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A brief review on normalized Ricci flow

A Ricci flow is a smooth family of metrics g(t), t ∈ [0,T ), on a manifold
satisfying the evolution equation

∂

∂t
g(t) = −2Ric(g(t)), (1)

where Ric(g(t)) denotes the Ricci curvature tensor of the metric g(t).

Ricci flow was introduced by Hamilton, and he also introduced the
volume normalized Ricci flow

∂

∂t
g(t) = −2Ric(g(t)) +

2r(t)

n
g(t), (2)

where r(t) =
∫

R(g(t))dvg(t)/
∫

dvg(t) denotes the average scalar
curvature of g(t). The equation (2) differs from (1) by rescaling the
space-time such that the volume preserves constant along the flow.
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A brief review on normalized Ricci flow

A long term normalized Ricci flow (M, g(t)), t ∈ [0,∞), is called
nonsingular if the curvature is uniformly bounded for all time.

A special class of nonsingular solutions is, Ricci Solitons. The notion of
Ricci solitons, known as the self-similar solutions to the Ricci flow, was
introduced by Hamilton in 1988. In many cases, Ricci solitons turn out to
be singularity models to the Ricci flows. By definition, Ricci solitons may
be considered as a natural generalizations of Einstein manifolds.

F. Fang, CNU Ricci flow on 4-manifolds and Seiberg-Witten equations 4/28



A brief review on normalized Ricci flow

The infinitesimal equation for the Ricci soliton reads

Ric +
1

2
LV g = εg (3)

for some vector field V and constant ε ∈ R.

If V is a gradient field of some function f , then the Ricci soliton is called
gradient Ricci soliton with potential function f . Then the equation reads

Ric +∇2(f ) = εg . (4)

The cases ε > 0,= 0, < 0 correspond to shrinking, steady and expanding
Ricci solitons respectively.

All Ricci solitons in the talk are assumed to be gradient. After a scaling
of the metric, we assume ε ∈ {±1/2, 0}.
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Nonsingular solutions on compact manifolds

In dimension 3, Hamilton proved in 1997:

Theorem (Hamilton, 1997)
Any nonsingular solution to the normalized Ricci flow on a closed
3-manifold satisfies one of the followings:

(1) the solution collapses in the sense of Cheeger-Gromov;

(2) the solution converges subsequently to a metric of constant
curvature on the manifold;

(3) the solution converges subsequently in the pointed
Gromov-Hausdorff sense to a finite collection of complete
noncompact hyperbolic pieces in the manifold; each piece is essential
in the sense that the fundamental group is injective into the
manifold.

The proof relies essentially on Hamilton and Ivey’s sectional curvature
pinching theorem for three dimensional Ricci flow.
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Nonsingular solutions on compact manifolds

There does not exist higher dimensional analogy to Hamilton and Ivey’s
pinching theorem.

However, using Perelman’s monotonicity for W functional, F. Q. Fang,
Y.G. Zhang, Z.L. Zhang were able to prove the following generalization
to higher dimensional Ricci flow:

Theorem (Fang-Zhang-Zhang, 2006)
Any nonsingular solution to the normalized Ricci flow on a closed
manifold satisfies one of the followings:

(1) the solution collapses along a subsequence in the sense of
Cheeger-Gromov;

(2) the solution converges subsequently to a Ricci soliton on the
manifold;

(3) the solution converges subsequently in the pointed
Gromov-Hausdorff sense to a finite collection of complete
noncompact negative Einstein pieces in the manifold.
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Nonsingular solutions on compact manifolds

In the case (3), when the time is large enough, the manifold admits a
thick-thin decomposition where the thick part converges to the negative
Einstein pieces, while the thin part collapses. In four dimensional case,
the thin part is further volume collapsed.

In dimension four, using the Gauss-Bonnet-Chern formula and Hirzebruch
signature theorem we may further prove that:

Theorem (Fang-Zhang-Zhang, 2006)
Let M be a closed four manifold admitting a nonsingular solution to the
normalized Ricci flow, then one of the following three conditions hold:

(1) M has a positive rank F -structure;

(2) M admits a shrinking Ricci soliton metric;

(3) M satisfies the Hitchin-Thorpe inequality 2χ(M) ≥ 3|τ(M)|.
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Nonsingular solutions on compact manifolds

Sketch of the proof.
First of all, recall the evolution equation

∂

∂t
R = 4R + 2|Rico|2 +

2

4
R(R − r),

where r is the average of the scalar curature.

We denote by R̆(g(t)) the infimum of the scalar curvature. By the
maximal principle, R̆(g(t)) satisfies

d

dt
R̆ ≥ 2

4
R̆(R̆ − r)

where r is the average of the scalar curvature R.

