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Differentiable Rigidity

f:Yy"— X"
Y and X closed smooth n-manifolds, degf = 1 (Y dominates X).
Question : when is f homotopic to a diffeomorphism ?

Some examples
» Mostow : Y and X hyperbolic, n > 3, f homotopy
equivalence = f ~ isometry.
» Farrell-Jones : Y, X negatively curved, n > 5, f homotopy
equivalence = f ~ homeomorphisme.
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More examples

Farrell-Jones construction :

Y = X#X with X exotic sphere, Y and X are homeomorphic but
not diffeomorphic (n=7)!

By taking a finite cover X of X, construct a metric g on X such

that :
-1<K(g)<-1+ce.

For € > 0 small, need to take large cover X.
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From now on n > 3,

Theorem (B-. Courtois, Gallot)

(X, g0) closed hyperbolic, Y closed, dominates X, n > 3. For any
metricg on Y,

Ricci(g) = —(n—1)g = vol(Y, g) = vol(X, go)
and equality iff f ~ isometry.

Definition (Gromov)

minvol(Y) = inf{vol(Y, g); |K(g)| < 1}.
In particular, minvol(X) = vol(X, go).
Theorem (Bessieres)

Under the same hypothesis,
minvol(Y') = minvol(X) = Y diffeo. to X
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Volume Rigidity

Theorem (Bessieres, B-. Courtois, Gallot)

There exists € := €(n, d) such that, if Y dominates X, (X, go)
hyperbolic, g metric on Y with Ricci(g) > —(n—1)g,
diam(X) < d, then

vol(X, go) < vol(Y,g) < (1+¢)vol(X, go) = f ~ diffeo.

Remark
Work in any degree.

Corollary
(X, go) hyperbolic, n > 3,
> Vg on Xi¥,
Ricci(g) = —(n — 1)g = vol(XtZ,g) > (1 + ¢) vol(X, go) -
> Vg on XtX,

Ricci(g) = —(n—1)g = vol(XtX, g) = 2(1 + ¢) vol(X, go) -
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Scalar curvature

Question : What about scalar curvature?

» If n > 4, O. Kobayashi,
inf{vol(X#X, g); scal(g) = —n(n—1)} < 2vol(X, go).

» If n = 3, observation by Anderson, Perelman’s work implies
that inf{vol(X£X, g); scal(g) > —6} = 2vol(X, go).
No gap theorem can be true, but

Conjecture (R. Schoen)
(X, go) hyperbolic. Vg on X

Scal(g) > —n(n—1) = vol(X, g) > vol(X, go)

and equality iff g is hyperbolic.

Perelman’s works ~» true if n = 3.
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Ricci curvature

Ricci(g) > —(n—1),0<r <R,
» Bishop, vol(B(x, r)) < vol(Byn(r)),

» Bishop-Gromov, vol(B(x, r)) > VOI(BHn(r))VOI(B(XvR))

vol(Byn(R)) *

(Y, ), h(g) = limgr_.co & log(vol(B(7, R)), for 7 € Y.
» Bishop, Ricci(g) > —(n—1) = h(g) < n—1 = h(go).
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|deas of the proof

Replace f by a "better” map, take a minimizing sequence and
study the limit.

» Construction of natural maps (barycentric construction).

» Cheeger-Colding theory of limit spaces under lower Ricci

curvature bound.

f:(Y,g) — (X, go) hyperbolic, deg(f) =1
Vc > h(g), there exists F. : Y — X, homotopic to f (n > 3), such
that

vy e Y, [ac(Fe(y))| < (- )"z(h(;)))".

Consequences
> vol(X, go) < (#£})"vol(Y , g).
> If Ricci(g) > —(n—1)g, vol(X, go) < vol(Y, g).
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Construction of the natural map

Map induced by f,  p: m(Y) — m1(X),
We construct F. : Y — X, p equivariant,

yeY opue= Y e 00p(y).do
yem(Y)

Hy,c

do

Converges if ¢ > h(g). For simplicity we assume that ¢ = h(g).
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Construction of the natural map

F(y) = barycenter(su,)

v

Unique point where fo Tdv =0.
Equivariance ~» F descends to F: Y — X.

Rigidity ~ if | Jac(F(y))| = (%)n, then D, F = homothety.
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Two observations

1. Cheeger finiteness + Mostow rigidity ~ finitely many
(Xk, hypk)'s. We assume (Xo, go) fixed.

2. Gromov precompactness, Ricci(gx) = —(n — 1)gx,

(Ykagkayk) — (Y007doovyoo)

in pointed Gromov-Hausdorff topology.

(Yoo, dso) complete length space.
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Non collapsing

The sequence (Y, gx) does not collapse ~» Y, has (Hausdorf)
dimension n.

fu: Ye— X, deg(fx) =1=||Ykl| = ||X]| >0
Gromov lIsolation Theorem (VBC),
Ricci(gk) = —(n— 1)gx = Jyk € Y, vol(B(yk,1)) = v, > 0.
Do the convergence by pointing at y, ~» non collapsing and,

vol(Bg, (Pk, r)) — H"(Bso(p, r)) -
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Fe,
Yk (X7g0)
) \ / lim Fe, o ¥y
(Yoo, doo)

Where 1)y is a Gromov-Hausdorff approximation.
vol(Yk) < (1 + &) vol(X)
» | Jac(Fk)| ~ 1 on a subset of large relative volume.
» DF almost isometry on this set.
» This implies that F is 1-Lipschitz.
» F, almost volume preserving = F is volume preserving.
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Let us assume that Y., is a manifold.

Then F : (Yo, dxo) — (X, g0) is a (metric) isometry
(1-Lipschitz-+volume preserving), so that,

(Yoo, deo) (Yk,8k) = (X, 80) -

= lim
GH
Then we can use,

Theorem (Cheeger-Colding)

If (X, g0) = limgu( Yk, gk), Y, X are closed manifolds, all metrics
satisfy Ricci(g) > —(n — 1)g, then, for k large enough, Yy is
diffeomorphic to X.

This yields the contradiction !
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Cheeger-Colding Theory

Cheeger-Colding for non-collapsing case ~ Yo, = RS,
where S is the singular locus and R is the regular set.

0(p) = lim inf 1 (Boc(P. 1)

<1,
r—0 VOI( BRn (r))

then R = {p € Yx;0(p) =1}.

» R is dense,

» Hausdorff dimension of S is less than n — 2.

We show that F is an isometry ~» technicalities.
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Open questions

1. Can we "uniformly” regularize metrics with

Ricci(g) > —(n—1)7?
2. Use the Ricci flow and give another proof of Cheeger-Colding.
3. Build a natural map adapted to the scalar curvature question.
4. What about integrals of curvature?
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