
Counting Certain Points of Bounded Height
in the Function Field Setting

Theorem (Northcott, 1949): Fix a degree d, a di-

mension n and a positive bound B. There are only

finitely many non-zero points (1, α1, · · · , αn−1) ∈ Qn

with [Q(αi) : Q] ≤ d for all i and with absolute height

H(1, α1, . . . , αn−1) ≤ B.

Note that if α is a root of unity, then H(1, α) = 1.

Thus all three parameters n, d andB must be bounded

to get such a result.

Question: Can we estimate the number of such points

in Northcott’s Theorem?



For any field k and a point P = (α1 : · · · : αn) in pro-

jective space over some algebraic closure, let k(P ) de-

note the field obtained by adjoining to k all possible

quotients αi/αj .

Notation: For a number field k, degree d ≥ 1, n ≥

2 and positive bound B, let Nk(n, d,B) denote the

number of points P ∈ Pn−1(Q) with [k(P ) : k] = d

and H(P ) ≤ B.

Question: What can we say about Nk(n, d,B)?



Quote (Weil 1967): Once the presence of the real field,

albeit at infinite distance, ceases to be regarded as

a necessary ingredient in the arithmetician’s brew, it

goes without saying that the function-fields over finite

fields must be granted a fully simultaneous treatment

with number-fields, instead of the segregated status,

and at best separate but equal facilities, which hitherto

have been their lot.

Question: What can we say about the function field

analogs of Nk(n, d,B)?



For each place v of Q (v is either ∞ or a prime) we

have a corresponding absolute value:

| · |∞ = the usual absolute value

| · |p = the usual p-adic absolute value

Set

‖x‖v = max
1≤i≤n

{|xi|v}

for x = (x1, . . . , xn) ∈ Qn.

Product Formula: For all non-zero x ∈ Q we have

∏
v

|x|v = 1.

Definition: For a non-zero x ∈ Qn, the (absolute)

height of x is

H(x) =
∏
v

‖x‖v.



Note that, thanks to the Product Formula, this is ac-

tually a function on projective space Pn−1(Q).

If P ∈ Pn−1(Q), then P has exactly two representative

points of the form (z1, . . . , zn) ∈ Zn where the greatest

common divisor of the zi’s is 1.

Thus, NQ(n, 1, B) is one-half the number of “primi-

tive” lattice points z ∈ Zn in the cube

C(n,B) = {x ∈ Rn : |xi| ≤ B}.

How can one count the number of such lattice points?



For a fixed positive integer a, let us writeN(n, a,B) for

the number of lattice points z ∈ Zn∩C(n,B) satisfying

a|zi for all i = 1, . . . , n.

Then we have the elementary estimate

N(n, a,B) =
2nBn

an
+O

(
(B/a)n−1

)
.

By Möbius inversion,

2NQ(n, 1, B) =
∑
a≥1

µ(a)
(
N(n, a,B)− 1

)
=

2n

ζ(n)
Bn +O(Bn−1)∗.



Suppose k is a number field. Each absolute value | · |v

on Q extends in a well-known way to absolute values

| · |w on k; we write w|v in this situation.

Done in the usual way, we have∏
w|v

|x|w = |x|[k : Q]
v

for all x ∈ Q.

Generalized Product Formula:∏
w

|x|w = 1 all x ∈ k×.

As before, we get a height on kn:

Hk(x1, . . . , xn) =
∏
w

max
1≤i≤n

{|xi|w}

and an absolute height

H(x1, . . . , xn) = H
1/[k : Q]
k (x1, . . . , xn).



As with our original height on Pn−1(Q), the functions

Hk and H are actually functions on projective space

Pn−1(k) thanks to the Generalized Product Formula.

Moreover, H is “absolute” in the following sense.

Suppose x = (x1, . . . , xn) ∈ Qn (non-zero). Then

x ∈ kn where k = Q(x1, . . . , xn). Whence our height

H(x) = H
1/[k : Q]
k (x).

