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Notations

Let

k = a totally real algebraic number field of degree r,

∞ = the set of archimedian places of k,

kσ = the completion of k at σ ∈ ∞,

kR = k ⊗Q R =
∏

σ∈∞ kσ ∼= Rr,

For x = (xσ)σ∈∞ ∈ kR, the trace of x is defined by

TrkR(x) =
∑
σ

xσ .



Humbert forms

Let

Mn(kR) = the space of all n × n matrices with entries in kR,

GLn(kR) = the unit group of Mn(kR) =
∏

σ∈∞ GLn(kσ) ,

Hn = {a ∈ Mn(kR) : ta = a} ∼= Symn(R)⊕r,

Pn = {tgg : g ∈ GLn(kR)} ⊂ Hn(kR),

An element of Pn is called an Humbert form and denoted by

a = (aσ)σ∈∞. Each component aσ is a positive definite real

symmetric matrix.



Purpose

Let o be the ring of integers of k.

We fix a projective o-module Λ ⊂ kn of rank n.

Λ is viewed as a lattice in knR by a natural inclusion kn ↪→ knR.

The discrete subgroup

GL(Λ) = {γ ∈ GLn(kR) : γΛ = Λ}

acts on Pn by

(a, γ) 7→ a · γ = tγaγ .

Our purpose is to construct a polyhedral fundamental domain of

Pn/GL(Λ).



Brief history

Voronöı (1908) gave a polyhedral reduction of GLn over Q,

i.e., of GLn(R)/GLn(Z).

Köcher (1960) extended Voronöı’s reduction theory to

self-dual homogeneous cones. In particular, Köecher’s theory

covers a polyhedral reduction of GLn(kR)/GLn(o), i.e., the

case of Λ = on.

Theory of perfect forms plays an important role in polyhedral

reduction. Ong (1986), Leibak (2005), Gunnells and Yasaki

(2010) studied perfect forms over k.



Minimum function and minimal vectors

The minimum function m = mΛ : Pn −→ R≥0 is defined by

m(a) = min
0̸=x∈Λ

(a, xtx) ,

where

(a, xtx) = TrkR(tr(a · xtx)) = TrkR(
txax) .

For a ∈ Pn, put

S(a) = SΛ(a) = {x ∈ Λ : (a, xtx) = m(a)} .

S(a) is a finite subset.



Λ-perfection

.
Definition 1
..

......

a ∈ Pn is said to be Λ-perfect if {xtx : x ∈ S(a)} spans Hn

as an R-vector space. Namely

dimSpan{xtx : x ∈ S(a)} = r ·
n(n + 1)

2



Ryshkov polyhedron

The domain

K1 = K1(m) = {a ∈ Pn : m(a) ≥ 1} .

is a closed convex subset in Pn.

For a non-empty finite subset S ⊂ Λ \ {0}, we put

FS = {a ∈ ∂K1 : S ⊂ S(a)} .

.
Proposition 1
..

......

K1 is a locally finite polyhedron, i.e., the intersection of K1 and

any polytope is a polytope. FS gives a face of K1 if FS ̸= ∅.
Conversely, any face of K1 is of the form FS for some S.
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Geometric properties of Λ-perfect forms

Let ∂0K1 be the set of all vertices of K1.

.
Theorem 2 (Hayashi–W–Yano–Okuda for general k)
..

......

1. a ∈ ∂0K1 iff a is Λ-perfect with m(a) = 1.

2. If a ∈ ∂0K1, then a ∈ GLn(k).

3. ∂0K1/GL(Λ) is a finite set.

4. For a, b ∈ ∂0K1, there exists a finite sequence of vertices

a0, · · · , at ∈ ∂0K1 such that a0 = a, at = b and ai+1 is

adjacent to ai for i = 0, · · · , t − 1, i.e.,

aiai+1 = {λai + (1 − λ)ai+1 : 0 ≤ λ ≤ 1}

is a 1-dimensional face of ∂K1.
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Example

The case of k = Q(
√
5), n = 1 and Λ = o.

In this case, P1 = R2
>0 ⊃ K1 is given by
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, ♯(∂0K1/GL(Λ)) = 1



Rational closure of Pn

Let P−
n be the closure of Pn in Hn.

