Natural maps, differentiable rigidity, Ricci and scalar curvature

G. Besson joint with L. Bessières, G. Courtois and S. Gallot

> C.N.R.S.-Institut Fourier Université de Grenoble I

Banff, April 18th, 2011

Outline

Introduction

Main result

Ricci curvature

Ideas of the proof

Natural map

Minimizing sequences

Limit space

Open questions

$$f: Y^n \longrightarrow X^n$$

Y and X closed smooth *n*-manifolds, $\deg f = 1$ (Y dominates X).

$$f: Y^n \longrightarrow X^n$$

Y and X closed smooth *n*-manifolds, $\deg f = 1$ (Y dominates X).

Question: when is f homotopic to a diffeomorphism?

$$f: Y^n \longrightarrow X^n$$

Y and X closed smooth *n*-manifolds, $\deg f = 1$ (Y dominates X).

Question: when is f homotopic to a diffeomorphism?

Some examples

$$f: Y^n \longrightarrow X^n$$

Y and X closed smooth *n*-manifolds, $\deg f = 1$ (Y dominates X).

Question: when is f homotopic to a diffeomorphism?

Some examples

▶ Mostow : Y and X hyperbolic, $n \ge 3$, f homotopy equivalence $\Rightarrow f \sim$ isometry.

$$f: Y^n \longrightarrow X^n$$

Y and X closed smooth *n*-manifolds, $\deg f = 1$ (Y dominates X).

Question: when is f homotopic to a diffeomorphism?

Some examples

- ▶ Mostow : Y and X hyperbolic, $n \ge 3$, f homotopy equivalence $\Rightarrow f \sim$ isometry.
- ▶ Farrell-Jones : Y, X negatively curved, $n \ge 5$, f homotopy equivalence $\Rightarrow f \sim$ homeomorphisme.

Farrell-Jones construction:

Farrell-Jones construction:

 $Y = X \sharp \Sigma$ with Σ exotic sphere, Y and X are homeomorphic but not diffeomorphic (n = 7)!

Farrell-Jones construction:

 $Y = X \sharp \Sigma$ with Σ exotic sphere, Y and X are homeomorphic but not diffeomorphic (n = 7)!

By taking a finite cover \tilde{X} of X, construct a metric g on X such that :

Farrell-Jones construction:

 $Y = X \sharp \Sigma$ with Σ exotic sphere, Y and X are homeomorphic but not diffeomorphic (n = 7)!

By taking a finite cover \tilde{X} of X, construct a metric g on X such that :

$$-1 \leq K(g) \leq -1 + \epsilon.$$

Farrell-Jones construction:

 $Y = X \sharp \Sigma$ with Σ exotic sphere, Y and X are homeomorphic but not diffeomorphic (n = 7)!

By taking a finite cover \tilde{X} of X, construct a metric g on X such that :

$$-1 \le K(g) \le -1 + \epsilon$$
.

For $\epsilon > 0$ small, need to take large cover \tilde{X} .

From now on $n \ge 3$,

From now on $n \ge 3$,

Theorem (B-. Courtois, Gallot)

 (X,g_0) closed hyperbolic, Y closed, dominates X, $n\geq 3$. For any metric g on Y,

$$\mathrm{Ricci}(g) \geqslant -(n-1)g \Longrightarrow \mathrm{vol}(Y,g) \geqslant \mathrm{vol}(X,g_0)$$

and equality iff $f \sim isometry$.

From now on $n \ge 3$,

Theorem (B-. Courtois, Gallot)

 (X,g_0) closed hyperbolic, Y closed, dominates X, $n\geq 3$. For any metric g on Y,

$$\mathrm{Ricci}(g) \geqslant -(n-1)g \Longrightarrow \mathrm{vol}(Y,g) \geqslant \mathrm{vol}(X,g_0)$$

and equality iff $f \sim$ isometry.

Definition (Gromov)

$$\operatorname{minvol}(Y) = \inf \{ \operatorname{vol}(Y, g); |K(g)| \le 1 \}.$$

From now on $n \ge 3$,

Theorem (B-. Courtois, Gallot)

 (X,g_0) closed hyperbolic, Y closed, dominates X, $n\geq 3$. For any metric g on Y,

$$\mathrm{Ricci}(g) \geqslant -(n-1)g \Longrightarrow \mathrm{vol}(Y,g) \geqslant \mathrm{vol}(X,g_0)$$

and equality iff $f \sim$ isometry.

Definition (Gromov)

$$\min \operatorname{vol}(Y) = \inf \{ \operatorname{vol}(Y, g); |K(g)| \le 1 \}.$$

In particular, $\min vol(X) = vol(X, g_0)$.

From now on $n \ge 3$,

Theorem (B-. Courtois, Gallot)

 (X, g_0) closed hyperbolic, Y closed, dominates X, $n \ge 3$. For any metric g on Y,

$$\operatorname{Ricci}(g) \geqslant -(n-1)g \Longrightarrow \operatorname{vol}(Y,g) \geqslant \operatorname{vol}(X,g_0)$$

and equality iff $f \sim isometry$.

