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Digital Sensing Revolution 



Pressure is on Digital Sensors 

•  Success of digital data acquisition is placing increasing pressure 
on signal/image processing hardware and software to support 

  higher resolution / denser sampling 
» ADCs, cameras, imaging systems, microarrays, … 

  x 
  large numbers of sensors 

»  image data bases, camera arrays,  
distributed wireless sensor networks, … 

  x increasing numbers of modalities 
» acoustic, RF, visual, IR, UV 

= deluge of sensor data 
 how to efficiently fuse,  
process, communicate? 
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Concise Models 

•  Efficient processing / compression requires  
concise representation 

•  Sparsity of an individual image 

pixels large 
wavelet 
coefficients 
 
(blue = 0) 
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•   Image articulation manifold 



Image Articulation Manifold 
•  In practice:  N-pixel images: 

•  In theory:  
 
 
•  K-dimensional  

articulation space 

•  Then 
is a K-dimensional manifold 
in the ambient space 

•  Concise model when 
K<<N 

articulation parameter space 



Smooth IAMs 
•  In practice:  N-pixel images: 

•  In theory:  
 
•  If the images are smooth 

then so is 

•  Isometry:  locally, 
image distance      
parameter space distance 

•  Locally linear 
tangent spaces 
are close approximation 

articulation parameter space 



Image Articulation Manifold 
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rotation 



Image Articulation Manifold 

•  K=2 
rotation and scale 



Image Articulation Manifold 
•  IAM viewpoint unifying for a large number of 

image inference problems 
–  detection, classification, estimation, interpolation, … 

   involving 
–  imaging nuisance parameters 
–  multiple sensors/viewpoints 

•  Example: target classification with unknown imaging 
parameters 



Classification Geometry 
•  Classification with K unknown  

articulation parameters 

•  Images are points in 

•  White Gaussian noise 

•  Classify by finding closest 
target template to data 
for each class 

–  distance or inner product 

•  “Matched filter” 

test 
data 

target templates 
from 

generative model 
or  

training data (points) 



Classification Geometry 
•  Classification with K unknown  

articulation parameters 

•  Images are points in 

•  Classify by finding closest 
target template to data 

•  As template articulation 
parameter changes,  
points map out a K-dim 
nonlinear manifold  
 

•  Matched filter classification   
= closest manifold search 

articulation parameter space 

test 
data 



Synthesis / Interpolation 

•  Can sample points along manifold to interpolate or 
synthesize images 

ARO MURI | Opportunistic Sensing | Rice, Maryland, Illinois, Yale, Duke, UCLA | October 2010 



Manifold Learning 

•  Exploit fact that locally  
 image distance       parameter space distance 

to learn parameter space given a collection of images 

•  Numerous algorithms:  ISOMAP, LLE, LE, HE, …  



Theory/Practice Disconnect 

•  Practical image 
manifolds are  
not smooth! 

•  If images have  
sharp edges,  
then manifold  
is everywhere  
non-differentiable 
 
[Donoho Grimes,2003] 

articulation parameter space 



Theory/Practice Disconnect – 1 

•  Lack of isometry 
 

•  Local image distance on 
manifold should be 
proportional to articulation 
distance in parameter space 

 

•  But true only in  
toy examples 
 

•  Result: poor performance 
in classification, estimation, 
tracking, learning, … articulation parameter space 



Theory/Practice Disconnect – 2  
•  Lack of local linearity  
•  Local image neighborhoods assumed to form a  

linear tangent subspace on manifold 
•  But true only for extremely small neighborhoods 
•  Result: cross-fading when synthesizing images  

that should lie on manifold 

Input 
Image 

Input 
Image 

Geodesic Linear path 



Insight: Leverage Progress in CV 

•  Computer vision (CV) community has developed  
powerful tools for image registration 

– optical flow for  
computing dense  
correspondences 
between images 

– huge progress  
over last 5 years 



Optical Flow 
•  Brightness constancy: Given two images I1 and I2, 

we seek a displacement vector field  
f(x, y) = [u(x, y), v(x, y)] such that 

 
 
 
 
 

•  Linearized brightness constancy 
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Optical Flow History 

•  Dark ages (<1985) 
–  special cases of LBC by solving an under-determined set of linear equations 

