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Introduction

Basics

Mesoscale: Pertaining to atmospheric phenomena having horizontal
scales ranging from a few kilometers to several hundred kilometers.

Thunderstorms, squall lines
Fronts, precipitation bands in tropical and extratropical cyclones
Mountain waves, downslope winds, sea breezes

Predictability: The extent to which future states of a system may be
predicted based on knowledge of current and past states of the
system.
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Introduction

The Issue

At UW we run 69-hour forecasts with the WRF model (initialized from
GFS analyses) twice daily nested down to 4-km spatial resolution.

Argue that it is ridiculous to expect forecast skill in features with scales
of 16 km (4∆x) at hour 69.

Argue that there is still hope for forecast skill at hour 69 in features with
scales of 16 km.

Are there other reasons for using fine resolution besides trying to
forecast small-scale features that actually verify?
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Introduction

The Lorenz Viewpoint

Errors migrate upscale in turbulent flows with a -5/3 energy spectrum.

Predictability at a given scale decreases as the scale and the
"eddy turnover time" decreases.
Predictability times for motions with horizontal scale of 1,000 km
estimated as 24 times that for motions with scales of 10 km

Lorenz, 1969: The predictability of a flow which possesses many scales of motion.
Tellus, 21, 289-307.
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Introduction

Time for Errors to Propagate Upscale

1 hour to 20 km, 1 day to 1,250 km
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Introduction

The Anthes Viewpoint

Estimates of mesoscale predictability from classical turbulence theory
are too pessimistic.

Coherent structures in fluids may resist turbulent decay, e.g.,
supercell thunderstorms.
Physical forcing at the earth’s surface, such as mountains, may
contribute to extended predictability.
Mesoscale phenomena, such has fronts, can evolve from purely
large-scale intial conditions.

Anthes, et al., 1985: Predictability of mesoscale atmospheric motions. Adv.
Geophysics, 28B, 159-202.

Dale Durran (UW Atmos. Sci.) BIRS 2011 University of Washington 6 / 53



Introduction

The Anthes Viewpoint

Estimates of mesoscale predictability from classical turbulence theory
are too pessimistic.

Coherent structures in fluids may resist turbulent decay, e.g.,
supercell thunderstorms.

Physical forcing at the earth’s surface, such as mountains, may
contribute to extended predictability.
Mesoscale phenomena, such has fronts, can evolve from purely
large-scale intial conditions.

Anthes, et al., 1985: Predictability of mesoscale atmospheric motions. Adv.
Geophysics, 28B, 159-202.

Dale Durran (UW Atmos. Sci.) BIRS 2011 University of Washington 6 / 53



Introduction

The Anthes Viewpoint

Estimates of mesoscale predictability from classical turbulence theory
are too pessimistic.

Coherent structures in fluids may resist turbulent decay, e.g.,
supercell thunderstorms.
Physical forcing at the earth’s surface, such as mountains, may
contribute to extended predictability.

Mesoscale phenomena, such has fronts, can evolve from purely
large-scale intial conditions.

Anthes, et al., 1985: Predictability of mesoscale atmospheric motions. Adv.
Geophysics, 28B, 159-202.

Dale Durran (UW Atmos. Sci.) BIRS 2011 University of Washington 6 / 53



Introduction

The Anthes Viewpoint

Estimates of mesoscale predictability from classical turbulence theory
are too pessimistic.

Coherent structures in fluids may resist turbulent decay, e.g.,
supercell thunderstorms.
Physical forcing at the earth’s surface, such as mountains, may
contribute to extended predictability.
Mesoscale phenomena, such has fronts, can evolve from purely
large-scale intial conditions.

Anthes, et al., 1985: Predictability of mesoscale atmospheric motions. Adv.
Geophysics, 28B, 159-202.

Dale Durran (UW Atmos. Sci.) BIRS 2011 University of Washington 6 / 53



Introduction

Anthes’ Update

July 7, 2011 UCAR magazine
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http://www2.ucar.edu/magazine/columns/presidents-corner/turning-tables-chaos-atmosphere-more-predictable-we-assume-0


Introduction

Mesoscale Magic

(Anthes 1984: Predictability of mesoscale meteorological phenomena. In Predictabilty of Fluid Motions.)