Definition (Gromov)

$$\operatorname{minvol}(Y) = \inf \{ \operatorname{vol}(Y, g); |K(g)| \leq 1 \}.$$

In particular, $\min vol(X) = vol(X, g_0)$.

Theorem (Bessières)

Under the same hypothesis,

$$\min \operatorname{vol}(Y) = \min \operatorname{vol}(X) \Longrightarrow Y \text{ diffeo. to } X$$

Outline

Introduction

Main result

Ricci curvature

Ideas of the proof

Natural map

Minimizing sequences

Limit space

Open questions

Theorem (Bessières, B-. Courtois, Gallot)

There exists $\varepsilon := \varepsilon(n,d)$ such that, if Y dominates X, (X,g_0) hyperbolic, g metric on Y with $\mathrm{Ricci}(g) \ge -(n-1)g$, $\mathrm{diam}(X) \le d$, then $\mathrm{vol}(X,g_0) \leqslant \mathrm{vol}(Y,g) \leqslant (1+\varepsilon)\,\mathrm{vol}(X,g_0) \Rightarrow f \sim diffeo$.

Theorem (Bessières, B-. Courtois, Gallot)

There exists $\varepsilon := \varepsilon(n,d)$ such that, if Y dominates X, (X,g_0) hyperbolic, g metric on Y with $\mathrm{Ricci}(g) \ge -(n-1)g$, $\mathrm{diam}(X) \le d$, then $\mathrm{vol}(X,g_0) \leqslant \mathrm{vol}(Y,g) \leqslant (1+\varepsilon)\,\mathrm{vol}(X,g_0) \Rightarrow f \sim \text{diffeo}$.

Remark

Work in any degree.

Theorem (Bessières, B-. Courtois, Gallot)

There exists $\varepsilon := \varepsilon(n,d)$ such that, if Y dominates X, (X,g_0) hyperbolic, g metric on Y with $\mathrm{Ricci}(g) \ge -(n-1)g$, $\mathrm{diam}(X) \le d$, then $\mathrm{vol}(X,g_0) \leqslant \mathrm{vol}(Y,g) \leqslant (1+\varepsilon)\,\mathrm{vol}(X,g_0) \Rightarrow f \sim \text{diffeo}$.

Remark

Work in any degree.

Corollary

$$(X, g_0)$$
 hyperbolic, $n \geqslant 3$,

Theorem (Bessières, B-. Courtois, Gallot)

There exists $\varepsilon := \varepsilon(n,d)$ such that, if Y dominates X, (X,g_0) hyperbolic, g metric on Y with $\mathrm{Ricci}(g) \ge -(n-1)g$, $\mathrm{diam}(X) \le d$, then $\mathrm{vol}(X,g_0) \leqslant \mathrm{vol}(Y,g) \leqslant (1+\varepsilon)\,\mathrm{vol}(X,g_0) \Rightarrow f \sim \text{diffeo}$.

Remark

Work in any degree.

Corollary

 (X, g_0) hyperbolic, $n \geqslant 3$,

▶ $\forall g \text{ on } X \sharp \Sigma$, $\mathrm{Ricci}(g) \geqslant -(n-1)g \Rightarrow \mathrm{vol}(X \sharp \Sigma, g) \geqslant (1+\varepsilon) \, \mathrm{vol}(X, g_0)$.

Theorem (Bessières, B-. Courtois, Gallot)

There exists $\varepsilon := \varepsilon(n,d)$ such that, if Y dominates X, (X,g_0) hyperbolic, g metric on Y with $\mathrm{Ricci}(g) \ge -(n-1)g$, $\mathrm{diam}(X) \le d$, then $\mathrm{vol}(X,g_0) \leqslant \mathrm{vol}(Y,g) \leqslant (1+\varepsilon)\,\mathrm{vol}(X,g_0) \Rightarrow f \sim \text{diffeo}$.

Remark

Work in any degree.

Corollary

 (X, g_0) hyperbolic, $n \geqslant 3$,

- ▶ $\forall g \text{ on } X \sharp \Sigma$, $\mathrm{Ricci}(g) \geqslant -(n-1)g \Rightarrow \mathrm{vol}(X \sharp \Sigma, g) \geqslant (1+\varepsilon) \, \mathrm{vol}(X, g_0)$.
- ▶ $\forall g \text{ on } X \sharp X$, $\operatorname{Ricci}(g) \geqslant -(n-1)g \Rightarrow \operatorname{vol}(X \sharp X, g) \geqslant 2(1+\varepsilon) \operatorname{vol}(X, g_0)$.

Question: What about scalar curvature?

Question: What about scalar curvature?