So R̆(g(t)) increases whenever it is negative and remains nonnegative
whenever R̆(g(t)) ≥ 0.
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Nonsingular solutions on compact manifolds

Continued Proof.
If R̆(t) > 0 for some time t, then g(t) converges to a shrinking Ricci
soliton by monotomicity of Perelman’s ν functional.

If R̆(t) converges to zero as t →∞, then g(t) converges to a Ricci flat
metric.
If R̆(t) < −c for some c > 0 independent of t, then

d

dt
R̆ ≥ 2

4
R̆(R̆ − r) ≥ 2c

4
(r − R̆)

implies ∫ ∞

0

(r − R̆)dt < ∞

Let us assume without loss of generality that vol(M, g(t)) = 1.
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Nonsingular solutions on compact manifolds

Continued Proof.
Hence∫

M

|R−r |dv ≤
∫

M

(R−R̆)dv +

∫
M

(r−R̆)dv = 2

∫
M

(r−R̆)dv = 2(r−R̆).

Thus ∫ ∞

0

∫
M

|R − r |dvdt < ∞.

By the equation

∂

∂t
R = 4R + 2|Rico|2 +

2

4
R(R − r),

we obtain
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Nonsingular solutions on compact manifolds

Continued Proof.

∫ ∞

0

∫
M

2|Rico|2dvdt =

∫ ∞

0

∫
M

∂

∂t
Rdvdt − 1

2

∫ ∞

0

∫
M

R(R − r)dvdt

=

∫ ∞

0

∂

∂t
rdt +

1

2

∫ ∞

0

∫
M

R(R − r)dvdt

≤ lim
t−→∞

sup |r(g(t))− r0|+
C

2

∫ ∞

0

∫
M

|R − r |dvdt

≤ 2C +
C

2

∫ ∞

0

∫
M

|R − r |dvdt < ∞.
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Nonsingular solutions on compact manifolds

Continued Proof.
By the Chern-Gauss-Bonnet formula

χ(M) =
1

8π2

∫
M

(
R(g)2

24
+ |W +(g)|2 + |W−(g)|2 − 1

2
|Rico(g)|2)dv ,

By the Hirzebruch signature theorem

τ(M) =
1

12π2

∫
M

(|W +(g)|2 − |W−(g)|2)dv ,

where W +(g) and W−(g) are the self-dual and anti-self-dual Weyl
tensors respectively.
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Nonsingular solutions on compact manifolds

Continued Proof.
Thus

2χ(M)− 3|τ(M)|

≥ lim inf
m−→∞

1

4π2

∫ m+1

m

∫
M

(
1

24
R(g(t))2 − 1

2
|Rico(g(t))|2)dvdt

= lim inf
m−→∞

1

4π2

∫ m+1

m

∫
M

1

24
R(g(t))2dvdt ≥ 0.
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Nonsingular solutions on compact manifolds

As a corollary, we have

Corollary (Fang-Zhang-Zhang, 2006 and 2008)
If a closed four manifold admits a nonsingular solution, then its Euler
characteristic is nonnegative. The Euler characteristic vanishes iff the
solution collapses along a subsequence of times.

The Hitchin-Thorpe inequality to the nonsingular solutions can be
sharpened as follows:

Theorem (Fang-Zhang-Zhang, 2008; Zhang-Zhang, 2009)
Let M be a closed four manifold with Yamabe invariant σ(M) ≤ 0. If M
admits an eternal solution to the normalized Ricci flow with bounded
scalar curvature, then

2χ(M)− 3|τ(M)| ≥ 1

96π2
σ(M)2. (5)
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Nonsingular solutions on compact manifolds

We conjecture that the inequality may be replaced by:

Conjecture
The above inequality may be replaced by the following
Hitchin-Thorpe-Gromov-Kotschick type inequality

2χ(M)− 3|τ(M)| ≥ 1

1296π2
‖M‖

where ‖M‖ is a simplicial volume of M.

Recently, Ishida and his coauthors studied the relationship between the
existence of nonsingular solutions and smooth structures on closed four
manifolds by using Seiberg-Witten invariants. For example, Ishida proved

Theorem (Ishida, 2008)
For any `, there exists a simply connected four manifold M` which has at
least ` smooth structures admitting nonsingular solutions and infinitely
many other smooth structures admitting no nonsingular solutions.
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The noncompact case

By Shi’s work in 1989, Ricci flow with bounded curvature exists even for
noncompact manifolds. Assumed the volume is bounded, then the
normalized Ricci flow exists on a noncompact manifold. Y.G. Zhang, Z.L.
Zhang and the author then proved:

Theorem (Fang, Zhang and Zhang, 2008)
Let g(t) be a complete nonsingular solution to the normalized Ricci flow
of finite volume on a noncompact manifold, then either g(t) collapses
along a subsequence or g(t) converges along a subsequence to a
collection of complete negative Einstein manifold.