Dale Durran (UW Atmos. Sci.) BIRS 2011 University of Washington 8 / 53



Introduction

Influence of the Lateral Boundaries

Enhanced predictability in mesoscale forecast experiments arises
because the same lateral boundary data were imposed in all

simulations.

(Vukicevic and Errico 1990, Mon. Wea. Rev.)
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Introduction

Recent Evidence for the Lorenz Viewpoint

Rapid growth of precipitation errors in “surprise" snowstorm of 24-25 January 2000.

JUNE 2002 1629Z H A N G E T A L .

TABLE 1. List of the individual sounding locations.

Station

ID No. Location State
Lat
(�N)

Lon
(�W)

Elev
(m)

AMA
LZK
SIL
ILN
REV
OAX
ABQ
ALB
BOI
GSO
TLH

72363
72340
72233
72426
72489
72558
72365
72518
72681
72317
72214

Amarillo
Little Rock
Slidell
Wilmingtion
Reno
Valley
Albuquerque
Albany
Boise
Greensboro
Tallahassee

TX
AR
LA
OH
NV
NE
NM
NY
ID
NC
FL

35.22
34.83
30.25
39.42
39.57
41.32
35.04
42.75
43.57
36.08
30.40

101.70
92.25
89.77
83.72
119.79
96.37
106.60
73.80
116.22
79.95
84.35

1099
165
3

317
1515
350
1613
89
874
270
18

FIG. 15. (a) The 36-h accumulated precipitation difference (every 4 mm) between Cntl-30km and NoLZK. (b) Time evolution of the
accumulated precipitation (mm) averaged over a 240-km � 240 km box around Raleigh, NC, from each individual sounding experiment,
Cntl-30km and EtaOnly. The location of the box is shown in (a).

a simulation (EtaLBC) was run as in EtaOnly except
that the previous 12-h operational Eta forecast was used
for the lateral boundary conditions. That is to say, MM5
in the EtaLBC simulation is initialized with the Eta
analysis from 0000 UTC 24 January 2000 as in EtaOnly,
but uses the tendency forecast from the Eta Model ini-
tialized at 1200 UTC 23 January as the lateral boundary
condition. The kinetic energy spectrum for the differ-
ence between this simulation and EtaOnly at 36 h ap-
pears in Fig. 13b. As can be seen from Fig. 13b, the
alterations to the boundary conditions produce signifi-
cant growth at all the scales that decayed in EtaOnly.
Further evidence of this ‘‘sweeping’’ of differences from
the limited domain is provided by the growth of syn-
optic-scale differences in simulations (now initialized
with ECMWF analysis) in which only initial conditions
are perturbed but the domain is extended 1500 km to
the east of the eastern boundary of the current D1 (not

shown). It thus seems reasonable to conclude that the
decay of synoptic-scale differences found in Fig. 13 is
an artifact of our limited-area simulations, and that dif-
ferences at those scales would in fact grow, as has been
found previously in global models.
The 300-hPa wind differences provide some sense of

the relationship of the smaller-scale differences to those
at synoptic scales. Figure 16 shows the 24-h differences
between Cntl-30km and EtaOnly and between EtaOnly
and EtaLBC. There is little difference between Cntl-
30km and EtaOnly in the western two-thirds of the do-
main (Fig. 16a), whereas altering the boundary condi-
tions fills that same portion of the domain with synoptic-
scale differences (Fig. 16b). In the eastern one-third of
the domain where there is moist ascent and parameter-
ized convection, however, both fields display qualita-
tively similar small-scale structure, much as in our other
simulations (Fig. 14). This indicates that the two sources
of error growth (at different scales) are, to a first ap-
proximation, independent in these simulations.
In summary, these experiments suggest distinct mech-

anisms for error growth acting at synoptic scales and at
mesoscales. The error growth at small scales is inti-
mately related to the presence of moist processes in the
flow, while the error growth at synoptic scales appears
to be that familiar from predictability studies with global
models. Except for Ehrendorfer et al. (1999) (discussed
further in section 7), no other study using a limited-area
model has identified such error growth at subsynoptic
scales. In particular, Vukicevic and Errico (1990) per-
form broadly similar experiments and find that errors
decay at subsynoptic scales. Our results may perhaps
be reconciled with theirs by noting that their initial per-

(Zhang et al., 2002: Mon. Wea. Rev. )
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Introduction

Effects of Moist Convection on Mesoscale
Predictability

Zhang et al., 2003: JAS—on the lack of predictability of the 24-25
January 2000 snowstorm.

