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Outline

Review some optimization tools of possible relevance in cancer treatment
and data analysis.

Learning from Data: SVM classification, regularized logistic regression

Sparse optimization (with group sparsity)

Nonlinear optimization for biological objectives
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1. Learning from Data

Learn how to make inferences from data.

Related Terms: Data Mining, Machine Learning, Support Vector
Machines, Classification, Regression, Kernel Machines.

Given numerous examples (“training data”) along with the correct
inferences for each example, seek rules that can be used to make
inferences about future examples.

Among many possible rules that explain the examples, seek simple ones.

Expose the most important features of the data.

Easy and inexpensive to apply to future instances.

More generalizable to the underlying problem - don’t over-fit to the
particular set of examples used.

Rich source of sparse and regularized optimization problems.
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Binary Labels

Have feature vectors x1, x2, . . . , xn ∈ Rm (real vectors) and binary labels
y1, y2, . . . , yn = ±1.

Seek rules that predict the label on future examples x ∈ Rm.

Classification: Learn a function f : Rm → {−1,+1} such that the
predicted label is f (x).

Odds: Learn functions p+ : Rm → [0, 1] such that p+(x) is the chance of
x having label +1, and p−(x) := 1− p+(x) the chance of label −1.

Many variants, e.g. multiple classes (> 2), some or all examples
unlabelled.
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Linear Support Vector Machines (SVM) Classification
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Seek a hyperplane wT x + b defined by coefficients (w , b) that
separates the points according to their classification:

wT xi + b ≥ 1⇒ yi = 1, wT xi + b ≤ −1⇒ yi = −1

(for most training examples i = 1, 2, . . . , n).

Penalized formulation: for some λ > 0, solve

min
(w ,b)

λ

2
wTw +

1

m

m∑
i=1

max
(

1− yi [w
T xi + b], 0

)
.

Term i in summation is 0 if point i is correctly classified, positive
otherwise.

Dual:

max
α

eTα− 1

2
αT K̃α s.t. αT y = 0, 0 ≤ α ≤ 1

λm
1,

where y = (y1, y2, . . . , ym)T , K̃ij = yiyjx
T
i xj .
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Nonlinear Support Vector Machines

Stephen Wright (UW-Madison) Optimization Algorithms for Data Analysis Banff, March 2011 7 / 27



Nonlinear SVM

To get a nonlinear classifier, map x into a higher-dimensional space
φ : Rn → H, and do linear classification in H to find w ∈ H, b ∈ R.

When the hyperplane is projected back into Rn, gives a nonlinear surface
(often not contiguous).

In “lifted” space, primal problem is

min
(w ,b)

λ

2
wTw +

m∑
i=1

max
(

1− yi [w
Tφ(xi ) + b], 0

)
.

By optimality conditions (and a representation theorem), optimal w has
the form

w =
m∑
i=1

αiyiφ(xi ).
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Kernel

By substitution, obtain a finite-dimensional problem in (α, b) ∈ Rm+1:

min
α,b

λ

2
αTΨα +

1

m

m∑
i=1

max (1−Ψi ·α− yib, 0) ,

where Ψij = yiyjφ(xi )
Tφ(xj). WLOG can impose bounds αi ∈ [0, 1/(λm)].

Don’t need to define φ explicitly! Instead define the kernel function k(s, t)
to indicate distance between s and t in H.

Implicitly, k(s, t) = 〈φ(s), φ(t)〉.

The Gaussian kernel kG (s, t) := exp(−‖s − t‖2
2/(2σ2)) is popular.

Thus define Ψij = yiyjk(xi , xj) in the problem above.
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Logistic Regression

Parametrize p+ by a vector z : Seek to learn a weight vector z ∈ Rm such
that the following functions give the odds of a new feature vector x
belonging to class +1 and −1, resp.:

p+(x ; z) =
1

1 + ezT x
, p−(x ; z) =

1

1 + e−zT x
.

(Note that p+ + p− ≡ 1.) Denote L+ := {i | yi = +1},
L− := {i | yi = −1}.

For xi ∈ L+, want zT xi � 0, so that p+(xi ; z) ≈ 1.