▶ If $n \ge 4$, O. Kobayashi, $\inf\{\operatorname{vol}(X \sharp X, g); \ scal(g) \ge -n(n-1)\} \le 2 \operatorname{vol}(X, g_0)$.

Question: What about scalar curvature?

- ▶ If $n \ge 4$, O. Kobayashi, inf $\{\operatorname{vol}(X \sharp X, g); \ scal(g) \ge -n(n-1)\} \le 2 \operatorname{vol}(X, g_0)$.
- ▶ If n = 3, observation by Anderson, Perelman's work implies that $\inf\{\operatorname{vol}(X\sharp X,g);\ scal(g)\geqslant -6\}=2\operatorname{vol}(X,g_0).$

Question: What about scalar curvature?

- ▶ If $n \ge 4$, O. Kobayashi, inf $\{\operatorname{vol}(X \sharp X, g); \ scal(g) \ge -n(n-1)\} \le 2 \operatorname{vol}(X, g_0)$.
- ▶ If n = 3, observation by Anderson, Perelman's work implies that $\inf\{\operatorname{vol}(X\sharp X,g);\ scal(g)\geqslant -6\}=2\operatorname{vol}(X,g_0).$

No gap theorem can be true, but

Question: What about scalar curvature?

- ▶ If $n \ge 4$, O. Kobayashi, $\inf\{\operatorname{vol}(X\sharp X,g);\ \mathit{scal}(g) \ge -n(n-1)\} \le 2\operatorname{vol}(X,g_0).$
- ▶ If n = 3, observation by Anderson, Perelman's work implies that $\inf\{\operatorname{vol}(X\sharp X,g);\ scal(g)\geqslant -6\}=2\operatorname{vol}(X,g_0).$

No gap theorem can be true, but

Conjecture (R. Schoen)

 (X, g_0) hyperbolic. $\forall g$ on X

Question: What about scalar curvature?

- ▶ If $n \ge 4$, O. Kobayashi, inf $\{\operatorname{vol}(X \sharp X, g); \ scal(g) \ge -n(n-1)\} \le 2 \operatorname{vol}(X, g_0)$.
- ▶ If n = 3, observation by Anderson, Perelman's work implies that $\inf\{\operatorname{vol}(X\sharp X,g);\ scal(g)\geqslant -6\}=2\operatorname{vol}(X,g_0).$

No gap theorem can be true, but

Conjecture (R. Schoen)

 (X, g_0) hyperbolic. $\forall g$ on X

$$\operatorname{Scal}(g) \ge -n(n-1) \Rightarrow \operatorname{vol}(X,g) \ge \operatorname{vol}(X,g_0)$$

and equality iff g is hyperbolic.

Question: What about scalar curvature?

- ▶ If $n \ge 4$, O. Kobayashi, inf $\{\operatorname{vol}(X \sharp X, g); \ scal(g) \ge -n(n-1)\} \le 2 \operatorname{vol}(X, g_0)$.
- ▶ If n = 3, observation by Anderson, Perelman's work implies that $\inf\{\operatorname{vol}(X\sharp X,g);\ scal(g)\geqslant -6\}=2\operatorname{vol}(X,g_0).$

No gap theorem can be true, but

Conjecture (R. Schoen)

 (X, g_0) hyperbolic. $\forall g$ on X

$$\operatorname{Scal}(g) \ge -n(n-1) \Rightarrow \operatorname{vol}(X,g) \ge \operatorname{vol}(X,g_0)$$

and equality iff g is hyperbolic.

Perelman's works \rightsquigarrow true if n = 3.

Outline

Introduction

Main result

Ricci curvature

Ideas of the proof

Natural map

Minimizing sequences

Limit space

Open questions

$$\operatorname{Ricci}(g) \geqslant -(n-1), \ 0 < r \leqslant R,$$

$$\operatorname{Ricci}(g) \geqslant -(n-1), \ 0 < r \leqslant R,$$

▶ Bishop, $vol(B(x, r)) \leq vol(B_{\mathbf{H}^n}(r))$,

$$\operatorname{Ricci}(g) \geqslant -(n-1), \ 0 < r \leqslant R,$$

- ▶ Bishop, $\operatorname{vol}(B(x,r)) \leq \operatorname{vol}(B_{\mathbf{H}^n}(r))$,
- ▶ Bishop-Gromov, $\operatorname{vol}(B(x,r)) \geqslant \operatorname{vol}(B_{\mathbf{H}^n}(r)) \frac{\operatorname{vol}(B(x,R))}{\operatorname{vol}(B_{\mathbf{H}^n}(R))}$.

$$\operatorname{Ricci}(g) \geqslant -(n-1), \ 0 < r \leqslant R,$$

- ▶ Bishop, $vol(B(x, r)) \leq vol(B_{\mathbf{H}^n}(r))$,
- ▶ Bishop-Gromov, $\operatorname{vol}(B(x,r)) \geqslant \operatorname{vol}(B_{\mathbf{H}^n}(r)) \frac{\operatorname{vol}(B(x,R))}{\operatorname{vol}(B_{\mathbf{H}^n}(R))}$.