“The errors in the convective-scale motions subsequently influence the
development of meso- and larger-scale forecast aspects such as the
position of the surface low and the distribution of precipitation, thus
providing evidence that growth of initial errors from convective scales
places an intrinsic limit on the predictability of larger scales."

Dale Durran (UW Atmos. Sci.) BIRS 2011 University of Washington 11 / 53



Introduction

Roadmap

We will look at the sensitivity to initial conditions in two specific
contexts:

Downslope windstorms
Distinguishing between rain and snow in the Puget-Sound
lowlands

We will ignore:
Other important phenomena (e.g., convection)
Measures of forecast skill
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Influence of Topography Previous Results

Does Topography Help?

“Topographic forcing increases the predictability of atmospheric flows"
(Vukicevic and Errico 1990, Mon. Wea. Rev.)

“. . . synoptic-scale perturbations are most sensitive to the change
of topography. . ."
Cases involved lee-cyclongenesis
Simulations used ∆x = 120 km
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Influence of Topography Previous Results

Does Topography Help?

What happens at smaller scales?

“Most of the region’s [Pacific NW] mesoscale circulations are created
by the interaction of the synoptic-scale flow with the mesoscale terrain;
thus, mesoscale predictability is substantially controlled by longer-lived

synoptic predictability." (Mass et al., 2002. BAMS)

The large-scale gives the mesoscale extended predictability.
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Influence of Topography Previous Results

Downslope Wind Predictions–1975

Multi-layer linear mountain-wave model using coarse resolution
large-scale forecasts.

(Klemp and Lilly, 1975: J. Atmos. Sci)
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Influence of Topography Previous Results

Downslope Wind Predictions–2000

Nonlinear 2D mountain-wave model using Eta-model forecasts.
726 VOLUME 15W E A T H E R A N D F O R E C A S T I N G

FIG. 13. (a) Bar graph partitioning the two-dimensional model pre-
dictions with respect to whether or not the initial conditions contained
a mean-state critical level (stippled � mean-state critical level, solid
� no mean-state critical level) and how the prediction compared with
the observed peak gusts. (b) Bar graph partitioning the two-dimen-
sional model predictions for initial conditions containing a mean-
state critical level based on the height of the mean-state critical level
(stippled � below 8 km; solid � above 8 km).

within the range of reported peak gusts. When the pre-
diction fell within this range, the forecast was assigned
to the �2 to 2 category. The mean-state critical level
forecasts (stippled bars) have a distribution centered on
the ‘‘perfect’’ forecast, the type of distribution one
would desire. The no mean-state critical level forecasts
(solid bars) have a bimodal distribution with a primary
peak corresponding to large overpredictions and a sec-
ondary peak corresponding to the perfect forecast.
These results suggest that the two-dimensional model
tends to be overly active when static stability layering
or a wave-induced critical level is the mechanism re-
sponsible for the low-level amplification of the moun-
tain wave.
When the simulations for initial conditions with a

mean-state critical level are subdivided with respect to
the height of the mean-state critical level, where ‘‘high’’
refers to a critical level above 8 km and ‘‘low’’ refers
to a critical level below 8 km, one finds that the sim-
ulations with a high mean-state critical level dominate

the overprediction arm of the mean-state critical level
distribution (see Fig. 13b). This tendency may stem
from the fact that high-altitude mean-state critical levels
are less likely to play an active role in the low-level
amplification of a mountain wave than lower-level ones.
In other words, static stability layering or a wave-in-
duced critical level may actually be the mechanism re-
sponsible for the low-level amplification of the terrain-
induced waves when the mean-state critical level is lo-
cated above 8 km.
The performance of a forecast tool like the one con-

