
Post-Processing Through Linear Regression.
Bert Van Schaeybroeck and Stéphane Vannitsem
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1 Abstract
We present a comparison of various post-processing schemes for en-
semble forecasts, all based on linear regression between forecast data
and observations. In order for the regression to be useful in practice,
we put forward three criteria which are related to forecast errors, the
correct climatological variability and multicollinearity. The regression
schemes under consideration include the ordinary least squares (OLS)
method, a new time-dependent Tikhonov regression (TDTR), the total
least squares (TLS) method, a new geometric mean regression (GM),
a error-in-variables (EVMOS) method which was recently proposed by
Vannitsem (2009), and finally, a “best member” OLS method (Unger
et al., 2009). We find that the EVMOS, the TDTR and GM schemes
satisfy all three criteria.
We clarify our theoretical findings using the Lorenz 1963 model. For
short lead times, the amount and choice of predictors is more impor-
tant than the regression method. At intermediate timescales linear
regression is unable to provide corrections to the forecast. However,
at long timescales the different regression schemes differ strongly and,
in order to obtain physically relevant results, the use of OLS should be
avoided.

———————————

2 Regression
Why Regression?

Meteorological forecasts are subject to errors which originate from
model errors and initial-condition errors. To estimate the impact of such
errors, ensemble forecasts are generated. Ensemble predictions not
only provide the forecaster with a forecast (the mean of the ensemble)
but also with an estimate of its variability and therefore its reliability.
Forecast skill may be improved by use of statistical post-processing
using, for example, linear regression (Glahn and Lowry 1972) which
recently has also become highly relevant as attempts are made to
combine short-term climate forecasts generated using different fore-
cast models. Postprocessing consists of two steps: 1) regression is
applied between forecast and observations using past data. 2) the
derived regression parameters are used to correct new forecasts.

Linear Regression
Consider:
• N measurements for the variable X (for instance temperature).
• For each measurement we run our model using slightly perturbed
initial conditions. Each ensemble member consists of an (uncor-
rected) forecast variable V1 and other model variables Vp (p =
2, .., P ). We call all Vp’s predictors.

The regression problem: use linear regression to optimally combine
measurement data X and the forecasted data Vp. Find all regression
coefficients βp such that:

X ≈
P∑
p=1

Vpβp. (1)

The near equality is achieved by minimization of some cost function
J , different for each regression method and a function of the following
errors:
• for each measurement the deviation of measurement data from its
value according to the regression function is:

εX = X −
P∑
p=1

ξpβp. (2)

Here ξp is a corrected predictor associated with the predictor Vp.
• for each forecast, we define the forecast uncertainty

εV,p = Vp − ξp. (3)

What is a “good” regression method?
Ordinary Linear Regression is the classical approach of regression and
is based on ordinary least square (OLS) minimization. However, it has
some deficiencies when using it in the context of ensemble forecasts.

We assess the usefulness of a regression method by the following
three criteria:
1. The method corrects forecast errors.
2. The method can cope with several highly-correlated predictors which

may give rise to multicollinearity.
3. The regression data features the correct climatological variability at

long lead time.

Criterion 3: Behavior at long lead time
It is well-known that forecasts generated using Ordinary Linear Re-
gression (OLS) converge to the climatological mean at long lead times.
However, a forecast with no variability is not physically meaningful.
Regression cannot decrease the forecast error at long lead times but
could nevertheless yield the “correct” climatological variability. The
variability σXC

of a well-corrected forecast XC should equal the cli-
matological variability of the measurement data at long lead times:

σXC
(t → ∞) = σX(t → ∞). (4)

Or, if possible, the regression method may satisfy an even stronger
criterion:

σXC
(t) = σX(t), (5)

for all times t.
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The regression models
The regression schemes and their associated cost functions J are
(see figure above):
1. Ordinary Least Squares (OLS): J =

⟨
ε2X

⟩
. The bracket denotes the

average over all ensemble members.
2. New: Time-Dependent Tikhonov Regression (TDTR):

J =
⟨
ε2X + γ(t)

∑
p(βp − β0p)

2
⟩
.