•  Horn and Schunk (1985) 
–  LBC solved via smoothness prior on the flow  

•  Brox et al (2005) 
–  shows that linearization of brightness constancy  

a horrible assumption 
–  develops optimization framework to handle BC directly 

•  Brox et al (2010), Black et al (2010), Liu et al (2010) 
–  practical systems with reliable code 

)),(),,((),( 12 yxvyyxuxIyxI ++=

),()(),()(),(),( 1112 yxvIyxuIyxIyxI YX ∇+∇+=



Optical Flow 
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(Figures from Ce Liu’s optical flow page and ASIFT results page) 

two-image  
sequence optical flow 

2nd image predicted  
from 1st via OF 



Image Articulation Manifold 

•  Consider a reference image 
and a K-dimensional articulation 

•  Linear tangent space at  
is K-dimensional  

•  Tangent space provides a 
mechanism to propagate  
along manifold 

•  Problem:  Since manifold is  
non-differentiable, tangent 
approximation is poor 

Tangent space at  
0θ
I

Articulations 

0θ

1θ 2θ

2θ
I1θ

I
0θ
I IAM 



Optical Flow Manifold  

0θ
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IAM 

OFM at  
0θ
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I
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Articulations 

•  Consider a reference image 
and a K-dimensional articulation 

•  Collect optical flows from 
to all images reachable by a 
K-dimensional articulation 

•  Provides a mechanism to 
propagate along manifold 

•  Theorem:  Collection of OFs is a 
smooth, K-dimensional manifold 
(even if IAM is not smooth) 
[N,S,H,B,2010] 



OFMs as Nonlinear Tangent Spaces 
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Image Synthesis 



Manifold Learning via ISOMAP 

2D rotations 

Reference 
image 

ISOMAP embedding error  
for IAM 
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ISOMAP embedding error  
for OFM 

2D rotations 

Reference 
image 



Manifold Learning via ISOMAP 
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Two-dimensional Isomap embedding (with neighborhood graph).
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Manifold Charting 

•  Goal: build a generative model for an entire  
IAM/OFM based on a small number of base images 

•  Algorithm: 
–  choose a reference image randomly 
–  find all images that can be generated from this image by OF 
–  compute Karcher (geodesic) mean of these images 
–  repeat on the remaining images until no images remain 

 
•  Exact representation when no occlusions 



Manifold Charting 

•  Goal: build a generative model for an entire  
IAM/OFM based on a small number of base images 

•  Ex: cube rotating  
 about axis 

 
•  All images of the cube 

can be representing  
using 4 reference images  
+ their respective OFMs 
 

IAM 



Manifold Charting for Classification 

•  Optimal selection of target templates for 
classification  

•  Dramatically reduced  
number of target  
templates 
(compression) 

•  Optimal “next-view”  
selection for adaptive 
sensing applications 
 

IAM 



Summary 

•  Image articulation manifolds (IAMs) are a useful 
unifying construct for many image processing 
problems involving image collections and  
multiple sensors/viewpoints 

•  But practical IAMs are non-differentiable 
–  IAM-based algorithms have not lived up to their promise  

•  Optical flow manifolds (OFMs) 
–  Smooth even when IAM is not 
–  OFM ~ nonlinear tangent space 
–  Support accurate image synthesis, learning, charting, … 



Not in Today’s Talk 

•  Log and Exp maps between “image space” and 
“parameter space” become simple to calculate 
because OF varies so smoothly from image to image 

•  Enables simple and  
explicit strategies for 
–  geodesic computation  
–  Karcher means and  
–  variances (for statistical  

models on manifolds)  
–  geometric clustering,  

dendrograms (data  
organization)  

–  image synthesis …  
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Not in Today’s Talk 

•  For a large class of articulations, the resulting  
OFM is a Lie group     
–  affine transformation (translations, videos from aircraft) 
–  perspective transformation (scene at infinity,  

planar scenes) 
–  diffeomorphisms (unstructured deformations) 

•  Lie groups have additional structure! 
–  Analytic generators when the Lie group has an 

associated Lie Algebra 
–  Ex: Affine groups [Olhausen et al, 2009] 



Open Questions 

•  Our approach was specific to image manifolds 

•  Do there exist mollifying “nonlinear tangent spaces” 
for other kinds of non-smooth data manifolds? 



Open Questions 

•  Theorem: 
                                
 random measurements  
stably embed a 
K-dim manifold 
whp  [B, Wakin, FOCM ’08] 
 

 
•  Q: Is there an analogous 

result for OFMs?    

dsp.rice.edu 