sidered in this study will be influenced by a number of
factors. These factors can be grouped into three basic
categories: 1) the initialization of the two-dimensional
model, 2) the formulation of the two-dimensional mod-
el, and 3) the representativeness of the observations.
Consider first the initialization of the two-dimensional

model. The value of guidance provided by mesoscale
models, whether they are two- or three-dimensional, will
be limited if the synoptic-scale forecast has significant
errors. Variations in the accuracy of the synoptic-scale
forecast could explain why the two-dimensional model
is able to predict some high-wind events at a particular
location, while failing miserably for other events. A bias
in the large-scale forecast, such as under-(over-) fore-
casting the strength of the mountaintop inversion, could
lead to the two-dimensional model being overly active
when the upstream flow lacks a mean-state critical level.
What is considered a significant error in the synoptic
forecast will depend on the phenomenon one is trying
to forecast. An important question this study has not
addressed is the sensitivity of downslope windstorms to
realistic uncertainties in the upstream stratification and
wind profile. In other words, are further improvements
in the accuracy of the larger-scale predictions necessary
in order to achieve forecast skill beyond what is dem-
onstrated in this study? In addition to the accuracy of
the large-scale forecasts, the performance of this tool
may depend on the temporal and vertical resolution of
the soundings used to initialize the two-dimensional
model. If a rather shallow inversion layer plays an im-
portant role in the low-level amplification of the moun-
tain wave, then the 50-mb vertical spacing of the grids
available to the forecast office may be too coarse to
resolve this feature. If a high-wind event is rather short
lived, then conditions conducive to achieving low-level
amplification of the mountain wave may not be captured
by the 6-h temporal resolution of the grids available to
the forecast office.
A perfect prediction of the large-scale flow charac-

teristics with the necessary temporal and spatial reso-
lutions will not guarantee that a tool like the one con-
sidered in this study will produce a perfect forecast. The
performance of this type of tool will also depend on
how well the numerical model captures the behavior of
this mesoscale phenomenon. Subtle features of the two-
dimensional model considered in this study, such as the
finite-difference schemes, boundary conditions, and

Obs-Forecast: black/stippled bars for cases with/without mean-state
critical level

(Nance and Colman, 1995: J. Atmos. Sci)
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Influence of Topography Previous Results

2D Sensitivity Study

Ensemble of perturbed January 11, 1972 soundings, 20 members.
Large spread near the regime boundary between mountain waves
and wave breaking.

among the members of only 11 m s!1. An additional
ensemble simulation conducted with hm " 2250 m in-
dicates a 15 m s!1 spread of the leeside wind speed
maximum, which is significantly less than the range at-
tained for the hm " 1500- and 1750-m ensembles. The
fact that the leeside wind speeds are greatest in the hm

" 2000- and 2250-m ensembles and yet exhibit signifi-
cantly less spread than the hm " 1500- and 1750-m en-
sembles, provides further justification for the notion of
predictability degradation near regime boundaries.
These results indicate how relatively small uncertainties
in the large-scale conditions result in significant uncer-
tainty in the downslope wind speed for the large-
amplitude wave and bifurcation regimes.

c. Wave momentum flux

The representation of the vertical flux of horizontal
momentum due to orographic effects has been shown
to be important for the large-scale general circulation
(e.g., Palmer et al. 1986; Lott 1995; Kim et al. 2003).
The momentum flux is also a proxy for the wave activ-
ity. The momentum flux is computed for each ensemble
member as follows:

Mx " !!
!"

"

u#w# dx, #2$

where the primes are deviations from the two-
dimensional domain average and w is the vertical wind
component. Vertical profiles for each ensemble mem-
ber corresponding to the hm " 1500-, 1750-, and 2000-m

