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Historical perspective

• Motivation for the development of 3D-Var

– Improve our capacity to use new types of observations 

particularly satellite radiances (Eyre, 1989; Thépaut and 

Moll, 1990)

– New background-error statistics models without data 

selection

– Extension to 4D-Var (Talagrand and Courtier, 1987)

• NCEP (1992), ECMWF (1996), Météo-France and CMC 

(1997), MetOffice (1999)

2.

Historical perspective (2)

• Dual 3D-Var (Courtier, 1997)

– NASA's Global Modeling and Assimilation Office (GMAO) (Cohn  et 

al., 1998)

– Naval Research Laboratory (Daley and Barker, 2000)

• 4D-Var

– ECMWF (1997), Météo-France (2000), MetOffice (2004), JMA 

(2005), Meteorological Service of Canada (2005), NRL (2009)

3.

Plan of presentation

• 3D-Var

– Introduction of the incremental formulation

– First-Guess at Appropriate Time (FGAT)

• 4D-Var 

– Extension from 3D to 4D-Var

– Incremental formulation

– Evaluation of the impact of the first implementation of 4D-Var at 

the Meteorological Service of Canada

• Current issues

– Comparaison of 4D-Var with the Ensemble Kalman filter

– Hybrid formulation

– Taking into account model error: the weak-constraint 4D-Var
4.
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The variational problem

• Example:

o Observation and background error with Gaussian distributions
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o p(y|x) is Gaussian only if H is linear

o Maximum likelihood estimate (mode of the distribution):
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• Reducing J(x) implies an increase in the probability of x being the 

true value

Representation of related probability distributions
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Incremental approach

Successive linearizations with respect to 

the full model state is obtained

o Minimization of quadratic problems

From Laroche and Gauthier (1998)
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where

δx = x – xb : increment

H’ = ∂H/∂x : tangent-linear of the 

observation operator

y’  = y – H(xb):

innovation vector (observation departure with 

respect to the high resolution background 

state)

1/2δ ξ=x B

3D-Var: variational formulation of the statistical 

estimation problem

8.

Minimization of the cost function

where δx = x - xb : increment

H’ = ∂H/∂x : tangent-linear of the observation operator

y’  = y – H(xb) : innovation vector (observation departure)

(computed with respect to the high 

resolution background state)
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Autocorrelation spectra of rotational and 

divergent components of background-

error

9.

A triangular truncation

n ≤ 108 (T108)

resolution is sufficient

to represent the whole

autocorrelation spectra

Regional analysis 

increment
• Analysis increment 
produced at full resolution (~ 
50 km) (control)

• Control - Incremental

(increment has a resolution 
of ~200 km)

• Control - Non-incremental
(innovations produced with 
respect to the low resolution 
background state)

10.

Variational Quality control

(QC-Var)

Example: least-square fit involving an 

erroneous datum  (from Tarantola, 2005)

• Least-square fit of data: y = ax + b

12.
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Background-check procedure

13.

Forecast

Low

Vobs.××××

Vobs.

××××

××××
Vobs.

Vobs.

×

Vobs.
×

Vobs.

×

Difficulties that arise with the 

background-check procedure

14.

Analysis

Low

Forecast

Low

Vobs.××××

Vobs.
×

Vobs.

××××

Vobs.

×
××××
Vobs.

Variational Quality Control (QC-Var)

• Dharssi et al. (1992), Ingleby and Lorenc (1993), 

Andersson and Järvinen (1999)

• Probability of having a gross error

* consider that 

15.
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Representation of the QC-Var cost function         

(P = 0.01)

17.( ) oσ− /)(xHy

Observation - Forecast (y - H(xb))
AIREP temperatures         Period: March-April 2002

Rejected by 

background 

check (303)

Rejected by 

QC-Var (103)

Accepted

(31,926)

Total Number of 

data 32239

18.

