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(Warwick), D. Kröner (Freiburg), Chr. Lubich (Tübingen).
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Outline of this talk

• Applications of geometric flows.

• Discretization techniques for geometric flows.

• Piecewise polynomial surfaces.
• Discrete spaces on discrete surfaces.
• Approximation of curvature and the second fundamental form.
• Consistent approximation of geometric functionals.

• Computational Willmore flow.

• An adequate form of the first variation of the Willmore
functional.

• Willmore flow.
• Stability and convergence results.
• Numerical tests.

• Approximation of Ricci curvature.
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The standard geometric functionals

Area functional A(Γ) =

∫
Γ

1

The classical bending energy of Γ:

Willmore functional W (Γ) =
1
2

∫
Γ

H2

Area in Finsler geometry:

Anisotropic area Aγ(Γ) =

∫
Γ
γ(ν)

γ : Sn → (0,∞) is a given function. ν is the normal to Γ.
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Crystal growth (Anisotropic mean curvature flow):

Kinetic PDE on the free boundary - forced anistropic mean
curvature flow.

Forced strongly anisotropic mean curvature flow

The mathematical model contains the Gibbs-Thomson law on the
phase boundary. The underlying geometric functional is anisotropic
area. γ is a given function which models the anisotropic structure
of the material.
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Dealloying (Mean curvature flow)

Production of a nanoporous gold sponge from a binary Ag-Au
alloy. Dealloying by surface dissolution. The gold atoms diffuse on
the surface, agglomerate in clusters and expose the next layer of
silver atoms for dissolution. The bulk introduces new gold atoms
into the system. Etching: Inhomogeneous mean curvature flow.

v = R(u)(1− δH)ν

Conservation and diffusion on the surface: Cahn-Hilliard equation
on the moving surface. [Eilks, Elliott 2008]

Simulation on a large square, t=0.04 , t=0.1 and t=0.2. [Eilks,
Elliott 2008]
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Image processing (Willmore flow): Reconstruction of surfaces.

[Clarenz, Diewald, D., Rumpf, Rusu: 2004]

Numerical tools, remeshing: A harmonic map ϕ : Γ→ R2 was
computed. The inverse (conformal) map was used to transfer a
good grid onto the surface.

[Eilks, 2009]
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Modelling of cell membranes (Willmore functional)

The main part of the energy for a cell membrane Γ is modelled by
the Helfrich energy.

W0(Γ) =
1

2

∫
Γ
α(H − H0)2 +

∫
Γ
βK

with mean curvature H and Gaussian curvature K of Γ. H0 is a
given ”spontaneous curvature”.
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Principles for a good discretization

The discretization must be valid for all dimensions and all
codimensions.

Approximation of surfaces by piecewise polynomial surfaces.

Consistent approximation of the geometric functionals.

Computability of the first variation of the functional for
discrete surfaces. The linear systems to be solved in each time
step after time discretization should be sparse, symmetric and
positive definite.

We should have - if possible - an n-dimensional algorithm for
an n-dimensional surface.

Gerhard Dziuk Computation of geometric flows



Introduction
Discretization of geometric functionals

Computation of Willmore flow
Approximation of Ricci curvature

Piecewise polynomial surfaces
Approximation of geometry
The model case: mean curvature flow

Discrete surfaces

The given smooth surface Γ is approximated by a piecewise
polynomial surface Γh interpolating points on the smooth surface.

Γ

Γh,linear

Γ
h,quadratic

(smooth surface)

The discrete surface Γh then consists of curved n-simplices Th,

Γh =
⋃

Th∈Th

Th,

which form an admissible triangulation Th with maximal grid size h.
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Lemma (Approximation of the surface)

Assume that Γh is the interpolation of Γ by polynomials of degree
s. Then

‖d‖L∞(Γh) ≤ chs+1,

‖ν − νh‖L∞(Γh) ≤ chs ,

|1− δh| ≤ chs+1, dA = δh dAh.

d(x) is the oriented distance from x to Γ and ν(x) = ∇d(x).

Note, that the discrete surface Γh is only Lipschitz – also for higher
order polynomial approximation! The normal vectors are
discontinuous.
The most important case is the piecewise linear approximation
s = 1.
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There is a theoretical equivalence between

Γh as an n−dimensional Γh as given by piecewise poly-
triangulation sitting in some Rm nomial discrete charts

Γh is given by the vertices of Γh is given by maps
the triangulation plus topology

Use function spaces on Γh Use function spaces given
in local coordinates

Direct implementation in existing Write an overhead for the
software is possible discrete geometry

But practically there is a difference.
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What is the mean curvature of a polyhedral surface?

Successively refined grids approximating a half sphere.