mountain heights are shown in Fig. 6. The profiles are
generally negative with the largest negative values near
the surface. The larger near-surface negative values for
the larger mountain heights are consistent with the ex-
pectation of a net drag that the topography imparts on
the westerly flow. Relatively little variation is apparent
in the momentum flux for the 1500-m mountain en-
semble simulation above 5 km. The relatively large
range in near-surface momentum flux for the hm "
1500-m case is consistent with the large range of near-
surface wind speed maxima shown in Fig. 6. Small posi-
tive momentum fluxes may arise in this case because of
the presence of trapped mountain waves that extend to
the boundary and the finite domain used for the calcu-
lations. The 1750- and 2000-m mountain height en-
sembles exhibit substantial variance between members,
particularly in the 3–12-km layer. The momentum flux
spread is nearly equivalent for these two ensembles,
which suggests a comparable uncertainty in this quan-
tity. Relatively small perturbations in the mean state
(e.g., Fig. 1) lead to a large spread in the momentum
flux profile (Fig. 6). Some of the variance in the mo-
mentum flux profiles may arise because of differences
in phase as well as amplitude of the waves. Variations in
the momentum flux may also occur because of differ-
ences in the evolution of the mean flow, as discussed in
Chen et al. (2005). The large wave drag spread arising
from nearly identical large-scale conditions, or what
could be viewed as nearly equivalent mean states in a
GCM grid cell, motivates the application of stochastic
parameterization approaches (e.g., Palmer 2001) to
gravity wave drag representation in large-scale weather
and climate models.

d. Nonlinearity

The degree to which the ensemble simulations are
nonlinear can be explored through the calculation of
the relative nonlinearity index % (Gilmour et al. 2001)
defined as

$ "
!%& & %!!

0.5#!%&! & !%!!$
, #3$

where '& represents an ensemble member initialized
with a set of perturbations and '! denotes the use of
the same set of perturbations with the opposite sign.
For perturbations that are the same size, a spatial cor-
relation between the positive and negative perturba-
tions of !1 would correspond to % " 0, a correlation of
0 would correspond to % " 1.41, and a correlation of 1
would correspond to % " 2. For relatively linear
growth, one would expect % ( 0.

The relative nonlinearity index is computed for the
linear, large-amplitude wave, bifurcation, and wave-

FIG. 5. Maximum leeside wind speed (m s!1) at the lowest
model level (100 m) for each ensemble member as a function of
the mountain height (m) at the 4-h simulation time.

5218 M O N T H L Y W E A T H E R R E V I E W VOLUME 136

Doyle and Reynolds, 2008, Mon. Wea. Rev.
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Influence of Topography T-REX Cases

How predictable are downslope winds?

Cases from T-REX in the Sierra Nevada.
70-member ensemble forecasts using the COAMPS model
Ensemble members generated using a ensemble Kalman filter.
Two types of downslope wind events considered

Induced by wave breaking
Induced by strong low-level static stability with weak stability aloft
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Influence of Topography T-REX Cases

Triply Nested Domain for COAMPS

Owen’s Valley lee-slope winds are averaged between 0 and 350 m
AGL in the region outlined in white in panel c.
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Influence of Topography T-REX Cases

500-hPa Flow for the Wave-Breaking Case

Initialization Verification 6 hours later
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Influence of Topography T-REX Cases

500-hPa Flow for the Case with Strong Low-Level
Stability

Forecast at 6 hours Verification at 12 hours
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Variability in the lee-side response Surface winds

Ensemble Distributions of Owens-Valley Surface
Winds
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Variability in the lee-side response Ridge perpendicular cross sections

Contrasting the Weakest and Strongest 10 Events
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Variability in the lee-side response Ridge perpendicular cross sections

Contrasting the Weakest and Strongest 10 Events
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Synoptic Scale Patterns for the Weak and Strong Subsets At the time of the downslope winds

Contrasts in the 500-hPa Flow

500 hPa wind speed (contoured) and geopotential heights
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Synoptic Scale Patterns for the Weak and Strong Subsets At the time of the downslope winds

Contrasts in Vertical Section Above Ridge Crest

Total wind speed and isentropes looking west at time of maximum winds
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Synoptic Scale Patterns for the Weak and Strong Subsets At the time of the downslope winds
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Synoptic Scale Patterns for the Weak and Strong Subsets One hour prior to the time of strongest winds

Breaking Case: Soundings 1-Hour Prior to Wind Max
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Synoptic Scale Patterns for the Weak and Strong Subsets One hour prior to the time of strongest winds

Low-Level Stability: Soundings 1-Hour Prior to Wind
Max
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Synoptic Scale Patterns for the Weak and Strong Subsets One hour prior to the time of strongest winds

Low-Level Stability: Soundings 1-Hour Prior to Wind
Max
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Downslope Winds Conclusions

Conclusions

Terrain induced downslope winds (and breaking mountain waves?) do
not appear to be predictable at time scales longer than those
suggested by Lorenz.