Here γ(t) is small at small lead times and γ(∞) → ∞.

3. Total Least Squares (TLS): J =
⟨
ε2X +

∑
p(wpεV,p)

2
⟩
.

4. Error-in Variables method (EVMOS, Vannitsem 2009):

J =

⟨
ε2X +

(∑
p βpεV,p/σXC

)2⟩
.

5. New: Geometric Mean (GM): J =
⟨∏

p

∣∣εV,pεX∣∣1/P⟩ .

6. Best-member regression (EREG II, Unger et al. 2009): The same as
OLS except the ensemble mean is used and random noise is added.

Except for GM, we have analytical solutions for all methods. In the
table below we show the assessment of the different regression meth-
ods.

criterion (1) criterion (2) crit.(3),
Eq. (4)

strong
crit.(3),
Eq. (5)

OLS + - - -

TLS - - (+) - -

TDTR + + + -

EVMOS + + + +

GM - + + +

EREG II - - (+) + +

3 Numerical Results
We test the usefulness of the regression methods against the well-
known Lorenz 63 model by focussing on the statistical features of the
error distributions. The system involves three coupled first-order differ-
ential equations in time for the variables x, y and z. We introduce both
model and initial-condition errors which have a “comparable” impact
on the dynamics. For generating the measurement data we assume
a slightly biased parameter set from the one used for generating the
model data. We probe the following error variables:

uZ = z − zC, and ur =
√

(x− xC)
2 + (y − yC)

2 + (z − zC)
2. (6)

The Mean Square Error (MSE) Evolution
In the figure below we show the time evolution of the total MSE at short
(left) and long (right) lead times (We use 50000 ensembles of each 500
members). At short lead times:
• the corrections are substantial and increase for increasing model
errors (Vannitsem and Nicolis 2008).

• the amount and choice of predictors, rather than the regression
method itself is of crucial importance.

• GM does not always correct the forecast.
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At intermediate lead times:
• there is a fast increase of MSE due to chaotic nature.

• the original forecast V1 is hardly corrected.

• the error distribution has power-law behavior for large errors.
At long lead times:
• the error variance saturates and regression methods strongly dif-
fer.

• TLS, GM and EREG II do not always correct the forecast.

• the MSE of the EREG II, EVMOS, TDTR and GM forecasts con-
verge to the value 2σ2X in agreement with criterion (3).

• the MSE of OLS is too low by a factor two.

Evolution of Error Distribution
In the figure below we plot the error probability distribution evolution of
uZ (see Eq. (6)) for the Lorenz model without initial condition errors. It
is clear that:
• the regression quality at short times depends strongly on the num-
ber (and choice) of predictors.

• the biased distribution of the uncorrected forecast V1 (green
line) becomes unbiased after post-processing. We show the one-
predictor, four-predictor and EREG II distributions.
• four predictors clearly lead to the smallest second moment of the
distribution.
• at intermediate times (t = 1.) the EREG II distribution becomes
very broad compared to the others.
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Use of Ensembles
The ensemble spread-error correlation against time is shown in the fig-
ures below and is marked by an increased correlation at short times
(left figure) for the post-processed forecasts. As expected, a progres-
sive correlation decrease sets in for all ensembles around lead times
t = 5 (right figure). Remarkably, the OLS and EREG II correlations
are distinctly smaller than the ones of the uncorrected and EVMOS
ensembles. At t = 15, the variance of ensemble spread for all except
the EREG II ensembles is still significant.
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Prospects
Further details can be found in Van Schaeybroeck and Vannitsem
(2011). Current investigations are ongoing applying these post-
processing methods on meteorological data from the YOTC project to
study the possible usefulness of forecast tendencies as predictors.
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