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Lattices and sphere packings
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Even unimodular lattices
Definition

» A lattice L in Euclidean n-space (R", (,)) is the Z-span of an
R-basis B = (by,...,b,) of R

L= <b1,...,bn>z = {Zazbl | a; € Z}
i=1

v

The dual lattice is
L#* .= {z cR" | (z,0) € Zforall{ € L}

L is called unimodular if L = L#.

Q : R" = Rx¢, Q(z) := (=, z) associated quadratic form
Lis called evenif Q(¢) € Zforall ¢ € L.

min(L) := min{Q(¢) | 0 # ¢ € L} minimum of L.
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The sphere packing density of an even unimodular lattice is
proportional to its minimum.



Dense lattice sphere packings
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Classical problem to find densest sphere packings:
Dimension 2: Lagrange (lattices), Fejes Téth (general)
Dimension 3: Kepler conjecture, proven by T.C. Hales (1998)
Dimension > 4: open

Densest lattice sphere packings:

Voronoi algorithm (~1900) all locally densest lattices.

Densest lattices known in dimension 1,2,3,4,5, Korkine-Zolotareff
(1872) 6,7,8 Blichfeldt (1935) and 24 Cohn, Kumar (2003).

Density of lattice measures error correcting quality.

The densest lattices.
ni| 1 2 3 4 5 6 7 8 | 24

LA [Ay | A3 | Dy [ D5 | Eg | E7 | Eg | Ay




Theta-series of lattices
Let (L, Q) be an even unimodular lattice of dimension n so a regular
positive definite integral quadratic form @ : L — Z.
» The theta series of L is

0= =1+ > ad*
LeL k=min(L)
where a, = |{£ € L | Q(¢) = k}|.
» 0, defines a holomorphic function on the upper half plane by
substituting ¢ := exp(2miz).
» Then ¢ is a modular form of weight % for the full modular group
SLo(Z).
» n is a multiple of 8.
> 0 € M%(SLQ(Z)) = (C[E47A]% where B4 := 9E8 =14+240q+ ...
is the normalized Eisenstein series of weight 4 and

A = q—24¢° + 252¢° — 1472¢* + ... of weight 12



Extremal modular forms
Basis of My (SL2(Z)):

Bt — 1+ 240kq+ *q>+
EE3A = g+ x>+
EF6A2 = *+
.Eig—?)mk AME — e qu+

where my, = |2 ] = | £].
Definition

This space contains a unique form
F® =140+ 0¢% + ...+ 0g™ + a(f*)g™+! + b(fF)g™ 2 + ..
f*) is called the extremal modular form of weight 4.

SO =14240q+ ... =0, fP =1+480¢+...=06%,
f®) =14196,560¢> + ... = 64,,,

f© =1+52,416,000¢° + ... = Op,,, = Op,, = Opy,.»
f =1+6,218,175,600¢* + ... = 6.



Extremal even unimodular lattices

Theorem (Siegel)
a(f®)) > 0 for all k

Corollary
Let L be an n-dimensional even unimodular lattice. Then

min(L) < 1+ L%J =1+ mys.

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices L< R"

n 8|16 | 24 32 40 48 | 72 | 80 | > 163,264
min(L) 1] 1 2 2 2 3 4 4
number of
extremal |1 2 [ 1 |>107 | >10% | >3 | >1 | >4 0
lattices
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Extremal even unimodular lattices

Theorem (Siegel)
a(f*)) > 0forall & and b(f*)) < 0 for large k (k > 20408).

Corollary
Let L be an n-dimensional even unimodular lattice. Then

min(L) < 1+ L%J =1+ mys.

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices L< R"

n 8|16 | 24 32 40 48 | 72 | 80 | > 163,264
min(L) 1] 1 2 2 2 3 4 4
number of
extremal |1 2 [ 1 |>107 | >10% | >3 | >1 | >4 0
lattices




Extremal even unimodular lattices in jump dimensions

B =14196,560¢ + ... =0,,,.
FO =1+452,416,000¢> + ... = Op,y, = Opyg, = Op,s,
f© =146,218,175,600¢* + ... = 6.

Let L be an extremal even unimodular lattice of
dimension 24m so min(L) = m + 1

>

All non-empty layers ) # {¢ € L | Q(¢) = a} form spherical
11-designs.