The shrinking Ricci solitons or Ricci flat manifolds never happen.

In dimension four, assumed existence of nonsingular solutions, we get

Corollary (Fang-Zhang-Zhang, 2010)
If an open complete four manifold of finite volume admits a nonsingular
solution to the normalized Ricci flow, then its Euler characteristic is
nonnegative.
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The noncompact case

X.Z. Dai and G.F. Wei proved a noncompact version of Hithin-Thorpe
inequality for Einstein four manifolds in 2006. Using their result, Y.
Zhang, Z. Zhang and the author proved the following Ricci flow version
for Hitchin-Thorpe inequality on noncompact manifolds:

Theorem
Let (M, g) be a Riemannian four manifold which is asymptotic to a
fibred cusp at infinity. If the normalized Ricci flow starting from g is
nonsingular, then M satisfies

2χ(M) > 3|τ(M) +
1

2
a lim η(∂M)|, (6)

where a lim(∂M) denotes the adiabatic limit of η invariant of the
boundary.

(M, g) is asymptotic to a fibred cusp if M is diffeomorphic to the interior
of a compact manifold M whose boundary is a fibration
F −→ ∂M −→ B and the metric g ∼ dr2 + π∗gB + e−2rgF at infinity.
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Ricci flow and Seiberg-Witten equations

Let M be a compact 4-dimensional oriented Riemannian manifold. Let
PSO(M) → M denote its framing bundle. A spinc -structure c is a
principal Spinc(4)-bundle PSpinc (M) → M together with a bundle map
p : PSpinc (M) → PSO(M) which is the standard Lie group homomorphism
Spinc(4) = Spin(4)×Z2 U(1) → SO(4) on every fibers. It is a classical
fact that every oriented 4-manifold admits a Spinc -structure, and
Spin(4) = SU(2)× SU(2).

Let ∆+ : Spinc(4) → U(2) (resp ∆− : Spinc(4) → U(2)) be the two
natural irreducible complex 2-dimensional representation, by forgetting
the second (resp. the first) factor of Spin(4) = SU(2)× SU(2).

Let S+
c and S−c be the rank 2 complex vector bundles on M associated to

∆+ and ∆−. We use L = detS+
c = detS−c to denote the determinant

bundle of S±c .

For a connection A on L, there is a well-defined Dirac operator

DA : Γ(S+
c ) → Γ(S−c ).
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Ricci flow and Seiberg-Witten equations

The Clifford multiplication on the spinor bundles S+
c and S−c gives an

identification of ∧∗T ∗M with End(S+
c ⊕ S−c ). In particular, self dual two

forms Λ2,+T ∗M are identified with traceless endomorphisms in
End(S+

c ,S+
c ).

The Seiberg-Witten equations read

DAφ = 0 (7)

F+
A = q(φ) (8)

where φ ∈ Γ(S+
c ) is a harmonic spinor, and q(φ) = φ̄⊗ φ− 1

2 |φ|
2Id is a

section of the endomorphism bundle End(S+
c ,S+

c ).

A solution (A, φ) of the Seiberg-Witten equation is called reducible if
φ ≡ 0. If there is a reducible solution, then the first Chern class c1(L) is
represented by an anti-self-dual harmonic form because of the equation
(8). This implies c2

1 (L) ≤ 0, with equality iff c1(L) is a torsion class.
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Ricci flow and Seiberg-Witten equations

The Seiberg-Witten invariant counts exactly the generic irreducible
solutions of the equations (7)(8) up to gauge equivalence.

By combining the Weitzenböck formula for the Dirac operator with the
curvature equation (8) it is well-known (cf. Morgan’s book page 77-79)
that

‖φ‖4 ≤ ‖R(g)‖2
L2

where R(g) is the scalar curvature.

On the other hand, by the second equation (8) it follows that
|F+

A | =
1

2
√

2 |φ|
2, and therefore,

‖F+
A ‖

2
L2 ≤

1

8
‖R(g)‖2

L2
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By combining the Weitzenböck formula for the Dirac operator with the
curvature equation (8) it is well-known (cf. Morgan’s book page 77-79)
that

‖φ‖4 ≤ ‖R(g)‖2
L2

where R(g) is the scalar curvature.