For a ∈ P−
n , the radical of a is defined by

rad(a) = {x ∈ knR : (a, xtx) = 0} .

Let

Ωk = {a ∈ P−
n : (rad(a) ∩ kn) ⊗Q R = rad(a)}.

We have Pn ⫋ Ωk ⫋ P−
n .

.
Proposition 2
..

......

Ωk =

{∑
i

λi(xi
txi) : λi ∈ R≥0, xi ∈ kn

}
.
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Subdivision of Ωk by perfect cones

For a ∈ ∂0K1, put

Da = the closed cone generated by {xtx : x ∈ S(a)} .

If a ̸= b, then Da ∩ Int(Db) = ∅.

.
Proposition 3
..

......

For any a ∈ Ωk \ {0}, there exists b0 ∈ ∂0K1 such that

inf
b∈K1

(a, b) = (a, b0) ,

and then a ∈ Db0 .

Therefore, we have

Ωk =
∪

b∈∂0K1

Db .
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Polyhedral reduction of Ωk/GL(Λ)

Ωk is stable by the action of GL(Λ).

Let {b1, · · · , bt} be a set of representatives of ∂0K1/GL(Λ).

For each i, Γi denotes the stabilizer of bi in GL(Λ), i.e.,

Γi = {γ ∈ GL(Λ) : bi · γ = bi} ,

which is a finite subgroup and stabilizes Dbi .

.
Theorem 3
..

......

Ωk/GL(Λ) =

t∪
i=1

Dbi/Γi .
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The case of n = 1

If n = 1 and Λ = o, then

Ωk \{0} = k+R := {(ασ)σ∈∞ ∈ kR : ασ > 0 for all σ ∈ ∞}

and GL(Λ) = Ek the unit group of o. The action of Ek on k+R is

given by x · u = u2x for (x, u) ∈ k+R × Ek.

Let {b1, · · · , bt} be a set of representatives of ∂0K1/Ek. Since

Γi = {±1} trivially acts on Dbi , we have

k+R/Ek = E2
k\k

+
R =

t∪
i=1

D∗
bi
, where D∗

bi
= Dbi \ {0} .

Namely, a fundamental domain of E2
k\k

+
R decomposes into a

union of perfect cones. This result is viewed as a refeinment of

Shintani’s unit theorem for E2
k .



Example: the case of k = Q(
√
d), n = 1 and Λ = o

Let

d ≥ 2 be a square free positive integer,

k = Q(
√
d) a real quadratic field,

τ = the Galois involution of k/Q,

ω =
√
d if d ≡ 2, 3 mod 4 or (1 +

√
d)/2 if d ≡ 1 mod 4,

ϵ = a fundamental unit with ϵ2 < 1.

In the case of n = 1 and Λ = o = Z[ω], the Ryshkov polyhedron

K1 is a convex domain in k+R = R2
>0 with infinite vertices.

For a ∈ ∂0K1, the equivalent class of a is given by

{ϵ2na : n ∈ Z}.



Example: the case of k = Q(
√
d), n = 1 and Λ = o

It is easy to check

K1 is invariant by τ , i.e., K1 is symmetric with respect to

the diagonal line ℓ = R>0(1, 1).

If a ∈ ∂0K1, then a ∈ k+R ∩ k and τ (a) ∈ ∂0K1.

There is no o-perfect form on ℓ.
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Example: the case of k = Q(
√
d), n = 1 and Λ = o

Let tk = ♯(E2
k\∂0K1) be the class number of o-perfect unary

forms.

When d < 10000, there exist 154 d such that tk = 1, for

example, d = 2, 3, 5, 10, 13, 15, 21, 26, 29, 35, 53, 77, 82, 85,

122, 143, 165, 170, 173, 195, 221, 226, 229, 255, 285, 290, 293,

323, 357, 362, 365, 399, 437, 443, 445, 483, 530, 533, 626, 629,

730, 733, 842, 899, 957, 962, 965, ...

Recently, Dan Yasaki proved the following theorem.
.
Theorem 4 (Yasaki)
..
......There exists infinitely many quadratic fields k such that tk = 1.
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Example of k with tk = 3

k = Q(
√
17). In this case, tk = 3.
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