The density of the associated sphere packing realises a local
maximum of the density function on the space of all
24m-dimensional lattices.

If m =1, then L = Ay4 is unique, Aoy is the Leech lattice.

The 196560 minimal vectors of the Leech lattice form the unique
tight spherical 11-design and realise the maximal kissing number
in dimension 24.

Aoy is the densest 24-dimensional lattice (Cohn, Kumar).

For m = 2, 3 these lattices are the densest known lattices and
realise the maximal known kissing number.



Turyn’s construction A

» Let (L, Q) be an even unimodular lattice of dimension n.

» Choose sublattices M, N < L suchthat M + N =L,
M NN =2L,and (M, 1Q), (N, 1Q) even unimodular.

» Such a pair (M, N) is called a polarisation of L.
» For k € N let L(M,N) :=

{(m+a,m+bm+c)el®L|me M,a,b,c€ N,a+b+c¢€2L}.
» Define Q: L(M,N) — Z,
~ 1
Qy1,y2.y3) 1= 5(Qy1) + Qy2) + Q(ys))-

» (L(M,N),Q) is an even unimodular lattice of dimension 3.



Turyn’s construction for lattices

LLLLL minM
(m+a,m+b,m+c) in ¢ L(M,N) a,b,cinN
a+b+cin 2L
2L12L 121

d :=min(L, Q) = min(M, Q) = min(N, %Q)

12
Then [22] < min(£(M, N)) < 2d.

Proof:
(a,0,0) a =2¢ € 2L with %Q(%) =2Q¢) > 2d.
(abO)abENWIth2Q() Q(b) > 2d.

(0.5.¢) then (Q(a) + Q) + Q(e)) > 3.

Theorem (Lepowsky, Meurman; Elkies, Gross)

Let (L, Q) = Eg be the unique even unimodular lattice of dimension 8.

Then for any polarisation (M, N) of Eg the lattice £L(M, N) has
minimum > 2.



Turyn’s construction for lattices

LLLLL minM
(m+a,m+b,m+c) in tL(M,N) ab,cinN
a+b+cin 2L
2L12L 121

d := min(L, Q) = min(M, %Q) = min(N, Q)

2
Then [3¢] < min(£(M, N)) < 2d.

Theorem (Lepowsky, Meurman; Elkies, Gross)

Let (L, Q) = Eg be the unique even unimodular lattice of dimension 8.
Then for any polarisation (M, N) of Eg the lattice £(M, N) has
minimum > 2.

72-dimensional lattices from Leech (Griess)
If (L, Q) = (M, Q) = (N, 1Q) = Azq then 3 < min(£(M, N)) < 4.



The vectors v with Q(v) = 3
Assume that (L, Q) = (M, Q) = (N, 5Q) = Ay
» All 4095 non-zero classes of M /2L are represented by vectors m
with Q(m) = 4.
» Form e M let N,,, := {a € N | (a,m) € 2Z} and
N .= (N,,,m).
» (N0, 1Q) is even unimodular lattice with root system 244,

> Y= (ylay27y3) = (m+a7m+bam+c) € L(MaN) with Q(y) =3
then y; € N(™ are roots and m + y; + ya + y3 € 2L.

Enumerate short vectors in £L(M, N)

For all 4095 nonzero classes m + 2L € M /2L and all 242 pairs (y1,y2)
of roots in N(™ check if (2L, m + y; + y2) has minimum > 3.

Closer analysis reduces number of pairs (y1,y>) to 8 - 16.

4095 - 8- 16 = 524,160

May restrict to representatives of the S-orbits on M /2L = L/N,
where S := Staba ) (M, N).

E.g. 6 orbits for the extremal lattice so need to compute the minimum
of 6- 8- 16 = 768 lattices of dimension 24.



Stehlé, Watkins proof of extremality
Theorem (Stehlé, Watkins (2010))

Let L be an even unimodular lattice of dimension 72 with min(L) > 3.
Then L is extremal, if and only if it contains at least 6, 218, 175, 600
vectors v with Q(v) = 4.

Proof: L is an even unimodular lattice of minimum > 3, so its theta

series is
0 =1+as3q® +asq* +... = f(g) + asA3.
fO =1 + 6,218,175,600¢* +...
A3 = 7 —72¢* +...