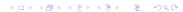
$$(Y,g), h(g) = \lim_{R \to \infty} \frac{1}{R} \log(\operatorname{vol}(B(\tilde{y},R))), \text{ for } \tilde{y} \in \widetilde{Y}.$$

$$\operatorname{Ricci}(g) \geqslant -(n-1), \ 0 < r \leqslant R,$$

- ▶ Bishop, $vol(B(x, r)) \leq vol(B_{\mathbf{H}^n}(r))$,
- ▶ Bishop-Gromov, $\operatorname{vol}(B(x,r)) \geqslant \operatorname{vol}(B_{\mathbf{H}^n}(r)) \frac{\operatorname{vol}(B(x,R))}{\operatorname{vol}(B_{\mathbf{H}^n}(R))}$.

$$(Y,g), h(g) = \lim_{R \to \infty} \frac{1}{R} \log(\operatorname{vol}(B(\tilde{y},R))), \text{ for } \tilde{y} \in \widetilde{Y}.$$

▶ Bishop, $\operatorname{Ricci}(g) \geqslant -(n-1) \Rightarrow h(g) \leqslant n-1 = h(g_0)$.



Outline

Introduction

Main result

Ricci curvature

Ideas of the proof

Natural map

Minimizing sequences

Limit space

Open questions

Replace f by a "better" map, take a minimizing sequence and study the limit.

Replace f by a "better" map, take a minimizing sequence and study the limit.

► Construction of natural maps (barycentric construction).

Replace f by a "better" map, take a minimizing sequence and study the limit.

- ▶ Construction of natural maps (barycentric construction).
- Cheeger-Colding theory of limit spaces under lower Ricci curvature bound.

Replace f by a "better" map, take a minimizing sequence and study the limit.

- Construction of natural maps (barycentric construction).
- Cheeger-Colding theory of limit spaces under lower Ricci curvature bound.

$$f:(Y,g) o (X,g_0)$$
 hyperbolic, $\deg(f)=1$

Replace f by a "better" map, take a minimizing sequence and study the limit.

- Construction of natural maps (barycentric construction).
- Cheeger-Colding theory of limit spaces under lower Ricci curvature bound.

 $f:(Y,g) \to (X,g_0)$ hyperbolic, $\deg(f)=1$ $\forall c>h(g)$, there exists $F_c:Y\to X$, homotopic to f $(n\geqslant 3)$, such that

$$\forall y \in Y \, , \, |\operatorname{Jac}(F_c(y))| \leqslant \left(rac{c}{n-1}
ight)^n = \left(rac{c}{h(g_0)}
ight)^n \, .$$

Replace f by a "better" map, take a minimizing sequence and study the limit.

- Construction of natural maps (barycentric construction).
- Cheeger-Colding theory of limit spaces under lower Ricci curvature bound.

 $f:(Y,g) \to (X,g_0)$ hyperbolic, $\deg(f)=1$ $\forall c>h(g)$, there exists $F_c:Y\to X$, homotopic to f $(n\geqslant 3)$, such that

$$\forall y \in Y, |\operatorname{Jac}(F_c(y))| \leqslant \left(\frac{c}{n-1}\right)^n = \left(\frac{c}{h(g_0)}\right)^n.$$

Consequences

Replace f by a "better" map, take a minimizing sequence and study the limit.

- Construction of natural maps (barycentric construction).
- Cheeger-Colding theory of limit spaces under lower Ricci curvature bound.

 $f:(Y,g) \to (X,g_0)$ hyperbolic, $\deg(f)=1$ $\forall c>h(g)$, there exists $F_c:Y\to X$, homotopic to f $(n\geqslant 3)$, such that

$$\forall y \in Y, |\operatorname{Jac}(F_c(y))| \leqslant \left(\frac{c}{n-1}\right)^n = \left(\frac{c}{h(g_0)}\right)^n.$$

Consequences

 $ightharpoonup \operatorname{vol}(X, g_0) \leqslant (\frac{h(g)}{h(g_0)})^n \operatorname{vol}(Y, g).$

Replace f by a "better" map, take a minimizing sequence and study the limit.

- Construction of natural maps (barycentric construction).
- Cheeger-Colding theory of limit spaces under lower Ricci curvature bound.

 $f:(Y,g) \to (X,g_0)$ hyperbolic, $\deg(f)=1$ $\forall c>h(g)$, there exists $F_c:Y\to X$, homotopic to f $(n\geqslant 3)$, such that

$$\forall y \in Y, |\operatorname{Jac}(F_c(y))| \leqslant \left(\frac{c}{n-1}\right)^n = \left(\frac{c}{h(g_0)}\right)^n.$$

Consequences

- $ightharpoonup \operatorname{vol}(X, g_0) \leqslant \left(\frac{h(g)}{h(g_0)}\right)^n \operatorname{vol}(Y, g).$
- ▶ If $\operatorname{Ricci}(g) \geqslant -(n-1)g$, $\operatorname{vol}(X, g_0) \leqslant \operatorname{vol}(Y, g)$.