Recent developments in variational quality control
(Isaksen, L., 2010: presentation at the ECMWF training course)

Huber norm

* Adds some weight on 

observations with large 

departures

* A set of observations with 

consistent large departures 

will influence the analysis

(Isaksen, 2010   ECMWF)

(from Auligné, McNally and Dee, QJ 2007)
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Monitoring and quality control
Statistics based on innovations (y -HXb):

example from TOVS radiances

Static bias correction

• Consider innovations d = y –H(xb) over a period of time 
(order of a month)

• Based on the assumption that the background error itself 
is unbiased

• Background error is constrained by all observations

→ Justified where unbiased observations are 
available (e.g., radiosondes)

→ Only innovations of satellite data in the vicinity of 
radiosondes are considered

( )b o b o b oH ε ε ε ε ε− ≅ − = + ≈y x H H

Static bias correction

• Modify the observation operator as

• Find the coefficients β by minimising

• The quantities Pi(x) are the predictors which relate to the 

measurements
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Predictors used for different satellite instruments

(Auligné, McNally and Dee, QJ 2007)

Instrument Predictors

AIRS 1000-300 200-50 10-1 50-5

ATOVS 1000-300 200-50 10-1 50-5

GEOS 1000-300 200-50 TCWV

SSMI Vs Ts TCWV

• Geopotential thicknesses for the layers comprised between the 
pressures (in hPa) 

• TCWV: total content in water vaport

• Vs: surface wind speed      Ts:  skin temperature
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Adaptive online scheme: Var-BC

• Bias correction is incorporated within the 

assimilation scheme itself

• More apt to distinguish between model bias and 

observation biases.
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Comparison between VarBC and static 

bias correction (Auligné et al., 2007)

Summary up to now

• Variational assimilation made it possible to 
assimilate raw measurements, particularly 
those from satellite instruments

• Derived from a Bayesian perspective, the 
variational form is not restricted to Gaussian 
probability distributions

* Non-Gaussian observation error distributions are 
used to perform implicitly the quality control of 
observations

• Online variational bias corrections is also a 
very convenient method to detect and 
correct systematic errors in the observations

• 3D-Var can be naturally extended to 4D-Var

4D variational data assimilation (4D-Var)

• Observation operator now involves a model 

integration that carry the initial conditions up to the 

time of the observations

32.
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Extension of 3D-Var to 4D-Var

• Representation of the covariances contained within the change 

of variables 

• Each iteration of the minimization involves approximately 2-3 

model integrations over the assimilation window (0 < t < T)

• Incremental formulation allows to reduce the cost of 4D-Var by 

using a simplified model, the tangent linear model linearized

around the current model trajectory (Courtier et al., 1994)
33.

Cost function

( )( ) ( )( )1/2 1 1/21 1
( ) ' , ' ' , '

2 2

T
T

o oJ t t t tξ ξ ξ ξ ξ−= + − −H L B y R H L B y

1/2

0δ ξ=x B

Tangent Linear model and Adjoint Model

(LeDimet and Talagrand, 1986)

* Direct Model :

* Tangent Linear Model :

* Adjoint Model :
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Example: the Lorenz (1963) model 

• Direct Model

• Tangent Linear 

Model (TLM)

• Adjoint Model
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Schematic of the incremental 4D-Var
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Operations involved in a single

iteration of 4D-Var

R-1(H'δx
0
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� Integration of the operational model

� Initial Conditions: X
0
(k) = X

0
(k-1) + ∆X

0
(k-1)

� Computation of observation departures y' = y - HX(k)(t)

� Definition of the trajectory X(t) that defines the TLM and the

adjoint model

Minimization of the incremental problem

- Use a simplified model

(resolution and physical parameterizations)

∆X
0
(k) = h-I δx

0
(k)

Outer and inner iterations

of an incremental 4D-Var

Impact of 4DImpact of 4D--Var in the Canadian Var in the Canadian 
operational assimilation and operational assimilation and 

forecasting systemforecasting system

Results from Results from LarocheLaroche et al. (2007), Environment Canadaet al. (2007), Environment Canada

Analysis

Background

ATOVS

All Other Observations

1.5h-1.5h-6h 0h-3h 3h

ATOVS

All other Obs.