S0 ay = 6,218, 175,600 — 72as > 6,218, 175,600 if and only if a3 = 0.

Remark

A similar proof works in all jump dimensions 24k (extremal minimum =
k + 1) for lattices of minimum > £.

For dimensions 24k + 8 and lattices of minimum > k one needs to
count vectors v with Q(v) = k + 2.



The history of Turyn’s construction.

1967 Turyn: Constructed the Golay code G54 from the Hamming code

hsg
78,82,84 Tits; Lepowsky, Meurman; Quebbemann:

Construction of the Leech lattice Ay, from Eg

1996 Gross, Elkies: A4 from Hermitian structure of Eg

1996 N.: Tried similar construction of extremal 72-dimensional lattices
(Bordeaux).

1998 Bachoc, N.: 2 extremal 80-dimensional lattices using
Quebbemann’s generalization and the Hermitian structure of Eg

2010 Griess: Reminds Lepowsky, Meurman construction of Leech.
proposes to construct 72-dimensional lattices from Aoy

2010 N.: Used one of the nine Zja = ”Tﬁ] structures of Ay to find
extremal 72-dimensional lattice I'7o = £(aAaq, @A24)

2011 Parker, N.: Check all other polarisations of A4 to show that I'75
is the unique extremal lattice of the form £(M, N)
Chance: 1 : 1016 to find extremely good polarisation.



How to find polarisations
L Z[a]

2L (ab)=(2)

Hermitian polarisations

a, B € End(L) such that (az,y) = (z, Sy) and af = 2.
M = alL, N := L.

a? —a+2 =0 (Z[a] = integers in Q[v/=T)).

(ax,y) = (x,By) where =1 —a =a.

» Then M := aL, N := L defines a polarisation of L such that
(L,Q) = (M, Q) = (N, 3Q).

vV vV v Vv



Hermitian structures of the Leech lattice

Theorem (M. Hentschel, 2009)

There are exactly nine Z[«a]-structures of the Leech lattice.

group S order #$S orbits

on M/2L
1 SL»(25) 2%3.5%13 6
2 2.4¢ x Dg 27375 12
3 SLy(13).2 213.7.13 9
4 (SLy(5) x A5).2 263252 8
5 (SLQ( ) X A5) 263252 8
6 soluble 2933 11
7| £PSLy(7) x (C7: C3) | 213272 9
8 PSLy(7) x 2.A7 27335 .72 3
9 2.J5.2 2933527 2




Hermitian polarisations yield tensor products

Remark
L(aL,BL) = L ®zo) Py where

Py = ((8,5,0),(0,8,8), (@, 2, ) < Z[a]?
with the half the standard Hermitian form
1 —
h: Py x Py = Zloa], h((ax, az, as), (b1, b, bs)) = 5 ;ab
Py is Hermitian unimodular and Autyz,)(P) = £ PSLy(7). So
Aut(L(aL, BL)) > Autge) (L) x PSLa(T7).

In particular Aut(I") > SL3(25) x PSLy(7).



Hermitian structures of the Leech lattice

group #{v € L(aL,BL) | Q(v) = 3}

1 SL,(25) 0

2 2A6 X Dg 2- 20, 160

3 SL,(13).2 2.52,416

4 (SLy(5) x Ag).2 2100, 800

5 (SLy(5) x A5).2 2100, 800

6 2933 2-177,408

7 | £PSLy(7) x (C7 : C3) 2- 306, 432

8 PSLy(7) x 2.A7 2 - 504,000

9

2.J5.2 2-1,209, 600




The extremal 72-dimensional lattice I

Main result

» I"is an extremal even unimodular lattice of dimension 72.
Aut(T") contains U := (PSLy(7) x SLy(25)) : 2.

U is an absolutely irreducible subgroup of GL75(Q).

All U-invariant lattices are similar to T".

Aut(T") is @ maximal finite subgroup of GL72(Q).

T"is an ideal lattice in the 91st cyclotomic number field.

I" realises the densest known sphere packing

and maximal known kissing number in dimension 72.

| 2
| 2
>
>
>
| 2
>
» Structure of ' can be used for decoding (Annika Meyer)

v

l'isa Z[”T‘/g}—lattice. This gives (n? + 5n + 5)-modular lattices of
minimum 8 + 4n (n € Np).