The IOP 6 wave breaking event and downslope windstorm
probably could not be accurately predicted via a deterministic
forecast that assimilated upstream data collected just one hour
prior to the event
Deterministic forecasts of the IOP 13 event have some skill using
data 6 hours prior to the event, but little skill using data from 12
hours prior.
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Snow in the Puget Sound Low-lands Introduction

The Next Question

Beyond what lead time is deterministic forecasting of snow in the
Puget-Sound lowlands crippled by initial condition uncertainty?

Focus on the growth of initial perturbations.
Ignore model errors
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Snow in the Puget Sound Low-lands Introduction

Prototypical PNW Snow Events

Composite of 11 of 13 events
producing more than 4" of
snow at SEATAC over a
27-year period.

Top: 24 hours prior

Bottom: Onset time of the
heavy snow

500-hPa Z SLP

Ferber et. al. 1993
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Snow in the Puget Sound Low-lands Experimental Design

Ensemble Implementation

Two cases:
12-13 December 2008
17-18 December 2008

100-member ensemble:
6-hr EnKF DA cycle
12 UTC 05–18, December 2008

10 Dec 12 Dec 13 Dec
0000 UTC0000 UTC0000 UTC

36
km

12
km

12-hr Fcst.
24-hr Fcst.

36-hr Fcst.

COAMPS (1-way nest)

∆x =36- and 12-km
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Snow in the Puget Sound Low-lands Experimental Design

Ensemble Performance (24 6-hr forecasts)
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Snow in the Puget Sound Low-lands Experimental Design

Avoiding Details of the Model Parameterizations

Characterize the likelihood of snow by the:
Presence of precipitation.
850-mb temperature

Sidestep sensitivities to
Ice microphysical parameterizations
Boundary layer parameterizations

Dale Durran (UW Atmos. Sci.) BIRS 2011 University of Washington 34 / 53



Snow in the Puget Sound Low-lands Experimental Design

Avoiding Details of the Model Parameterizations

Characterize the likelihood of snow by the:
Presence of precipitation.
850-mb temperature
Sidestep sensitivities to

Ice microphysical parameterizations
Boundary layer parameterizations

Dale Durran (UW Atmos. Sci.) BIRS 2011 University of Washington 34 / 53



Snow in the Puget Sound Low-lands Experimental Design

Climatological Conditions for Snow at SEATAC

Precipitation type at SEATAC as a function of 850-mb temperature.

“Sharp rain-snow transition between about -4◦and -8◦C”

(Ferber et al., 1993: Snowstorms over the Puget Sound Low-Lands Wea. Forecasting )
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Snow in the Puget Sound Low-lands Experimental Design

Ranking the Ensemble Members

850 hPa Temperature

Rank by average temperature over metric box
17 warmest and 17 coldest members at verification time
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Case 1: 12–13 December 2008 Ensemble Forecasts

Ensemble Mean Analysis—Case 1
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Case 1: 12–13 December 2008 Ensemble Forecasts

Spread of Metric at Various Lead Times

Whiskers→ outer sextiles.

Increased uncertainty with
longer lead times.

