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Digital Sensing Revolution




Pressure is on Digital Sensors

e Success of digital data acquisition is placing increasing pressure
on signal/image processing hardware and software to support

higher resolution / denser sampling
» ADCs, cameras, imaging systems, microarrays, ...

X

large numbers of sensors

» image data bases, camera arrays,
distributed wireless sensor networks, ...

X increasing numbers of modalities
» acoustic, RF, visual, IR, UV

= deluge of sensor data
» how to efficiently fuse,
process, communicate?
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Concise Models

e Efficient processing / compression requires
concise representation

e Sparsity of an individual image
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Concise Models

e Our interest in this talk:  Collections of images
parameterized by 6 € ®

— translations of an object
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- wedgelets
0: orientation and offset

— rotations of a 3D object
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e Image articulation manifold



Image Articulation Manifold

In practice: N-pixel images: I € RY
In theory: I € L?([0,1] x [0,1])

K-dimensional
articulation space

Then M = {Iy : 6 € B}
is a K-dimensional manifold
in the ambient space

Concise model when
K<<N

articulation parameter space ®



Smooth IAMs

In practice: N-pixel images: I € RY
In theory: I € L?([0,1] x [0,1])

If the images are smooth
then so is M

Isometry: locally,
image distance X
parameter space distance

Locally linear
tangent spaces ¢
are close approximation -

articulation parameter space ®



Image Articulation Manifold

e K=1
rotation




Image Articulation Manifold

e K=2
rotation and scale
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Image Articulation Manifold

e IAM viewpoint unifying for a large number of
image inference problems
— detection, classification, estimation, interpolation, ...

involving
— imaging nuisance parameters
- multiple sensors/viewpoints

e Example: target classification with unknown imaging
parameters




Classification Geometry ;e:t
data

Classification with K unknown
articulation parameters

Images are points in RY

@v
White Gaussian noise H
o

Classify by finding closest t;rget temp|ates

target template to data from
f h cl generative model
or each class or

- distance or inner product training data (points)

“"Matched filter”



Classification Geometry  test

Classification with K unknown
articulation parameters |

Images are points in R

Classify by finding closest
target template to data

As template articulation
parameter changes,
points map out a K-dim
nonlinear manifold

Matched filter classification ¢
= closest manifold search

articulation parameter space ®



Synthesis / Interpolation

e Can sample points along manifold to interpolate or
synthesize images

Input Image

—




Manifold Learning

e Exploit fact that locally
image distance o« parameter space distance
to learn parameter space given a collection of images

e Numerous algorithms: ISOMAP, LLE, LE, HE, ...
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Theory/Practice Disconnect

e Practical image
manifolds are
not smooth!

e If images have
sharp edges,
then manifold
is everywhere * .
non-differentiable °

[Donoho Grimes,2003] articulation parameter space ©



Theory/Practice Disconnect - 1

Lack of isometry

Local image distance on
manifold should be
proportional to articulation
distance in parameter space

But true only in
toy examples

*“ve
Result: poor performance o

in classification, estimation,
tracking, learning, ... articulation parameter space ©




Theory/Practice Disconnect — 2

e Lack of local linearity

e Local image neighborhoods assumed to form a
linear tangent subspace on manifold

e But true only for extremely small neighborhoods

e Result: cross-fading when synthesizing images
that should lie on manifold

Linear path

P
L T g*




Insight: Leverage Progress in CV

e Computer vision (CV) community has developed
powerful tools for image registration

— optical flow for
computing dense
correspondences
between images

- huge progress
over last 5 years

FreefFoto.c»




Optical Flow

e Brightness constancy: Given two images I, and I,,
we seek a displacement vector field
f(x, y) = [u(x, y), v(x, y)] such that

L(x,y) =1 (x+u(x,y),y +vx,)))
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e Linearized brightness constancy

L,(x,y) =1,(x, )+ (VyIDu(x, y) + (V[ )v(x, y)



Optical Flow History

L(x,y)=1(x+u(x,y),y +Vx,)))

L,(x,y) =1,(x, )+ (VyIDu(x, y) + (Vi )v(x, y)

Dark ages (<1985)