Assimilation Window

∆∆∆∆X

3D-Var
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All Observations

1.5h-1.5h-6h 0h-3h 3h

Assimilation Window

∆∆∆∆X1

∆∆∆∆X0

Analysis

Background

ATOVS

All Other Observations

4D-Var Configurations

Outer 

loop

Number 

of inner 

loops

Simplified

physics

Low-

resolution

Analysis 

increments

High-

resolution

trajectory

1 ~ 90 - 1.5o (T108) 

L58

~15 km

L58

1 30 -PBL 1.5o (T108) 

L58

(0.3o x 

0.45o) 

L58

2 25 -PBL

-SGO

-Stratiform 

precip.

1.5o (T108) 

L58

(0.3o x 

0.45o) 

L58

3D-Var

4D-Var

Global

Regional

Type Variables Thinning
radiosonde/dropsonde U, V, T, (T-Td), ps 28 levels

Surface report T, (T-Td), ps, (U, V over water) 1 report/6h

Aircraft

(BUFR, AIREP, AMDAR, ADS)

U, V, T 1o x 1o x 50 hPa

ATOVS

NOAA , AQUA

Ocean            Land

AMSU-A             3-10              6-10

AMSU-B              2-5                3-4

250 km x 250 km

Water vapor channel

GOES 

IM3

(6.7 µ)

2o x 2o

AMV

(Meteosat, GOES, MTSAT)

U,V

(IR, WV, VI channels)

1.5o x 1.5o

MODIS

(Aqua, Terra)

U,V 1.5o x 1.5o

Profiler

(NOAA Network)

U,V (750 m) Vertical

Observations assimilated at the CMC Temporal thinning

3D-Var

4D-Var

0-h-3h +3h

××××
××××

××××

×××× ×××× ×××××××× ×××× ×

0-h-3h +3h

××××
××××

××××

×××× ×××× ×××××××× ×××× ××××
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Average amount of data assimilated per Day Impact of the various components of 4D-Var

Type Outer 

loops

Simplified

Physics

Temporal

thinning

3D-Var 1 - 3D

3D-Var

(FGAT)

1 - 3D

4D-Var

(1 loop)

1 (simpler) 4D

4D-Var

(simpler)

2 (simpler, simpler) 4D

4D-Var

(3D-thin)

2 (simpler, better) 3D

4D-Var 2 (simpler, better) 4D

August 2004

RMS error

GZ 500 hPa

Southern Hemisphere
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3D-Var
3D-Var (FGAT)
4D-Var (3D-thin)
4D-Var (1 loop)
4D-Var (simpler)
4D-Var

Impact of the various components of 4D-Var

3% (traj. updates)

100%

36%(4D thinning)

4D-Var

3D-Var

4D-Var (simpler)

4D-Var (3D-thin)

6% (better physics)

50% (TL/AD)

14% (FGAT)

3D-Var (FGAT)

4D-Var (1 loop)

Impact of the various components of 4D-Var



Presentation: 3D-4D Variational Data Assimilation

Pierre Gauthier

12

2011 BIRS Workshop on

Advanced Mathematical Methods to Study Atmospheric Dynamical Processes

10-15 July 2011, BIRS, Banff, Canada

Assimilated radiances: major input in Strato-2b from 

new data and increased thinning

Number of radiance observations assimilated February 1st, 2009 (4 analyses):