Polyhedral approximation to a Willmore sphere.
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What is the mean curvature of a polyhedral surface?

Successively refined grids approximating a half sphere.

Polyhedral approximation to a Willmore sphere.
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Piecewise linear finite elements

We introduce useful finite dimensional function spaces on the
discrete (polygonal) surface Γh, which consists of n-simplices Th,

Γh =
⋃

Th∈Th

Th,

forming an admissible triangulation Th with maximal grid size h.
The most simple finite element space is:

Sh =
{
η ∈ C 0(Γh)

∣∣ η∣∣
Th
∈ P1(Th),Th ∈ Th

}
.

A basis of Sh is given by the common nodal basis functions

φj : Γh → R, φj ∈ Sh, φj(ai ) = δij

with the vertices (nodes) ai of Γh.
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The identity trick

We use the identity map on the surface Γ:

u = idΓ, u(x) = x for x ∈ Γ

and write A(Γ) = A(u) =
∫

Γ 1

Lemma

The first variation of the area functional at u in direction ϕ is
given by

〈A′(u), ϕ〉 =

∫
Γ
∇Γ · ϕ =

∫
Γ
∇Γu : ∇Γϕ

Here ϕ : Γ→ Rn+1 is an arbitrary function.

〈A′(u), ϕ〉 = −
∫

Γ
∆Γu · ϕ =

∫
Γ

Hν · ϕ
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The approximation of mean curvature

So, for all test functions ϕ we have for the mean curvature vector
v = −Hν:∫

Γ
v · ϕ = −

∫
Γ
∇Γu : ∇Γϕ = −

n+1∑
i ,k=1

∫
Γ

(∇Γ)i uk (∇Γ)i ϕk

For a discrete surface Γh we define the discrete curvature vector
vh ∈ Sn+1

h by that equation:∫
Γh

vh · ϕh = −
∫

Γh

∇Γh
uh : ∇Γh

ϕh for all ϕh

Formally we have written uh(x) = x for x ∈ Γh.
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The bad news

Question: Does the discrete curvature vector vh approximate the
continuous curvature vector v? Answer: Yes, . . .

Lemma

For a polygonal surface and for piecewise linear finite elements we
have the estimate

‖v − v l
h‖H−1,∞(Γ) ≤ ch.

H−1,∞(Γ) is the dual space of H1,1(Γ).

. . . but only in a very weak norm.

For n ≥ 2 the mean curvature vector is not approximated pointwise
or in L1(Γ).
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Similarly we can approximate the Weingarten map H = ∇Γν on Γ.
For this we use∫

Γ
ηHik =

∫
Γ
η (∇Γ)i νk = −

∫
Γ
νk (∇Γ)i η +

∫
Γ
ηHνiνk

for every test function η. The right hand side of this equation is
well defined for Lipschitz surfaces too, so that we define the

discrete Weingarten map Hh ∈ S
(n+1)×(n+1)
h by∫

Γh

ηhHh,ik = −
∫

Γh

νh,k (∇Γh
)i ηh +

∫
Γh

vh,iνh,kηh ∀ηh ∈ Sh

where we used the discrete mean curvature vector vh.
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Consistency test

The sphere Γ = S2 has Willmore energy

W (u) = 8π ≈ 25.1327

Approximate the smooth sphere by a discrete sphere Γh and
calculate its Willmore energy according to

W (uh) =
1

2

∫
Γh

|vh|2,

where ∫
Γh

vh · ψh = −
∫

Γh

∇Γh
uh : ∇Γh

ψh ∀ψh ∈ S3
h
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N h W (uh) W (u)−W (uh)

34 0.707106 21.064188 0.161882
130 0.513578 25.022492 0.00438645
514 0.280935 26.140487 -0.0400971
2050 0.143613 26.428208 -0.0515452
8194 0.0722037 26.501071 -0.0544443
32770 0.0361516 26.519625 -1.386889

No Consistency! The Willmore functional is not approximated.
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Choose for uh a Ritz type projection of u.

∫
Γh

∇Γh
uh : ∇Γh

ψh =

∫
Γh

∇Γh
u−l : ∇Γh

ψh, ∀ψh ∈ S3
h∫

Γh

uh =

∫
Γh

u−l .

Here for x ∈ Γh

u−l(x) = u(a(x)) = a(x)

with a(x) being the orthogonal projection of the point x onto the
smooth surface Γ.
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N h W (uh) W (u)−W (uh) eoc

34 0.707106 14.685165 10.447570 –
130 0.513578 21.843107 3.289628 3.6
514 0.280935 24.248481 0.884255 2.2
2050 0.143613 24.906125 0.226610 2.0
8194 0.0722037 25.075551 0.0571843 2.0
32770 0.0361516 25.118388 0.0143478 2.0

Consistency!
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Theorem

Assume that Γ is sufficiently smooth. Let uh be the ”Ritz”
projection of u and calculcate the discrete curvature vector vh as∫

Γh

vh · ψh = −
∫

Γh

∇Γh
uh : ∇Γh

ψh ∀ψh ∈ Sn+1
h .