But of course if K is any number field containing k, we

have x ∈ Kn, and thanks to our normalizations above

HK(x) = Hk(x)[K : k].

So

H(x) = H
1/[K : Q]
K (x) = H

1/[k : Q]
k (x).



Theorem (Schanuel, 1979): For any number field k

we have

Nk(n, 1, B) = Sk(n, 1)Bne +O(Bne−1)∗,

where e = [k : Q] and Sk(n, 1) is the Schanuel Con-

stant.

How is this obtained? You generalize the simple lattice-

point argument above, use Möbius inversion on inte-

gral ideals, and incorporate methods from the proof of

the Dedekind-Weber Theorem to deal with the units.



Note that the number of points P counted in Schanuel’s

theorem with Q(P ) strictly contained in k is a smaller

order of magnitude.

Idea: Is it possible to sum over all degree d extensions

to estimate Nk(n, d,B):

Nk(n, d,B) ∼
∑

[K : k]=d

SK(n, 1)Bned?

Short answer: no!



If p(X) ∈ k[X] is a defining polynomial for α of degree

d over k, then Hd(1, α) is close to the height of the

coefficient vector of p(X), which one may view as a

point in Pd(k). Thus, one expects that

Nk(2, d, B)�� B(d+1)de,

where e = [k : Q] again.

Theorem (Masser & Vaaler, 2009): For any number

field k and any degree d > 1 we have

Nk(2, d, B) = Sk(2, d)B(d+1)de +O(B(d+1)de−d logB),

where Sk(2, d) is the Masser-Vaaler Constantr.



However, we do have

Nk(n, d,B) ∼ Sk(n, d)Bned

with

Sk(n, d) =
∑

[K : k]=d

SK(n, 1)

in the following cases.

(Schmidt, 1995): k = Q, d = 2, n ≥ 4

(Gao, unpublished thesis): k = Q, d ≥ 3, n ≥ d+ 2

(Widmer, 2009): [k : Q] = e > 1, n > 5d/2+3+2/(ed)

Now Andre Weil wants to know about function fields!



Fix a prime p, let Fp be the field with p elements and

let T be transcendental over Fp. The places of Fp(T )

correspond to the irreducible polynomials P (T ) ∈ Fp[T ]

and the degree function. We have absolute values

|z|P (T ) = exp
(
− ordP (T )(z)

)
|z|deg = exp

(
deg(z))

)
for z ∈ Fp[T ].

To simplify things, just call the negative of the degree

of z the “order” at that place (the place corresponding

to the degree). We then have an order function for ev-

ery place v, and these are extended to order functions

on the entire field of rational functions Fp(T ) in the

obvious manner:

ordv(z/y) = ordv(z)− ordv(y), z, y ∈ Fp[T ].



Observation (Analog to the Product Formula for Q):

For all non-zero x ∈ Fp(T ) we have

∑
v

ordv(x) deg(v) = 0,

where the degree of a place is the degree of the cor-

responding irreducible polynomial, or 1 in the case of

the place corresponding to the degree function.

Definition: For a non-zero x ∈ Fp(T )n, the (absolute

logarithmic) height of x is

h(x) = −
∑
v

ordv(x) deg(v).



As before, the (analog to the) Product Formula shows

that this is a function on projective space Pn−1(Fp(T )).

One may exponentiate to get a true analog of the ab-

solute height on Qn; the traditional choice is to use

the prime p for the base:

H(x) = ph(x).

Actually, one isn’t really using the prime p for the base

here so much as the cardinality of the field Fp. Why is

that? Because ...

What about finite algebraic extensions of Fp(T ), i.e.,

function fields?



This is somewhat more complicated than the case for

number fields, since it’s possible to algebraically ex-

tend the field Fp.

Fix an algebraic closure Fp. Then if k is a finite alge-

braic extension of Fp(T ), we have

k ∩ Fp = Fqk .

This field is called the field of constants of k.

Definition: The effective degree of the extension k is

[k : Fp(T )]

[Fqk : Fp]
.