For xi ∈ L−, want zT xi � 0, so that p−(xi ; z) ≈ 1.
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`1 regularization

Negative, scaled a posteriori log likelihood function is

L(z) = −1

n

∑
i∈L−

log p−(xi ; z) +
∑
i∈L+

log p+(xi ; z)


= −1

n

∑
i∈L−

zT xi −
n∑

i=1

log(1 + ez
T xi )

 .
LASSO-Pattersearch: Seek a solution z with few nonzeros, by adding a
regularization term τ‖z‖1:

min
z

Tτ (z) := L(z) + τ‖z‖1.

Smaller τ ⇒ more nonzeros in solution z .
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Application: Eye Study: Interacting Risk Factors

W. Shi, G. Wahba, S. J. Wright, K. Lee, R. Klein, and B. Klein, “LASSO-Patternsearch
algorithm with application to opthalmology data,” Statistics and its Interface 1 (2008),
pp. 137-153. Code: http://pages.cs.wisc.edu/∼swright/LPS/

Beaver Dam Eye Study. Examined 876 subjects for myopia.

7 risk factors identified: gender, income, juvenile myopia, cataract,
smoking, aspiring, vitamin supplements.
Bernoulli model: Chose a cutpoint for each factor, assign 1 for above
cutpoint and 0 for below.
Examine all 27 = 128 interacting factors.

The four most significant factors are:

cataracts (2.42)
smoker, don’t take vitamins (1.11)
male, low income, juvenile myopia, no aspirin (1.98)
male, low income, cataracts, no aspirin (1.15)

plus an intercept of −2.84.
A much larger application about genetic risk factors for rheumatoid
arthritis also studied (> 400, 000 variables).
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Extensions

Multiple Outcomes. Extensions to multiclass SVM and logistic
regression are known.

Regression rather than Classification. Needed when the outcome is not
discrete. Support Vector Regression, variable selection in data fitting could
be used.

Using the Results to Drive Optimization. Having identified the most
important effects, how do we change the way we formulate the
optimization problems assciated with treatment planning?

Uncertainty in Data or Outcomes. Can the conclusions be made robust
to uncertainty and errors in data or outcomes?
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2. Sparse Optimization

Many applications prefer structured, approximate solutions of optimization
formulations, to exact solutions.

Data inexactness does not warrant exact solution;

Simple solutions may be easier to actuate and easier to understand;

Avoid “overfitting” to a particular sample of the full data set;

Extract just the essence of the knowledge contained in the problem
specfication, not the less important effects;

Too much computation needed for an exact solution.

To achieve the desired structure, can modify the problem formulation and
the algorithms used to solve it.

(“Sparse” refers to the solution vector, not the problem data.)
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Applications

Compressed sensing

Image deblurring and denoising

Matrix completion (e.g. netflix prize)

Low-rank tensor approximations for multidimensional data

Machine learning e.g. support vector machines.

Logistic regression and other variable selection problems in
computational statistics

Beam selection problems in treatment planning could potentially be
modeled and solved with a “group-sparse” formulation — see below.
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Regularized Formulations

Directly imposing the desired structure can lead to a computationally
difficult problem.

Example: Seek x ∈ Rn that approximately minimizes f (x) and has at
most r nonzeros. We can model this using e.g. n binary variables to turn
components of x on and off. Or solve with a customized
branch-and-bound procedure — but both are expensive!

Can instead add a regularization term P(x) to the objective f (x), to
promote the kind of structure desired.

P is usually nonsmooth, with “kinks” at values of x with the desired
structure. (The kinks “add volume” to the subgradient.)

Example: P(x) = ‖x‖1 promotes vectors x with few nonzeros.
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min f (x) s.t. ‖x‖1 ≤ T , for some T > 0.

Solution has a single nonzero for small T , two for larger T .
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An equivalent weighted formulation is

min f (x) + τP(x), for some τ > 0.

When P(x) = ‖x‖1, larger τ ⇒ fewer nonzeros in x .

If we seek approximate minimizers x most of whose components have the
form ±σ, we use the regularizer P(x) = ‖x‖∞.

Often want solutions for a grid or range of parameters τ , not just one.
From this range of values, choose the solution that has the desired sparsity
or structure.
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Group Regularizers

The regularizer ‖ · ‖1 is ubiquitous and useful — but treats all components
of x independently. In some applications, components of x can be
arranged naturally into groups.