Outline

Introduction

Main result

Ricci curvature

Ideas of the proof

Natural map

Minimizing sequences

Limit space

Open questions

Map induced by f, $\rho: \pi_1(Y) \to \pi_1(X)$,

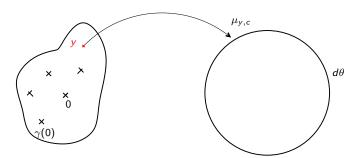
Map induced by f, $\rho: \pi_1(Y) \to \pi_1(X)$, We construct $\widetilde{F}_c: \widetilde{Y} \to \widetilde{X}$, ρ equivariant,

Map induced by f, $\rho: \pi_1(Y) \to \pi_1(X)$, We construct $\widetilde{F}_c: \widetilde{Y} \to \widetilde{X}$, ρ equivariant,

$$y \in \widetilde{Y} \to \mu_{y,c} = \sum_{\gamma \in \pi_1(Y)} e^{-cd_Y(\gamma 0, y)} \rho(\gamma)_* d\theta$$

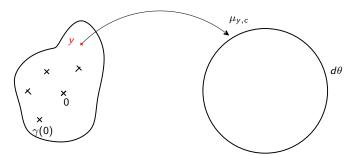
Map induced by f, $\rho: \pi_1(Y) \to \pi_1(X)$, We construct $\widetilde{F}_c: \widetilde{Y} \to \widetilde{X}$, ρ equivariant,

$$y \in \widetilde{Y}
ightarrow \mu_{y,c} = \sum_{\gamma \in \pi_1(Y)} e^{-cd_Y(\gamma 0,y)}
ho(\gamma)_* d\theta$$



Map induced by f, $\rho: \pi_1(Y) \to \pi_1(X)$, We construct $\widetilde{F}_c: \widetilde{Y} \to \widetilde{X}$, ρ equivariant,

$$y \in \widetilde{Y}
ightarrow \mu_{y,c} = \sum_{\gamma \in \pi_1(Y)} e^{-cd_Y(\gamma 0,y)}
ho(\gamma)_* d\theta$$

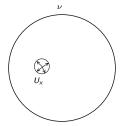


Converges if c > h(g). For simplicity we assume that c = h(g).

$$\widetilde{F}(y) = \text{barycenter}(\mu_y)$$

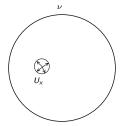
$$\widetilde{F}(y) = \text{barycenter}(\mu_y)$$

$$\widetilde{F}(y) = \text{barycenter}(\mu_y)$$



Unique point where $\int_{U_x} \overrightarrow{u} \, d\nu = 0$.

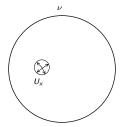
$$\widetilde{F}(y) = \text{barycenter}(\mu_y)$$



Unique point where $\int_{U_x} \overrightarrow{u} d\nu = 0$.

Equivariance $\rightsquigarrow \widetilde{F}$ descends to $F: Y \to X$.

$$\widetilde{F}(y) = \text{barycenter}(\mu_y)$$



Unique point where $\int_{U_x} \overrightarrow{u} d\nu = 0$.

Equivariance $\rightsquigarrow \widetilde{F}$ descends to $F: Y \rightarrow X$.

Rigidity \rightsquigarrow if $|\operatorname{Jac}(F(y))| = \left(\frac{h(g)}{h(g_0)}\right)^n$, then $D_y F =$ homothety.

Outline

Introduction

Main result

Ricci curvature

Ideas of the proof

Natural map

Minimizing sequences

Limit space

Open questions

Done by contradiction.

Done by contradiction.

If not true, there exists $\varepsilon_k \to 0$,

Done by contradiction.

If not true, there exists $\varepsilon_k \to 0$,

$$f_k, F_k: (Y_k, g_k) \longrightarrow (X_k, hyp_k)$$

Done by contradiction.

If not true, there exists $\varepsilon_k \to 0$,

$$f_k, F_k: (Y_k, g_k) \longrightarrow (X_k, hyp_k)$$

with (X_k, hyp_k) hyperbolic, $\operatorname{diam}(X_k) \leq d$, $\operatorname{Ricci}(g_k) \geqslant -(n-1)g_k$,

Done by contradiction.

If not true, there exists $\varepsilon_k \to 0$,

$$f_k, F_k: (Y_k, g_k) \longrightarrow (X_k, hyp_k)$$

with (X_k, hyp_k) hyperbolic, $\operatorname{diam}(X_k) \leq d$, $\operatorname{Ricci}(g_k) \geqslant -(n-1)g_k$,

$$\operatorname{vol}(X_k, hyp_k) \leq \operatorname{vol}(Y_k, g_k) \leqslant (1 + \varepsilon_k) \operatorname{vol}(X_k, hyp_k),$$

Done by contradiction.