Instrument Platform Strato 2a Strato 2b % Change

AIRS AQUA 392 554 659 751 + 68%

IASI Metop-2 0 500 783 New

AMSU-A NOAA-15 121 875 338 194 + 178%

NOAA-18 170 773 472 474 + 177%

AQUA 119 805 331 557 + 177%

AMSUB NOAA-15 14 762 41 350 + 180%

NOAA-16 30 082 84 341 + 180%

NOAA-17 32 965 92 609 + 181%

MHS NOAA-18 34 671 96 025 + 177%

SSMI DMSP-13 37 965 60 761 + 60%

SSMIS DMSP-16 0 39 330 New

GOES Imager GOES-11 11 813 34 967 + 196%

GOES-12 10 024 41 919 + 318%

SEVERI MSG-2 0 69 183 New

MVIRI Meteosat-7 0 41 882 New

GMS MTSAT MTSAT-1 0 20 612 New

All Radiances: 977 289 2 925 788 + 199%

4D4D--Var Var –– EnKFEnKF intercomparisonintercomparison

Acknowledgments:  Mark Buehner, Peter Houtekamer, 

Herschel Mitchell

Environment Canada, 

Experimental Systems (Buehner et al., 2010,a-b)
Modifications to configurations operational during summer 2008

• 4D-Var
– incremental approach: ~35km/150km grid spacing, 58 levels, 

10hPa top ���� Increased horizontal resolution of inner loop to 
100km to match EnKF

• EnKF
– 96 ensemble members: ~100km grid spacing, 28 levels, 10hPa 

top ���� Increased number of levels to 58 to match 4D-Var

• Same observations assimilated in all experiments:

– radiosondes, aircraft observations, AMVs, US wind profilers, 
QuikSCAT, AMSU-A/B, surface observations

– eliminated AIRS, SSM/I, GOES radiances from 4D-Var

– quality control decisions and bias corrections extracted from an 
independent 4D-Var experiment

Experimental Configurations

• Variational data assimilation system:

– 3D-FGAT and 4D-Var with B matrix nearly like operational system: 

NMC method

– 3D-FGAT and 4D-Var with flow-dependent B matrix from EnKF at 

middle or beginning of assimilation window (same localization 

parameters as in EnKF)

– Ensemble-4D-Var (En-4D-Var): use 4D ensemble covariances to 

produce 4D analysis increment without TL/AD models (most similar 

to EnKF approach)

• EnKF: 

– Deterministic forecasts initialized with EnKF ensemble mean 

analysis (requires interpolation from ~100km to ~35km grid)
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Results – 500hPa GZ anomaly correlation
Large improvement from using flow-dependent covariances 

in 4D-Var

Northern extra-tropics Southern extra-tropics

4D-Var Bnmc

4D-Var Benkf

EnKF (ens mean)

4D-Var Bnmc

4D-Var Benkf

EnKF (ens mean)

Evolution of mean 3-hour accumulated precipitation

Forecast Results – Precipitation
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4D error covariances
Temporal covariance evolution (explicit vs. implicit evolution)

EnKF (and En-4D-Var):

4D-Var-Benkf:

-3h 0h +3h

3D-FGAT-Benkf:

96 NLM integrations

96 NLM integrations

96 NLM 

integrations

55 TL/AD integrations,

2 outer loop iterations

Forecast Results:

En-4D-Var vs. 3D-FGAT-Benkf

Difference in 

stddev relative 

to radiosondes:

Positive �

En-4D-Var better

Negative�

3D-FGAT-Benkf better

zonal 

wind

temp.

height

north              tropics             south
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Forecast Results:

En-4D-Var vs. 4D-Var-Benkf

Difference in 

stddev relative 

to radiosondes:

Positive �

En-4D-Var better

Negative�

4D-Var-Benkf better

zonal 

wind

temp.

height

north              tropics             south
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Summary

• Major future improvements of 4D-Var would require 
significant effort:
– optimization/reformulation of GEM TL/AD and development of 

linearized physics
– improved background-error covariances by using EnKF ensemble 

� requires synchronized development of 4D-Var and EnKF
– significant redesign of variational code to facilitate major future 

changes to model (vertical co-ord, yin-yang, icosahedral etc.)