Ias Z[%

] lattice

Observation

The Hermitian Leech lattice L with Aut(L) = SL»(25) and hence also
I" has a structure over R := Z[H\f} so (I, Q) = (T, Tr(q)) with

q : T — R[] quadratic form.

For any totaIIy positive a € R we obtain N (a)-modular lattice

(T, Tr(ag)). Let p := 25 Then (T, pg) is unimodular R-lattice and
its theta series is a Hilbert modular form of weight 36 for the full
modular group.

0(T, pq) € C[A, B, C]

Theorem

Let (A, ¢) be a 36-dimensional R-lattice, such that (A, Tr(g)) is an
even unimodular lattice of minimum 4 and p := (5 + v/5)/2. For
n € Zso put L, := (A, Tr(p + n)q). Then L, is an even

(n? + 5n + 5)-modular lattice of minimum 8 + 4n.



How to obtain all polarisations A4

A rough estimate shows that there are about 10'° orbits of Aut(Asy)
on the set of polarisations (M, N) such that
(M, 3Q) = (N, 5Q) = Asa.

Theorem (Richard Parker, N.)

There is a unique orbit of Aut(Az24) = 2.Co; for which £(M, N) is
extremal.

Computation: Compute representatives for the 16 Aut(As4)-orbits on
{N | (N,1Q) = As}, and find all good complements M such that
L(M,N) is extremal.

N defines a set of bad vectors B(N) C Aay/2A24, so that £L(M, N)
extremal iff M N B(N) = .

The total computation took about 2 CPU years.



Bad vectors

L(M,N)={(a+m,b+m,c+m) |a,bjce NNme M,a+c+be2L}
Start with one of the 16 orbit representatives N. Then any nonzero
class 0 # f+ N € Ay /N contains exactly 24 pairs {£uvy, ..., +voy} oOf
minimal vectors in As4. The set

B(N,f) = {('Uz + v; + Uk) + 2Ao4 | 1< i,j,k‘ < 24} C A24/2A24
is called the set of bad vectors for N and f. Their union
BN):= |J BW.
0#f+N€EA24/N
is called the set of bad vectors for V.

Remark
The lattice £(M, N) is extremal if and only if M /2L N B(N) = 0.



Orbits on the rescaled Leech sublattices

stabilizer order orbit length
1 PSLy(25):2 213. 5213 2.7-10M
2 A7 x PSLy(7) 26335 . 72 9.8-10™2
3 Ss x PSLy(13) 23327.13 6.3-10™
4 3.4¢ x As 263152 3.2-1013
5 | PSLy(7) x PSLy(7) 263272 1.5-10™
6 As x soluble 215335 9.4-10™T
7 Go(4) x Ay 213152713 6.9 -10%
8 PSLy(23) 233.11-23 6.9-10™
9 soluble 2113 6.8-10™
10 soluble 21232 1.1-10™
11 soluble 283.7 7.7-10™
12 soluble 21132 2.3.10™
13 3.47.2 21335 . 7 2.7-10™
14 soluble 293.5 5.4-10M
15 soluble 283.7 7.7-10™
16 soluble 21433 9.3.1012




Doubly-even self-dual codes
Definition

» A linear binary code C of length n is a subspace C' < F%.
» The dual code of C'is

Ct:={zcFy|(z,c) Zwlcl—OforallceC}

i=1

C is called self-dual if C = C+.

The Hamming weight of a codeword ¢ € C'is

wt(c) == |{i | i # 0}-

C'is called doubly-even if wt(c) € 4Z for all ¢ € C.

The minimum distance d(C) := min{wt(c) | 0 # c € C'}.
The weight enumerator of C'is

Pe = Yoee YO € Clz, g,

v

v

v

v

v

The minimum distance measures the error correcting quality of a
self-dual code.



Self-dual codes

Remark

» The all-one vector 1 lies in the dual of every even code since
wt(c) =2 (¢, ¢) =2 (¢, 1).
» If C is self-dual then n = 2dim(C) is even and

1eCt=Cc1t={ceF}|wt(c) even}.

» Self-dual doubly-even codes correspond to totally isotropic
subspaces in the quadratic space 1+/(1).

» Annika Meyer, N. C = C* doubly-even =

Aut(C) := Stabg, (C) < A,,.