Valid: 12 UTC, 13 Dec.
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Case 1: 12–13 December 2008 Ensemble Forecasts

Spread of Metric at Various Lead Times

Initialized: 0000 UTC 12 Dec.
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Case 1: 12–13 December 2008 Ensemble Forecasts

Spread of Metric at Various Lead Times

Initialized: 1200 UTC 12 Dec.
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Case 1: 12–13 December 2008 Forecasts Valid: 1200 UTC, 13 December, 2008

SLP and 850 hPa Temperature (36-hr Forecast)

Cold Subset Warm Subset
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Case 1: 12–13 December 2008 Forecasts Valid: 1200 UTC, 13 December, 2008

24-hr Accumulated Precipitation

Cold Subset Warm Subset

>10-mm difference in Puget Sound precipitation
Cold Subset: 10 mm liquid equivalent fell when T850hPa < −4◦C
Warm Subset: All precipitation fell with T850hPa > −4◦C
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Case 1: 12–13 December 2008 Forecast Initialized: 0000 UTC, 12 December 2008

Contrast the Development

Cold Subset

T=0 hr

Warm Subset

T=0 hr

Color Fill: θ on tropopause (2 PVU); Contours: 850 hPa temperature (White), SLP (Black)
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Case 1: 12–13 December 2008 Forecast Initialized: 0000 UTC, 12 December 2008

Contrast the Development

Cold Subset

T=12 hr
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Case 2: December 17-18, 2008 Ensemble Forecasts

Case 2: Ensemble Mean Analysis
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Case 2: December 17-18, 2008 Ensemble Forecasts

Spread of Metric at Various Lead Times

Initialized: 0000 UTC 17 Dec.
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Case 2: December 17-18, 2008 Ensemble Forecasts

Spread of Metric at Various Lead Times

Initialized: 1200 UTC 12 Dec.
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Case 2: December 17-18, 2008 Forecasts Valid: 1200 UTC, 18 December, 2008

SLP and 850 hPa Temperature (36-hr Forecast)

Cold Subset Warm Subset
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Case 2: December 17-18, 2008 Forecasts Valid: 1200 UTC, 18 December, 2008

24-hr Accumulated Precipitation

Cold Subset Warm Subset

Cold Subset: 20.0 mm liquid equivalent total, all fell when T850hPa < −6◦C

Warm Subset: 25.7 mm liquid equivalent total, 3.6 mm fell with T850hPa > −6◦C
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Case 2: December 17-18, 2008 Forecast Initialized: 0000 UTC, 17 December 2008

Initial Conditions

Cold Sextile Mean

T=0 hr

Warm Sextile Mean

T=0 hr

Color Fill: θ on tropopause (2 PVU); Contours: 850 hPa temperature (White), SLP (Black)
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Influence of the Lateral Boundaries

The Boundaries

Is the sensitivity driven from the boundaries?
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Influence of the Lateral Boundaries

Case 1: 12–13 December

Ensemble Boundary Data
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Influence of the Lateral Boundaries

Case 2: 17–18 December

Ensemble Boundary Data
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Conclusions

Summary

Those ensemble members one-standard deviation away from the
mean show large 850-mb temperature spread at it 36 hours

Climatological rain-snow transition over 4◦C range.
Case 1: Range between cold and warm sextile means is 6◦C.
Case 2: Range between cold and warm sextile means is 9◦C.

Substantial differences in synoptic-scale pattern at 36 hours
Case 1: Position of low centers differ by more than 400 km.
Case 2: Position of low centers differ by more than 800 km.

More pessimistic than Zhang et al., 2002, 2003
Significant differences in surface pressure pattern at 36 hours.
Error growth likely not dependent on moist convection.
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Conclusions

Why does the error grow so fast?

(a) (b)

Wavelength (km) Wavelength (km)
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Nontrivial initial errors at large scales.

Downscale error growth is very rapid†
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Nontrivial initial errors at large scales.

Downscale error growth is very rapid†

†Rotunno and Snyder: A Generalization of Lorenz’s Model for the Predictability of Flows with Many Scales of Motion, JAS, 2008
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Conclusions

Tentative Conclusion

A theoretical limit to atmospheric predictability arises due to the
impossibility of correctly specifying all arbitrarily small-scale
atmospheric circulations (Lorenz).

The practical limit to mesoscale predictability can be imposed by
unavoidable initial errors in the large scales.
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Conclusions

Tentative Conclusion

A theoretical limit to atmospheric predictability arises due to the
impossibility of correctly specifying all arbitrarily small-scale
atmospheric circulations (Lorenz).
The practical limit to mesoscale predictability can be imposed by
unavoidable initial errors in the large scales.

The large scale giveth and the large scale taketh away.
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Conclusions
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