Suppose k is a function field. Then every order func-

tion on Fp(T ) extends in a well-known way to order

functions on k, which one may normalize to have im-

age Z ∪ {∞}. Moreover, the degree of the places may

be extended as well so that the following holds.

Generalized Observation:

∑
v

ordv(x) deg(v) = 0, all x ∈ k×.

This is the well-known statment that the degree of a

principal divisor is zero, and it is the analog to our

Generalized Product Formula for number fields.



A divisor is simply an element of the free abelian group

generated by the places:

A =
∑
v

av · v, av ∈ Z and av = 0 a.e.

and the degree of such a divisor is

deg(A) =
∑
v

av deg(v).

Analogous to our supremum norms before, we set

ordv(x1, . . . , xn) = min
1≤i≤n

{ordv(xi)}

for any x ∈ kn.

To each non-zero x ∈ kn we thus get a divisor

div(x) =
∑
v

ordv(x) · v.



Analogous to what we had before, we have a height on

kn:

hk(x) = −deg
(
div(x)

)
.

Again, thanks to our analog to the Generalized Prod-

uct Formula, this is a function on projective space

Pn−1(k).

The absolute height is given by

h(x) =
1

e
hk(x),

where e is the effective degree of k over Fp(T ).



Thanks to our normalizations, if K is any function

field containing k, we get

h(x) =
1

e′
hK(x) =

1

e
hk(x),

where e′ is the effective degree of K over Fp(T ).

As before, this justifies our use of the term “absolute”

since h is genuinely a function on projective space over

an algebraic closure of Fp(T ).

If one desires a direct analog of the absolute height on

Q, just exponentiate:

H(x) = ph(x).



Suppose k is a function field with field of constants Fq

and set e = [k : Fq(T )], the effective degree of k over

Fp(T ). If K is an extension field of degree d with the

same field of constants, then the effective degree of K

over Fp(T ) is ed. Thus, the height of any point P with

k(P ) = K is necessarily of the form m/(ed) for some

non-negative integer m.

Definition: Let k be as above. For integers d, n and

m we let Nk(n, d,m) denote the number of points P

in projective n − 1-space with height h(P ) = m/(ed)

and such that k(P ) = K for some function field K of

degree d over k with the same field of constants.



Theorem (Thunder & Widmer, 2011): Fix a function

field k as above. Then for all integers n ≥ 2d+ 4 and

m ≥ 0 we have

Nk(n, d,m) ∼ Sk(n, d)qmn,

where Sk(n, d) is the “Schanuel Constant:”

Sk(n, d) =
∑

[K : k]=d

SK(n, 1)

(sum only over those K with field of constants Fq).

Theorem (Kettlestrings, 2011): In the theorem above,

when d = 2 one may take n ≥ 4 (at least when p 6= 2).



Whither Schanuel’s Theorem?

Our lattice point estimate above is directly analogous

to counting the number of x in

L(A, n) = {x ∈ kn : ordv(x) ≥ −ordv(A)}

for a fixed divisor A.

We note that L(A, n) is actually a finite-dimensional

vector space over Fq (the field of constants of k). De-

note its dimension by l(A, n). Then ql(n,A) is a direct

analog of our lattice-point counting functionN(n, a,B).

Whereas one uses geometry of numbers to get esti-

mates for N(n, a,B), in this situation we have much

stronger estimates.



Theorem (Riemann-Roch): With the notation above,

there is a non-negative integer g (called the genus of

k) and a class of divisors W such that

l(A, n) = nl(A, 1) = n
(

deg(A) + 1− g + l(W− A, 1)
)

for all divisors A. Moreover, we have

l(A, 1) = deg(A) + 1− g

whenever deg(A) ≥ 2g − 1 and l(A, 1) = 0 whenever

deg(A) < 0.

Theorem (Clifford): In the Riemann-Roch Theorem,

if 0 ≤ deg(A) < 2g − 1, we have

l(A, 1) ≤ 1 +
1

2
deg(A).



Recall how before we had

2NQ(n, 1, B) =
∑
a≥1

µ(a)
(
N(n, a,B)− 1

)
.