Then the curvature vector v = −Hν is approximated,

‖v − v l
h‖L2(Γ) ≤ ch,

and the Willmore functional is approximated,

|W (u)−W (uh)| ≤ ch2.

The constants c depend on ‖v‖H2(Γ) and thus on the fourth
derivatives of the parametrization of the surface Γ.
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Mean curvature flow: the good news

For given initial surface Γ0 and u0 = idΓ0 determine
u : GT → Rn+1 so that u(·, t) = idΓ(t), u = u0 on Γ0 × {0} and∫

Γ
u̇ · ϕ = −〈A′(u), ϕ〉 ∀ϕ

on GT . Or equivalently

Mean curvature flow∫
Γ

u̇ · ϕ+

∫
Γ
∇Γu : ∇Γϕ = 0 ∀ϕ

This is an equation in a dual space! Therefore the mean curvature
vector has only to be approximated in a dual space.
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Calculation of the first variation of the Willmore functional

Again use the mean curvature vector v = −Hν in weak form,

∫
Γ

v · ψ +

∫
Γ
∇Γu : ∇Γψ = 0 ∀ψ.

Note that this equation can be understood as defining v as the
L2-projection of the functional ∆Γu. Or as

(v , ψ)L2(Γ) = −〈A′(u), ψ〉 ∀ψ

with the area functional A = |Γ|.
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With
uε = u + εϕ, uε = idΓε

and vε defined by∫
Γε

vε · ψ +

∫
Γε

∇Γεuε : ∇Γεψ = 0 ∀ψ

we get

〈W ′(u), ϕ〉 =
d

dε
W (uε)

∣∣∣
ε=0

=
1

2

d

dε

∫
Γε

|vε|2
∣∣∣
ε=0

=

∫
Γ

v · d

dε
v
∣∣∣
ε=0

+
1

2

∫
Γ
|v |2∇Γ · ϕ
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Differentiate ∫
Γε

vε · ψ +

∫
Γε

∇Γεuε : ∇Γεψ = 0

with respect to ε and get∫
Γ

d

dε
v
∣∣∣
ε=0
· ψ + v · ψ∇Γ · ϕ

+

∫
Γ
∇Γϕ : ∇Γψ +∇Γ · ψ∇Γ · ϕ− D(ϕ)∇Γu : ∇ψ = 0

with the symmetric tensor

D(ϕ)ij = (∇Γ)i ϕj + (∇Γ)j ϕi

Then finally choose ψ = v .
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Lemma (D. 2007)

Let v be given by ↙ v = −∆Γu∫
Γ

v · ψ +

∫
Γ
∇Γu : ∇Γψ = 0 ∀ψ.

Then the first variation of the Willmore functional is given as

〈W ′(u), ϕ〉 = −1

2

∫
Γ
|v |2∇Γ · ϕ−

∫
Γ
∇Γv : ∇Γϕ

−
∫

Γ
∇Γ · v∇Γ · ϕ+

∫
Γ

D(ϕ)∇Γu : ∇Γv

Here, ϕ : Γ→ Rn+1 is an arbitrary variation in space and

D(ϕ)ij = (∇Γ)i ϕj + (∇Γ)j ϕi

. No second derivatives appear in this formula!
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A Willmore surface with prescribed boundary and mean curvature
zero on the boundary.
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Variational form of Willmore flow

For given initial value u0 determine u and v such that u = idΓ and

∫
Γ

u̇ · ϕ−
∫

Γ
∇Γv : ∇Γϕ+

∫
Γ
∇Γv : D(ϕ)∇Γu

−
∫

Γ
∇Γ · v∇Γ · ϕ−

1

2

∫
Γ
|v |2∇Γ · ϕ = 0

∫
Γ

v · ψ +

∫
Γ
∇Γu : ∇Γψ = 0

for all ϕ,ψ.
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Stability

Theorem

Assume that uh, vh is a solution of the discrete Willmore flow.
Then the energy relation∫

Γh

|u̇h|2 +
1

2

d

dt

∫
Γh

|vh|2 = 0

holds. Thus we have stability of the spatially discrete scheme in
adequate norms.

The proof follows directly from the consistent derivation of the
algorithm (for Lipschitz surfaces!).
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Willmore flow towards a sphere.