If not true, there exists $\varepsilon_k \to 0$,

$$f_k, F_k: (Y_k, g_k) \longrightarrow (X_k, hyp_k)$$

with (X_k, hyp_k) hyperbolic, $\operatorname{diam}(X_k) \leq d$, $\operatorname{Ricci}(g_k) \geqslant -(n-1)g_k$,

$$\operatorname{vol}(X_k, hyp_k) \leq \operatorname{vol}(Y_k, g_k) \leqslant (1 + \varepsilon_k) \operatorname{vol}(X_k, hyp_k),$$

by Y_k is not diffeomorphic to X_k .

Done by contradiction.

If not true, there exists $\varepsilon_k \to 0$,

$$f_k, F_k: (Y_k, g_k) \longrightarrow (X_k, hyp_k)$$

with (X_k, hyp_k) hyperbolic, $\operatorname{diam}(X_k) \leq d$, $\operatorname{Ricci}(g_k) \geqslant -(n-1)g_k$,

$$\operatorname{vol}(X_k, hyp_k) \leq \operatorname{vol}(Y_k, g_k) \leqslant (1 + \varepsilon_k) \operatorname{vol}(X_k, hyp_k),$$

by Y_k is not diffeomorphic to X_k .

$$1 \longleftarrow \frac{\operatorname{vol}(X_k, hyp_k)}{\operatorname{vol}(Y_k, g_k)} \leqslant \left(\frac{h(g_k)}{n-1}\right)^n \leqslant 1$$

Done by contradiction.

If not true, there exists $\varepsilon_k \to 0$,

$$f_k, F_k: (Y_k, g_k) \longrightarrow (X_k, hyp_k)$$

with (X_k, hyp_k) hyperbolic, $\operatorname{diam}(X_k) \leq d$, $\operatorname{Ricci}(g_k) \geqslant -(n-1)g_k$,

$$\operatorname{vol}(X_k, hyp_k) \leq \operatorname{vol}(Y_k, g_k) \leqslant (1 + \varepsilon_k) \operatorname{vol}(X_k, hyp_k),$$

by Y_k is not diffeomorphic to X_k .

$$1 \longleftarrow \frac{\operatorname{vol}(X_k, hyp_k)}{\operatorname{vol}(Y_k, g_k)} \leqslant \left(\frac{h(g_k)}{n-1}\right)^n \leqslant 1$$

1. Cheeger finiteness + Mostow rigidity \sim finitely many (X_k, hyp_k) 's. We assume (X_0, g_0) fixed.

- 1. Cheeger finiteness + Mostow rigidity \rightsquigarrow finitely many (X_k, hyp_k) 's. We assume (X_0, g_0) fixed.
- 2. Gromov precompactness, $\operatorname{Ricci}(g_k) \geqslant -(n-1)g_k$,

$$(Y_k, g_k, y_k) \longrightarrow (Y_\infty, d_\infty, y_\infty)$$

in pointed Gromov-Hausdorff topology.

- 1. Cheeger finiteness + Mostow rigidity \rightsquigarrow finitely many (X_k, hyp_k) 's. We assume (X_0, g_0) fixed.
- 2. Gromov precompactness, $\operatorname{Ricci}(g_k) \geqslant -(n-1)g_k$,

$$(Y_k, g_k, y_k) \longrightarrow (Y_\infty, d_\infty, y_\infty)$$

in pointed Gromov-Hausdorff topology.

 (Y_{∞}, d_{∞}) complete length space.

Outline

Introduction

Main result

Ricci curvature

Ideas of the proof

Natural map

Minimizing sequences

Limit space

Open questions

Non collapsing

The sequence (Y_k, g_k) does not collapse $\rightsquigarrow Y_\infty$ has (Hausdorf) dimension n.

Non collapsing

The sequence (Y_k, g_k) does not collapse $\rightsquigarrow Y_\infty$ has (Hausdorf) dimension n.

$$f_k: Y_k \to X, \quad \deg(f_k) = 1 \Rightarrow ||Y_k|| \geqslant ||X|| > 0$$

The sequence (Y_k, g_k) does not collapse $\rightsquigarrow Y_{\infty}$ has (Hausdorf) dimension n.

$$f_k: Y_k \to X, \quad \deg(f_k) = 1 \Rightarrow ||Y_k|| \geqslant ||X|| > 0$$

Gromov Isolation Theorem (VBC),

The sequence (Y_k, g_k) does not collapse $\rightsquigarrow Y_{\infty}$ has (Hausdorf) dimension n.

$$f_k: Y_k \to X, \quad \deg(f_k) = 1 \Rightarrow ||Y_k|| \geqslant ||X|| > 0$$

Gromov Isolation Theorem (VBC),

$$\operatorname{Ricci}(g_k)\geqslant -(n-1)g_k\Rightarrow \exists y_k\in Y_k, \operatorname{vol}(B(y_k,1))\geqslant \upsilon_n>0\,.$$