— special cases of LBC by solving an under-determined set of linear equations

Horn and Schunk (1985)
— LBC solved via smoothness prior on the flow
Brox et al (2005)
— shows that linearization of brightness constancy
a horrible assumption
- develops optimization framework to handle BC directly

Brox et al (2010), Black et al (2010), Liu et al (2010)
— practical systems with reliable code



Optical Flow
L(x,y)=1(x+u(x,y),y +v(x,y))

I,(x,y)=1,(x,y) +(VIDu(x, y) +(Vy[)v(x, y)

two-image 2"d ijmage predicted
sequence optical flow from 1st via OF
G~ o A
I A A A A
R A A - i
b e A4 ] e

(Figures from Ce Liu's optmical flow page and ASIFT results page)



Image Articulation Manifold

Consider a reference image Iy,
and a K-dimensional articulation

Linear tangent space at 190
iIs K-dimensional

Tangent space provides a
mechanism to propagate
along manifold

Problem: Since manifold is
non-differentiable, tangent
approximation is poor

Tangent space at ]6
0
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Optical Flow Manifold

Consider a reference image Ig,
and a K-dimensional articulation

Collect optical flows from 160
to all images reachable by a
K-dimensional articulation

Provides a mechanism to
propagate along manifold

Theorem: Collection of OFs is a
smooth, K-dimensional manifold

(even if IAM is not smooth)
[N,S,H,B,2010]
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OFMs as Nonlinear Tangent Spaces

Tangent space at [90 OFM at[e0
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IAM Geodesic y Linear path

O F M Geodesic w
Input Image A Input Image
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Training Images

Synthesized Images

Image Synthesis

31.03 -21.55
Value in Euclidean reference



Manifold Learning via ISOMAP

2D rotations
ISOMAP embedding error
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Manifold Learning via ISOMAP

2D rotations

image

Residual variance

-
oo O

(0)]

ISOMAP embedding error

p

for OFM
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Isomap dimensionality



Manifold Learning via ISOMAP

2D rotations

image

Embedding of OFM
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Manifold Charting

e Goal: build a generative model for an entire
IAM/OFM based on a small number of base images

e Algorithm:
— choose a reference image randomly
- find all images that can be generated from this image by OF
— compute Karcher (geodesic) mean of these images
- repeat on the remaining images until no images remain

e Exact representation when no occlusions



Manifold Charting

e Goal: build a generative model for an entire
IAM/OFM based on a small number of base images

e EX: cube rotating
about axis

e All images of the cube
can be representing
using 4 reference images
+ their respective OFMs




Manifold Charting for Classification

o Optimal selection of target templates for
classification

e Dramatically reduced
number of target
templates
(compression)

e Optimal “next-view”
selection for adaptive
sensing applications




Summary

e Image articulation manifolds (IAMs) are a useful
unifying construct for many image processing
problems involving image collections and
multiple sensors/viewpoints

e But practical IAMs are non-differentiable
— IAM-based algorithms have not lived up to their promise

e Optical flow manifolds (OFMs)
— Smooth even when IAM is not
— OFM ~ nonlinear tangent space
— Support accurate image synthesis, learning, charting, ...



Not in Today’s Talk

e Log and Exp maps between “image space” and
“parameter space” become simple to calculate
because OF varies so smoothly from image to image

e Enables simple and
explicit strategies for
— geodesic computation

— Karcher means and

— variances (for statistical
models on manifolds)

NLDR

— geometric clustering,
dendrograms (data

organization) y

- image synthesis ...

Out of sample
LLE

>

Tangent space at 149
0



Not in Today’s Talk

e For a large class of articulations, the resulting
OFM is a Lie group
— affine transformation (translations, videos from aircraft)

— perspective transformation (scene at infinity,
planar scenes)

- diffeomorphisms (unstructured deformations)

e Lie groups have additional structure!

- Analytic generators when the Lie group has an
associated Lie Algebra

— Ex: Affine groups [Olhausen et al, 2009]



Open Questions

e Our approach was specific to image manifolds

e Do there exist mollifying “nonlinear tangent spaces”
for other kinds of non-smooth data manifolds?



Open Questions

e Theorem:
M = O(Klog N)
random measurements
stably embed a

K-dim manifold
Whp [B, Wakin, FOCM ’ 08]

e Q: Is there an analogous
result for OFMs?

dsp.rice.edu




