Go With The Flow

A New Manifold Modeling and Learning Framework for Image Ensembles

Richard G. Baraniuk Rice University

Go With The Flow

A New Manifold Modeling and Learning Framework for Image Ensembles

Richard G. Baraniuk Rice University

Aswin Sankaranarayanan

Chinmay Hegde

Sriram Nagraj

Digital Sensing Revolution

Pressure is on Digital Sensors

• Success of digital data acquisition is placing increasing pressure on signal/image processing hardware and software to support

higher resolution / denser sampling

» ADCs, cameras, imaging systems, microarrays, ...

X

large numbers of sensors

» image data bases, camera arrays, distributed wireless sensor networks, ...

x increasing numbers of modalities

» acoustic, RF, visual, IR, UV

= deluge of sensor data

> how to efficiently fuse,
process, communicate?

Sensor Data Deluge

Sensor Data Deluge

Sensor Data Deluge

- Efficient processing / compression requires concise representation
- **Sparsity** of an individual image

 $K \ll N$ large wavelet coefficients

(blue = 0)

- Efficient processing / compression requires concise representation
- Our interest in this talk: **Collections** of images

- Efficient processing / compression requires concise representation
- Our interest in this talk:

translations of an object
 θ: x-offset and y-offset

Collections of images parameterized by $\theta\in\Theta$

- Efficient processing / compression requires concise representation
- Our interest in this talk:
 - translations of an object
 θ: x-offset and y-offset
 - wedgelets

 $\boldsymbol{\theta} \text{:}$ orientation and offset

Collections of images parameterized by $\theta\in\Theta$

- Our interest in this talk:
 - translations of an object
 θ: x-offset and y-offset
 - wedgeletsθ: orientation and offset
 - rotations of a 3D object

θ: pitch, roll, yaw

Collections of images parameterized by $\theta\in\Theta$

- Our interest in this talk:
 - translations of an object
 θ: x-offset and y-offset
 - wedgeletsθ: orientation and offset
 - rotations of a 3D object
 θ: pitch, roll, yaw

Collections of images parameterized by $\theta\in\Theta$

 $\mathcal{M} = \{I_{\theta} : \theta \in \Theta\}$

• Image articulation *manifold*

- In practice: N-pixel images: $I \in \mathbf{R}^N$
- In theory: $I \in L^2([0,1] \times [0,1])$

- *K*-dimensional articulation space
- Then $\mathcal{M} = \{I_{\theta} : \theta \in \Theta\}$ is a *K*-dimensional manifold in the ambient space
- Concise model when *K*<<*N*

Smooth IAMs

- In practice: *N*-pixel images: $I \in \mathbf{R}^N$
- In theory: $I \in L^2([0,1] \times [0,1])$
- If the images are smooth then so is $\ensuremath{\mathcal{M}}$
- Isometry: locally, image distance ∝ parameter space distance
- Locally linear tangent spaces are close approximation

• K=1 rotation

• K=2

rotation and scale

- IAM viewpoint unifying for a large number of image inference problems
 - detection, classification, estimation, interpolation, ...

involving

- imaging nuisance parameters
- multiple sensors/viewpoints
- Example: target classification with unknown imaging parameters

Classification Geometry

- Classification with *K* unknown articulation parameters
- Images are points in \mathbf{R}^N
- White Gaussian noise
- Classify by finding closest target template to data for each class
 - distance or inner product
- "Matched filter"

Classification Geometry

- Classification with K unknown articulation parameters
- Images are points in \mathbf{R}^N
- Classify by finding closest target template to data
- As template articulation parameter changes, points map out a K-dim nonlinear manifold
- Matched filter classification
 = closest manifold search

Synthesis / Interpolation

 Can sample points along manifold to interpolate or synthesize images

Manifold Learning

- Exploit fact that locally image distance
 <u>arameter space distance</u> to learn parameter space given a collection of images
- Numerous algorithms: ISOMAP, LLE, LE, HE, ...

Theory/Practice Disconnect

- Practical image manifolds are not smooth!
- If images have sharp edges, then manifold is everywhere non-differentiable

[Donoho Grimes,2003]

articulation parameter space Θ

Theory/Practice Disconnect – 1

- Lack of isometry
- Local image distance on manifold should be proportional to articulation distance in parameter space
- But true only in toy examples
- Result: poor performance in classification, estimation, tracking, learning, ...

articulation parameter space Θ

Theory/Practice Disconnect – 2

• Lack of local linearity

- Local image neighborhoods assumed to form a linear tangent subspace on manifold
- But true only for extremely small neighborhoods
- Result: cross-fading when synthesizing images that should lie on manifold

Insight: Leverage Progress in CV

- Computer vision (CV) community has developed powerful tools for image registration
 - optical flow for computing dense correspondences between images
 - huge progress
 over last 5 years