The sequence (Y_k, g_k) does not collapse $\rightsquigarrow Y_{\infty}$ has (Hausdorf) dimension n.

$$f_k: Y_k \to X, \quad \deg(f_k) = 1 \Rightarrow ||Y_k|| \geqslant ||X|| > 0$$

Gromov Isolation Theorem (VBC),

$$\mathrm{Ricci}(g_k) \geqslant -(n-1)g_k \Rightarrow \exists y_k \in Y_k, \mathrm{vol}(B(y_k,1)) \geqslant v_n > 0.$$

Do the convergence by pointing at y_k

The sequence (Y_k, g_k) does not collapse $\rightsquigarrow Y_{\infty}$ has (Hausdorf) dimension n.

$$f_k: Y_k \to X, \quad \deg(f_k) = 1 \Rightarrow ||Y_k|| \geqslant ||X|| > 0$$

Gromov Isolation Theorem (VBC),

$$\operatorname{Ricci}(g_k) \geqslant -(n-1)g_k \Rightarrow \exists y_k \in Y_k, \operatorname{vol}(B(y_k,1)) \geqslant v_n > 0.$$

Do the convergence by pointing at $y_k \sim$ non collapsing and,

The sequence (Y_k, g_k) does not collapse $\rightsquigarrow Y_{\infty}$ has (Hausdorf) dimension n.

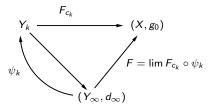
$$f_k: Y_k \to X, \quad \deg(f_k) = 1 \Rightarrow ||Y_k|| \geqslant ||X|| > 0$$

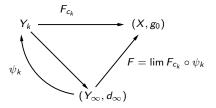
Gromov Isolation Theorem (VBC),

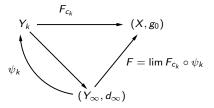
$$\operatorname{Ricci}(g_k) \geqslant -(n-1)g_k \Rightarrow \exists y_k \in Y_k, \operatorname{vol}(B(y_k,1)) \geqslant v_n > 0.$$

Do the convergence by pointing at $y_k \sim$ non collapsing and,

$$\operatorname{vol}(B_{g_k}(p_k,r)) \longrightarrow \mathcal{H}^n(B_{\infty}(p,r))$$
.

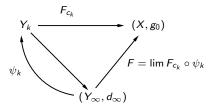






Where $\psi_{\mathbf{k}}$ is a Gromov-Hausdorff approximation.

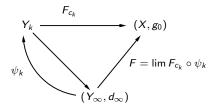
$$\operatorname{vol}(Y_k) \leqslant (1 + \varepsilon_k) \operatorname{vol}(X)$$



Where ψ_k is a Gromov-Hausdorff approximation.

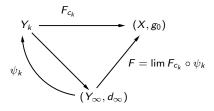
$$\operatorname{vol}(Y_k) \leqslant (1+\varepsilon_k)\operatorname{vol}(X)$$

▶ $|\operatorname{Jac}(F_k)| \simeq 1$ on a subset of large relative volume.



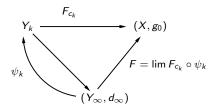
$$\operatorname{vol}(Y_k) \leqslant (1+\varepsilon_k)\operatorname{vol}(X)$$

- ▶ $|\operatorname{Jac}(F_k)| \simeq 1$ on a subset of large relative volume.
- ▶ DF_k almost isometry on this set.



$$\operatorname{vol}(Y_k) \leqslant (1+\varepsilon_k)\operatorname{vol}(X)$$

- ▶ $|\operatorname{Jac}(F_k)| \simeq 1$ on a subset of large relative volume.
- ▶ DF_k almost isometry on this set.
- ▶ This implies that *F* is 1-Lipschitz.



$$\operatorname{vol}(Y_k) \leqslant (1 + \varepsilon_k) \operatorname{vol}(X)$$

- ▶ $|\operatorname{Jac}(F_k)| \simeq 1$ on a subset of large relative volume.
- ▶ DF_k almost isometry on this set.
- ▶ This implies that *F* is 1-Lipschitz.
- ▶ F_k almost volume preserving $\Rightarrow F$ is volume preserving.

Let us assume that Y_{∞} is a manifold.

Let us assume that Y_{∞} is a manifold.

Then $F:(Y_{\infty},d_{\infty})\to (X,g_0)$ is a (metric) isometry (1-Lipschitz+volume preserving), so that,

$$(Y_{\infty},d_{\infty})=\lim_{GH}(Y_k,g_k)=(X,g_0).$$

Let us assume that Y_{∞} is a manifold.