Willmore flow towards a Clifford torus

Evolution of a double torus under Willmore flow
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Willmore flow towards a sphere. Surface at times t = 0.001755, t = 0.01053

and t = 0.04387.
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Some references for numerical methods for Willmore flow

L. Hus, R. Kusner, J. Sullivan (1992): Minimization of Willmore energy with
Brakke’s surface evolver program.
A. Polden (1996): Analysis and numerics for the elastic flow of planar curves.
R. Rusu (2001): Finite element algorithm for Willmore flow.
U. F. Mayer, G. Simonett (2002): Finite differences for axisymmetric surfaces.
G. D., E. Kuwert, R. Schätzle (2002): Elastic flow of curves.
M. Droske, M. Rumpf (2003): Finite element algorithm for Willmore flow of
level sets.
A. Bobenko, P. Schroeder (2005): Definition of a discrete Willmore energy,
discrete Willmore flow.
K. Deckelnick, G. D. (2006): Convergence and estimates of the error for
graphs.
J. W. Barrett, H. Garcke, R. Nürnberg (2007): Discretization of the
Weingarten map, automatic redistribution of the surface nodes.
G. D. (2007): Stable algorithm for parametric Willmore flow.

K. Deckelnick, G. D. (2007): convergence and estimates of the error for curves.
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Theorem (Deckelnick, G. D., 2007)

Let (u, v) be the solution of Willmore flow for curves on the time
interval (0,T ]. Then the spatially discrete solution (uh, vh) exists
on the same time interval (0,T ] and for the error we have:

sup
t∈[0,T ]

‖u(·, t)− ul
h(·, t)‖H1(Γ(t)) ≤ Ch,

sup
t∈[0,T ]

‖v(·, t)− v l
h(·, t)‖L2(Γ(t)) ≤ Ch

∫ T

0
‖v(·, t)− v l

h(·, t)‖2
H1(Γ(t))dt ≤ Ch2

for all 0 < h ≤ h0. The constant C depends on T , inf(0,2π) |U0θ|
and on higher norms of the solution u of the continuous problem.
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Evolution of a planar hypocycloid.

t = 0.0 t = 690.1 t = 3011.9

t = 4930.5 t = 7889.5 t = 10441.2

Figure: Evolution by elastic flow of a planar hypocycloid towards a
fivefold covering of a circle. The curves are graphically rescaled to have
similar size.
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Evolution of a slightly vertically perturbed hypocycloid.
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t = 6559.9 t = 7294.6 t = 7998.7

 

 

 

 

 

 

 

 

 

t = 8666.3 t = 8776.3 t = 9362.4

Figure: Evolution of a vertically slightly perturbed hypocycloid towards a
circle.
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Value of the functional during the evolution of a hypocycloid;
planar (left) and vertically perturbed (right).
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Weak formulation of Ricci curvature on isometrically
embedded hypersurfaces

Goal: Definition and computation of a discrete Ricci curvature
specially for the higher dimensional case without symmetry
assumptions. Our approach is based on an idea of G. Huisken.

Definition

We define Ric : Γ→ R(n+1)×(n+1) by

(RicY ) · X = ric(PY ,PX )

for arbitrary vector fields X and Y . P is the projection to the
tangent space.
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Lemma

For all X ,Y ∈ H1(Γ)n+1 it holds∫
Γ
(RicY ) · X

=

∫
Γ

(∇Γ)i (PY )i (∇Γ)k (PX )k − (∇Γ)i (PY )k (∇Γ)k (PX )i

We discretize with our standard methods.

Theorem (H. Fritz 2009)

For quadratically approximated smooth surface Γ and second order
finite elements one has the estimate

‖Ric − Ric l
h‖L2(Γ) ≤ ch

with a constant depending only on Γ but not on the grid size h.
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Numerical tests

DOFS err1 eoc1 err2 eoc2 err4 eoc4

21 952 6.70e-01 0.42 7.42e-01 0.23 5.08e-01 0.35

174 976 4.89e-01 0.45 3.85e-01 0.94 2.30e-01 1.14

1 398 528 2.15e-01 1.18 1.47e-01 1.39 7.56e-02 1.61

11 185 664 7.76e-02 1.47 5.21e-02 1.50 2.36e-02 1.68

89 480 192 2.63e-02 1.56 1.72e-02 1.60 7.32e-03 1.69

Table: Degrees of freedom (DOFS), errors and experimental orders of
convergence for the approximation of Ricci curvature (components 1, 2,
4) for the threedimensional surface Γ.

Γ = {x ∈ R4| (x1 − x2
2 )2 + x2

2 + x2
3 + x2

4 = 1}
We used the finite element program ALBERTA (A. Schmidt, K. G. Siebert).
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