Optical Flow

Brightness constancy: Given two images I₁ and I₂, we seek a displacement vector field
 f(x, y) = [u(x, y), v(x, y)] such that

$$I_2(x, y) = I_1(x + u(x, y), y + v(x, y))$$

Linearized brightness constancy

$$I_{2}(x, y) = I_{1}(x, y) + (\nabla_{X}I_{1})u(x, y) + (\nabla_{Y}I_{1})v(x, y)$$

Optical Flow History

$$I_2(x, y) = I_1(x + u(x, y), y + v(x, y))$$

$$I_{2}(x, y) = I_{1}(x, y) + (\nabla_{X}I_{1})u(x, y) + (\nabla_{Y}I_{1})v(x, y)$$

- Dark ages (<1985)
 - special cases of LBC by solving an under-determined set of linear equations
- Horn and Schunk (1985)
 - LBC solved via smoothness prior on the flow
- Brox et al (2005)
 - shows that linearization of brightness constancy a horrible assumption
 - develops optimization framework to handle BC directly
- Brox et al (2010), Black et al (2010), Liu et al (2010)
 - practical systems with reliable code

Optical Flow

$$I_{2}(x, y) = I_{1}(x + u(x, y), y + v(x, y))$$

$$I_{2}(x, y) = I_{1}(x, y) + (\nabla_{X}I_{1})u(x, y) + (\nabla_{Y}I_{1})v(x, y)$$

(Figures from Ce Liu's optical flow page and ASIFT results page)

- Consider a reference image I_{θ_0} and a K-dimensional articulation
- Linear tangent space at I_{θ_0} is *K*-dimensional
- Tangent space provides a mechanism to propagate along manifold
- Problem: Since manifold is non-differentiable, tangent approximation is poor

Optical Flow Manifold

- Consider a reference image I_{θ_0} and a K-dimensional articulation
- Collect optical flows from I_{θ_0} to all images reachable by a *K*-dimensional articulation
- Provides a mechanism to propagate along manifold
- Theorem: Collection of OFs is a smooth, K-dimensional manifold (even if IAM is not smooth) [N,S,H,B,2010]

OFMs as Nonlinear Tangent Spaces

Image Synthesis

Value in Euclidean reference

41.27

Training Images

Value in Euclidean reference

-21.55

Manifold Learning via ISOMAP

2D rotations

ISOMAP embedding error for **IAM**

Manifold Learning via ISOMAP

2D rotations

ISOMAP embedding error for **OFM**

Manifold Learning via ISOMAP

2D rotations

Embedding of **OFM**

Manifold Charting

• **Goal:** build a **generative model** for an entire IAM/OFM based on a small number of base images

• Algorithm:

- choose a reference image randomly
- find all images that can be generated from this image by OF
- compute Karcher (geodesic) mean of these images
- repeat on the remaining images until no images remain
- **Exact representation** when no occlusions

Manifold Charting

- **Goal:** build a **generative model** for an entire IAM/OFM based on a small number of base images
- Ex: cube rotating about axis
- All images of the cube can be representing using 4 reference images + their respective OFMs

Manifold Charting for Classification

- Optimal selection of target templates for classification
- Dramatically reduced number of target templates (compression)
- Optimal "next-view" selection for adaptive sensing applications

Summary

- Image articulation manifolds (IAMs) are a useful unifying construct for many image processing problems involving image collections and multiple sensors/viewpoints
- But practical IAMs are non-differentiable
 - IAM-based algorithms have not lived up to their promise
- Optical flow manifolds (OFMs)
 - Smooth even when IAM is not
 - OFM ~ nonlinear tangent space
 - Support accurate image synthesis, learning, charting, ...

Not in Today's Talk

- Log and Exp maps between "image space" and "parameter space" become simple to calculate because OF varies so smoothly from image to image
- Enables simple and explicit strategies for
 - geodesic computation
 - Karcher means and
 - variances (for statistical models on manifolds)
 - geometric clustering, dendrograms (data organization)
 - image synthesis ...

Not in Today's Talk

- For a large class of articulations, the resulting OFM is a Lie group
 - affine transformation (translations, videos from aircraft)
 - perspective transformation (scene at infinity, planar scenes)
 - diffeomorphisms (unstructured deformations)
- Lie groups have additional structure!
 - Analytic generators when the Lie group has an associated Lie Algebra
 - Ex: Affine groups [Olhausen et al, 2009]

Open Questions

- Our approach was specific to **image manifolds**
- Do there exist mollifying "nonlinear tangent spaces" for other kinds of non-smooth data manifolds?

Open Questions

• Theorem:

$M = O(K \log N)$ random measurements stably embed a *K*-dim manifold

whp [B, Wakin, FOCM '08]

• Q: Is there an analogous result for OFMs?

dsp.rice.edu