Denote groups by [q] ⊂ {1, 2, . . . , n}, where q = 1, 2, . . . ,Q. Each group
is a subvector of x , denoted by x[q], q = 1, 2, . . . ,Q. The groups may or
may not overlap.

Regularizers that promote group sparsity (turns the x[q] on and off as a
group):

P(x) =
Q∑

q=1

‖x[q]‖2, P(x) =
Q∑

q=1

‖x[q]‖∞.

(Sum-of-`2 and sum-of-`∞. Both nonsmooth.)
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Beamlet Selection

In treatment planning, x consists of beamlet intensities. Groups may
consist of the beamlets from one beam angle. The group regularizers
above would thus “select” the appropriate beam angle from among many
possibilities, and also assign beamlet weights.

This is an alternative to other beam selection techniques, e.g. column
generation, heuristics, binary variables.

For other devices and other treatment planning methodologies, other
regularizers may be appropriate.
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Solving Regularized Formulations

Many tools and techiques needed:

Large-scale optimization: gradient projection, optimal first-order,
sampled gradient, second-order, continuation, coordinate relaxation,
interior-point, ...

Nonsmooth optimization: cutting planes, subgradient methods,
successive approximation, ...

Duality

Numerical linear algebra

Heuristics

Also a LOT of domain-specific knowledge about the problem structure and
the type of solution demanded by the application.
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Basic Algorithm: Prox-Linear

At iteration k , solve for step dk :

min
d
∇f (xk)Td +

αk

2
dTd + τP(xk + d),

choosing αk large enough to give descent in the objective f + τP.

When P is separable (i.e. when groups are disjoint, or when
P(x) = ‖x‖1), can solve the subproblem cheaply and in closed form.
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Enhancements to Prox-Linear

Many enhancements are available in the important special cases
P(x) = ‖x‖1 and P group-separable.

Compute step in just a subset Gk ⊂ {1, 2, . . . , n} of the components
of x . Thus need to evaluate only the Gk components of ∇f .

Keep track of “apparently nonzero” component set Ak ; periodically
take reduced approximate Newton steps on this set. Requires only
(approximate) Hessian over the components in Ak .

Use continuation in τ : Solve first for a large τ (easier problem), then
reduce τ and re-solve, using previous solution as a starting point.
Repeat as needed.
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3. Optimizing Biological Objectives

Biological objectives can have different features from physical,
dose-matching objectives.

Highly nonlinear

Ill conditioned

Nonconvex

Sometimes the nonlinearity comes from smoothing of kinks in the
objective.

Algorithms need to be able to deal with these features, and also exploit
the structure of these objectives.
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Experience with EUD

Example: Objectives based on Equivalent Uniform Dose (EUD)1

EUD is a nonlinear, possibly nonconvex function of physical dose
distribution on a region. It can capture min, max, or average dose to
voxels in the region, depending on parameter settings.

Used in conjunction with logistic functions to devise penalty functions
for “soft” upper or lower bounds to dose in a region.

Objective combines these penalties. (Unknowns: beamlet weights.)

Solve minw≥0 f (w). Use a two-metric projected gradient framework. At
each iterate wk , requires

calculation of gradient ∇f (wk),

estimation of the active set Ak of components of w that are
“probably nonzero” at the solution;

estimate of the reduced Hessian ∇2f (wk) on the components in Ak .
1Olafsson, Jeraj, Wright, PMB 2005
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Using Reduced Hessian Information

In regularized logistic regression and EUD applications (and many others),
use of second-order information on the set of apparently-nonzero
components can greatly speed convergence of the method.

Apparently-nonzero set is often relatively small.

Reduced Hessian may be much less expensive than full Hessian.

Hessian is highly structured; may be able to get an approximation
cheaply.

Even when Hessian is ill-conditioned, the Newton equations may be
solvable approximately in just a few steps of conjugate gradient
(because right-hand side of Newton equations tends to be in the
range space of the large-eigenvalue part of the Hessian).
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Final Thoughts

Have not covered many other areas of optimization that may be relevant
for modern cancer radiotherapy planning.

Handling uncertainty

Formulations based on risk functionals

Complex outcome-based objectives

Formulations involving DVH constraints

Assimilating information from multiple scans

Using feedback to tune doses during the course of treatment.

FIN
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