• Use of En-4D-Var (without GEM TL/AD):
– advantages of a variational analysis could be preserved by using 

a variational solver within EnKF

– allows use of some alternative approaches for modelling 
covariances: e.g. averaged covariances

– allows use of var QC and Var-BC

– requires further research to determine if it can be made 
sufficiently computationally efficient (in progress)

Ensemble Kalman filter

• Basic equations of a Kalman filter

• Ensemble Kalman filter

• The MSC EnKF solves explicitly
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Sequential algorithm

Schematic illustration of the strategy 

used to form batches of observations.

At each assimilation step,

• the circles represent the observations 

to be assimilated at this step, while

• the x's denote observations that have 

not yet been assimilated.
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Sequential algorithm
(Houtekamer and Mitchell)

• In the EnKF, batches of pmax (~1000) neighbouring 

observations are assimilated using a sequential 

algorithm.

• Allows use of a direct solution method (Cholesky 

decomposition) for solving the analysis equation.

• Computational cost increases as pmax
3 and approximately 

linearly with number of batches.

• In practice, then, more observations implies more 

batches.

Efficiency of the ensemble Kalman 

filter

EnKF uses a 

sequential algorithm to 

solve 

This approach would 

have to be changed if 

the volume of data is to 

be doubled

( ) ( )( )( ) ( )1 k kT

b

−
+ − =R HBH y H x w

Impact of altering the order of 

observations in the processing

Where there are 

lots of 

observations, 

changing the 

order of the 

observation 

processing can 

significantly alter 

the result 

Results from one extreme case

Impact of having larger volumes of 

data

• The EnKF algorithm behaves poorly when the number of 

observations exceeds the number of degrees of freedom 

of the model state

• The sequential algorithm then shows a large dependence 

to the order in the observation processing and the 

ensemble then lacks dispersion

• To allow for small scale structures, with the current 

algorithm, it would be necessary to localize even more 

(at the expense of the larger scales) or increase the 

number of members.

• High resolution reference member should be used 

instead of the ensemble mean (incremental EnKF)
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Conclusion

• Variational formulation of the statistical estimation 
problem allows

– Take into account non-Gaussian error distributions

– Quality control of observations can be embedded within the 
variational problem

– Online bias correction of observations is very useful to detect and 
correct faulty observations and prevent them from altering the 
analysis

• Extension to 4D-Var

– All forms of variational assimilation can be expressed in a similar 
form (e.g., 3D/4D-Var, strong and weak constraint 4D-Var) 
(Courtier, 1997)

– Additional penalty term can be added to enforce balance 
constraints (Gauthier and Thépaut, 2001)

Impact of having a Jc-DFI penalty term

Gauthier and Thépaut (2001)

• Intercomparison of EnKF and 4D-Var and the impact 
of flow dependent background-error covariances

– 4D-Var with operational B and EnKF ensemble mean 
analyses have comparable quality

→ 4D-Var better in extra-tropics at short-range, EnKF
better in the medium range and tropics

– Largest impact (~9h gain at day 5) in southern extra-
tropics for 4D-Var with flow-dependent EnKF B vs. 4D-Var 
with operational B and also better in tropics

• Use of 4D ensemble B in variational system (i.e. En-
4D-Var):

– improves on 3D-FGAT, but inferior to 4D-Var (both with 3D 
ensemble B), least sensitive to covariance evolution in 
tropics

– comparable with EnKF

Conclusion 

• Weak-constraint 4D-Var offers both promises and 

challenges

– Provides information about model error that can be 

used to diagnose and correct deficiencies in the 

model

– Improving the model is a requirement to improve the 

forecasts

– Computational issues need to be addressed before a 

full fledge weak-constraint 4D-Var can be envisioned

– S but already implemented at ECMWF