On the other hand, by the second equation (8) it follows that
|F+

A | =
1

2
√

2 |φ|
2, and therefore,

‖F+
A ‖

2
L2 ≤

1

8
‖R(g)‖2

L2

F. Fang, CNU Ricci flow on 4-manifolds and Seiberg-Witten equations 21/28



Ricci flow and Seiberg-Witten equations

Note that, by Chern-Weil theory

c2
1 (L) =

1

4π2
(‖F+

A ‖
2
L2 − ‖F−A ‖

2
L2)

Therefore,
‖R(g)‖2

L2 ≥ 32π2c2
1 (L)

Note that the formal dimension of the Seiberg-Witten moduli space
d = 1

4 (c2
1 (L)− (2χ(M) + 3τ(M)). If the Seiberg-Witten invariant of the

Spinc -structure is non-zero, then d ≥ 0. This together with the above
inequality implies that

‖R(g)‖2
L2 ≥ 32π2(2χ(M) + 3τ(M))
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Ricci flow and Seiberg-Witten equations

By the proof of the previous Theorem and the above discussion we get
immediately the following improved inequality

Theorem (Fang-Zhang-Zhang, 2006)
Let M be a closed oriented 4-manifold with nontrivial Seiberg-Witten
invariant so that σM ≤ 0. Let g(t), t ∈ [0,∞), be a solution to the
normalized Ricci flow. If the scalar curvature |R(g(t))| < C where C is a
constant independent of t, then

χ(M) ≥ 3τ(M)

where χ(M) (resp. τ(M)) denote the Euler characteristic (resp.
signature) of M.

The case of χ(M) = 3τ(M) is interesting, which is exactly at the
borderline of the Miyaoka-Yau inequality for Kähler surfaces of general
type. We will discuss shortly later.
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Ricci flow and Seiberg-Witten equations

By Cheeger-Gromov’s collapsing theory, a Riemannian manifold (M, g)
with bounded sectional curvature admits a thick-thin decomposition
M = Mε ∪Mε for small positive number ε, where

Mε = {x ∈ M : Vol(Bx(1)) ≥ ε}

Mε = {x ∈ M : Vol(Bx(1)) < ε}

For sufficiently small positive constant ε, the thin part Mε admits an
F-structure of positive rank, i.e., it admits locally fixed point free tori
actions. Note that 3-manifolds with F -structures are exactly graph
manifolds. By applying Cheeger-Gromov’s theory we have that
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Ricci flow and Seiberg-Witten equations

Theorem (Fang-Zhang-Zhang, 2006)
Let (M, g(t)), t ∈ [0,∞) be a non-singular solution to the normalized
Ricci flow on a closed oriented 4-manifold M with σM < 0. Then, for any
δ > 0, there is a time T � 1, and a compact 4-submanifold Mε with
boundary in M, Mε ⊂ M, such that

(i) Vol(M −Mε, g(T )) < δ, and M −Mε admits an F-structure of
positive rank.

(ii) The components of ∂Mε are graph 3-manifolds.

(iii) Mε admits an Einstein metric with negative scalar curvature g∞
which is close to g(T )|Mε in the C∞-sense.

The above theorem gives an analog of the Thurston’s geometrization
program for 4-manifolds, however, the Einstein manifold Mε is not
well-understood.
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Ricci flow and Seiberg-Witten equations

At the borderline χ(M) = 3τ(M), the following theorem implies that Mε

is a complex hyperbolic manifold of finite volume.

Theorem (Fang-Zhang-Zhang, 2006)
Let (M, g(t)) and (Mε, g∞) be the same as above. If M admits a
symplectic structure satisfying that b+

2 > 1 and χ(M) = 3τ(M), then g∞
is a complex hyperbolic metric of finite volume.

The main idea in the proof of the above theorem is as follows:

By Taubes, the Seiberg-Witten invariant of the standard Spinc -structure
induced by the almost complex structure of the symplectic manifold M is
±1. Therefore, there are irreducible solutions (At , φt) for the metrics
g(t). The strategy is to prove, using the identity χ(M) = 3τ(M), as
t →∞, F+

At
converges to a nonzero parallel self-dual form on (M∞, g∞).

Therefore, g∞ is a metric with special holonomy, indeed a Kähler
Einstein metric.
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Ricci flow and Seiberg-Witten equations

On the other hand, the anti-self dual part of the Weyl tensor
W−(g∞) = 0. Hence g∞ is a complex hyperbolic metric. This completes
the proof.

In the situation above, it is known that the boundary of Mε is an
infra-nil-manifold of dimension 3. It is not known whether the
decomposition is ”essential” or not, i.e., does the inclusion of the ∂Mε in
the thin part induce an injective homomorphism on the fundamental
group? In dimension 3, by Hamilton the torus is essential, which is
important for the Thurston’s geometrization conjecture.
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Thank you!
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