Then $F:(Y_{\infty},d_{\infty})\to (X,g_0)$ is a (metric) isometry (1-Lipschitz+volume preserving), so that,

$$(Y_{\infty},d_{\infty})=\lim_{GH}(Y_k,g_k)=(X,g_0).$$

Then we can use,

Let us assume that Y_{∞} is a manifold.

Then $F:(Y_{\infty},d_{\infty})\to (X,g_0)$ is a (metric) isometry (1-Lipschitz+volume preserving), so that,

$$(Y_{\infty},d_{\infty})=\lim_{GH}(Y_k,g_k)=(X,g_0).$$

Then we can use,

Theorem (Cheeger-Colding)

If $(X, g_0) = \lim_{GH} (Y_k, g_k)$, Y_k, X are closed manifolds, all metrics satisfy $\operatorname{Ricci}(g) \geqslant -(n-1)g$, then, for k large enough, Y_k is diffeomorphic to X.

Let us assume that Y_{∞} is a manifold.

Then $F:(Y_{\infty},d_{\infty})\to (X,g_0)$ is a (metric) isometry (1-Lipschitz+volume preserving), so that,

$$(Y_{\infty},d_{\infty})=\lim_{GH}(Y_k,g_k)=(X,g_0).$$

Then we can use,

Theorem (Cheeger-Colding)

If $(X, g_0) = \lim_{GH} (Y_k, g_k)$, Y_k, X are closed manifolds, all metrics satisfy $\operatorname{Ricci}(g) \geqslant -(n-1)g$, then, for k large enough, Y_k is diffeomorphic to X.

This yields the contradiction!

Cheeger-Colding for non-collapsing case $\rightsquigarrow Y_{\infty} = \mathcal{R} \bigcup \mathcal{S}$,

$$\theta(p) = \liminf_{r \to 0} \frac{\mathcal{H}^n(B_{\infty}(p,r))}{\operatorname{vol}(B_{\mathbf{R}^n}(r))} \leqslant 1,$$

$$\theta(p) = \liminf_{r \to 0} \frac{\mathcal{H}^n(B_{\infty}(p,r))}{\operatorname{vol}(B_{\mathbf{R}^n}(r))} \leqslant 1,$$

then
$$\mathcal{R} = \{ p \in Y_{\infty}; \theta(p) = 1 \}$$
 .

Cheeger-Colding for non-collapsing case $\rightsquigarrow Y_{\infty} = \mathcal{R} \bigcup \mathcal{S}$, where \mathcal{S} is the singular locus and \mathcal{R} is the regular set.

$$\theta(p) = \liminf_{r \to 0} \frac{\mathcal{H}^n(B_{\infty}(p,r))}{\operatorname{vol}(B_{\mathbf{R}^n}(r))} \leqslant 1,$$

then
$$\mathcal{R} = \{ p \in Y_{\infty}; \theta(p) = 1 \}$$
.

R is dense,

$$\theta(p) = \liminf_{r \to 0} \frac{\mathcal{H}^n(B_{\infty}(p,r))}{\operatorname{vol}(B_{\mathbf{R}^n}(r))} \leqslant 1,$$

then
$$\mathcal{R} = \{ p \in Y_{\infty}; \theta(p) = 1 \}$$
 .

- $\triangleright \mathcal{R}$ is dense,
- ▶ Hausdorff dimension of S is less than n-2.

Cheeger-Colding for non-collapsing case $\rightsquigarrow Y_{\infty} = \mathcal{R} \bigcup \mathcal{S}$, where \mathcal{S} is the singular locus and \mathcal{R} is the regular set.

$$\theta(p) = \liminf_{r \to 0} \frac{\mathcal{H}^n(B_{\infty}(p,r))}{\operatorname{vol}(B_{\mathbf{R}^n}(r))} \leqslant 1,$$

then $\mathcal{R} = \{ p \in Y_{\infty}; \theta(p) = 1 \}$.

- $\triangleright \mathcal{R}$ is dense,
- ▶ Hausdorff dimension of S is less than n-2.

We show that F is an isometry \sim technicalities.

Outline

Introduction

Main result

Ricci curvature

Ideas of the proof

Natural map

Minimizing sequences

Limit space

1. Can we "uniformly" regularize metrics with $\operatorname{Ricci}(g) \geq -(n-1)$?

- 1. Can we "uniformly" regularize metrics with $\operatorname{Ricci}(g) \geq -(n-1)$?
- 2. Use the Ricci flow and give another proof of Cheeger-Colding.

- 1. Can we "uniformly" regularize metrics with $\operatorname{Ricci}(g) \geq -(n-1)$?
- 2. Use the Ricci flow and give another proof of Cheeger-Colding.
- 3. Build a natural map adapted to the scalar curvature question.

- 1. Can we "uniformly" regularize metrics with $\operatorname{Ricci}(g) \geq -(n-1)$?
- 2. Use the Ricci flow and give another proof of Cheeger-Colding.
- 3. Build a natural map adapted to the scalar curvature question.
- 4. What about integrals of curvature?