Now we have

(q − 1)NFq(T )(n, 1,m) =
∑
A≥0

µ(A)
(
ql(A0−A,n) − 1

)
,

where A0 is any divisor of degree m.

Thanks to the Riemann-Roch Theorem

(q−1)NFq(T )(n, 1,m) =
m∑
i=0

∑
A≥0

deg(A)=i

µ(A)
(
qn(m−i+1)−1

)
.



But our field of rational functions Fq(T ) not only has

genus 0, but an exceedingly simple zeta function, so

that

∑
A≥0

deg(A)=i

µ(A) =


1 if i = 0,

−(q + 1) if i = 1,

q if i = 2,

0 if i > 2.

We actually get a closed form expression:

(q − 1)NFq(T )(n, 1,m) = qn(m+1) − 1

− (q + 1)(qnm − 1)

+ q(qm−1 − 1)!

(That’s not a factorial!)



The exact same argument (well, you need to sum over

divisor classes, too) works for an arbitrary function

field. It isn’t quite as simple, but it’s still much cleaner

than the case for Q, even, since we have∣∣∣∣∣∣∣∣
∑
A≥0

deg(A)=i

µ(A)

∣∣∣∣∣∣∣∣� qi(1+ε)/2

for any ε > 0.

(Did I mention that the “Riemann Hypothesis” here

isn’t a “hypothesis?”)

In the end, you get . . .



Theorem (Serre, Di-Pippo, Wan): Let k be a function

field with field of constants Fq. Then

Nk(n, 1,m) = Sk(n, 1)qmn +O(qm(1+ε)/2),

where the “Schanuel Constant” Sk(n, 1) is given by

Sk(n, 1) =
J

(q − 1)ζk(n)qn(g−1)
.

Here J is the number of divisor classes of degree 0 (i.e.,

the “class number”), g is the genus and ζ is the zeta

function for k.

But this doesn’t really help us, though.



Why n ≥ 2d+ 4?

When summing over all extensions K of k, one must

be careful with the error term in the Schanuel theorem!

Theorem (Thunder & Widmer, 2011): With k as

above,

Nk(n, 1,m) = Sk(n, 1)qmn +O
(
qm(1+ε)qg(n−2−2ε)

)
when m ≥ 2g − 1 and n ≥ 4. When m < 2g − 1 and

n ≥ 2 we have

Nk(n, 1,m)� qm(ε+(n+1)/2).

The implicit constants above depend only on n, q, ε

and the effective degree of k over Fp(T ).



This error term is not so bad, except when the genus

of k approaches (and exceeds) the bound m. Here one

is resorting to Clifford’s Theorem instead of Riemann-

Roch.

In Kettlestrings’ thesis, he gives a more accurate es-

timate for l(A, n) when one assumes there is an x ∈

L(A, n) generatingK over k, assumingK is a quadratic

extension.

In fact, this is precisely what we want since we sum

over all extensions K of degree d the number of P ∈

Pn−1(K) with k(P ) = K and h(P ) = m/(ed).



What is the “Truth?”

The analog of Masser-Vaaler is much simpler here.

Since there are no archimedean places, we have dh(1, α)

is exactly equal to the height of a defining polynomial.

One readily sees that

dNk(2, d,m) ∼ Nk(d+ 1, 1,m) ∼ Sk(d+ 1, 1)q(d+1)m.

Clearly Nk(n, d,m) > Nk(2, d,m) whenever n > 2.

Thus, an asymptotic estimate of the kind noted before

is only possible when n > d. Moreover, another result

of Schmidt indicates it is likely the case that this is

possible only when n ≥ d+ 2.



Perhaps with more work and/or more graduate stu-

dents, the gap between n = d+ 2 and n = 2d+ 3 can

be filled in general, so that we would have

Nk(n, d,m) ∼ qmn
∑

[K : k]=d

SK(n, 1)

whenever n ≥ d+ 2.

That leaves us with the cases n = 3, . . . , d+ 1.


