoretical limit to atmospheric predictability arises due to the impossibility of correctly specifying all arbitrarily small-scale atmospheric circulations (Lorenz).

The practical limit to mesoscale predictability can be imposed by unavoidable initial errors in the large scales.
Tentative Conclusion

- A *theoretical* limit to atmospheric predictability arises due to the impossibility of correctly specifying all arbitrarily small-scale atmospheric circulations (Lorenz).
- The *practical* limit to mesoscale predictability can be imposed by unavoidable initial errors in the large scales.

The large scale giveth and the large scale taketh away.