O O =
_— o O

hg:

(e}
o o= O

0

o O O

1

0
1
1

1

1
0
1

1

O =

1

—_ =

o

extended Hamming code,

the unique doubly-even self-dual code of length 8
s (7,y) = 2% + 1day* + 8 and Aut(hg) = 23 : GL3(2).



Extremal codes
The binary Golay code G4 is the unique doubly-even self-dual code
of length 24 with minimum distance > 8. Aut(G24) = Moy

Doy = 224+ 7592%9° 4+ 257622y + 7592%y"0 + >

Theorem (Gleason)
Let C = C+ < F% be doubly even. Then
>» ne8Z

> po € Clpng, pg,,] = Inv(Gro2)
> d(C) < 4+4[2]
Doubly-even self-dual codes achieving this bound are called extremal.

length 8 16 24 | 32| 48 | 72| 80 | > 3952

d(C) 1 1 8 [ 8] 12 [16] 16

extremal codes | hg | hs L hg,djs | Goa | 5 | QRas | 7 | >4




Extremal polynomials
Clphs: Pgas] = Cla® + 14ay* + 4%, 2*y* (2" — y*)*] = Inv(Gre2)

!
Basis of C[f(1,v), 9(1,v)]s !

fr= 14+ 14ky*+ =8+

k=34 — gl syt
fk7692 — y8+
'-fk—?)mkgmk — o y4mk+

where my, = [ 2] = | %].
Definition
This space contains a unique polynomial

pM =14+ 0y* +0y® + ..+ 0y + apy®™ T 4 by L

p*¥) is called the extremal polynomial of degree 8k.

PV = pig, p@ =p3, p® =pg,,, PO = poras

P9 =1 + 24984990 4 181067043%° + 462962955y>* +.. . .



Turyn’s construction of the Golay code
Construction of Golay code
Choose two copies C and D of hg such that
CNnD=(1),C+D=1+<TF}
924 = {(c+d1,c+d2,c+d3) | cc C’,dZ S D,dl +d2+d3 S <1>}
(@) 24 = Gaa-
(b) G24 is doubly-even.
(C) d(924) = 8.
Proof: (a) unique expression if ¢ represents classes in hg/(1), so
|924| :23.24'24.2:212
Suffices G214 C Ga4: ((c+dr, ¢ +da,c+ds), (¢ +di, ¢ +dby, ¢ + dfy)) =
3(c, ) +(c, d\+dy+ds)+(di+da+ds, ) +(dy, dy)+(d2, dy)+(d3, d) =0

(b) Follows since C' and D are doubly-even, so generators have
weight divisible by 4.



Turyn’s construction of the Golay code

Construction of Golay code.
Choose two copies C and D of hg such that

CNnD=(1),C+D=1+<TF}

Gog := {(c+d1,c+d2,c+d3) | cE C',Clz (S D,dl +dy +ds € <1>}
(C) d(924) =&.
Proof: (c)
wt(c+ di,c+do,c+d3) = wt(c+ dy) + wt(c+ d2) + wt(c + d3).
» 1 non-zero component: (d,0,0) with d € (1), weight 8.
» 2 non-zero components: (dy,ds,0) with dy,ds € D = hg,
weight > d(hg) + d(hg) =4+ 4 =8.
» 3 non-zero components: All have even weight, so weight
> 2+ 2+ 2 =06. By (b) the weight is a multiple of 4, so > 8.
Turyn applied to Golay will not yield an extremal code of length 72.
Such an extremal code has no automorphism of order 2 which has
fixed points.



Automorphisms of extremal codes

Theorem (Bouyuklieva; O’Brien, Willems; N. Feulner)
Let C < F7? be an extremal doubly even code,

G :=Aut(C) :={o € Sr2 | 0(C) = C}

Let p be a prime dividing |G|, o € G of order p.
p<T.

If p =2 or p = 3 then o has no fixed points.

If p=15or p="7then ¢ has 2 fixed points.

G has no element of odd order > 7.

G is solvable.

No subgroup C3 x C3, C7, D1, C1p.

No subgroup Cy x Cs, Cs, Qs.

Summarize: |G| =5 or |G| divides 24.

vV V.V VvV vV vV VvV VY

Existence of an extremal code of length 72 is still open.



