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Challenges:
1. very low SNR data and huge number of experiments and tests

2. non-linear interactions



Challenge 1: High-Dimensionality and Low SNR

nature Vol 45414 August 2008 |doi:10.1038/nature07151

Drosophila RNAi screen identifies host genes
important for influenza virus replication

Linhui Hao"**, Akira Sakurai’*1, Tokiko Watanabe’, Ericka Sorensen', Chairul A. Nidom>°, Michael A. Newton?,
Paul Ahlquist"? & Yoshihiro Kawaoka™”*”’

How do they confidently determine the ~100 out of 13K genes
hijacked for virus replication from extremely noisy data?
Sequential Experimental Design:

Stage 1: assay all 13K strains, twice; keep all with significant
fluorescence in one or both assays for 2nd stage (13K — 1K)

Stage 2: assay remaining 1K strains, 6-12 times; retain only
those with statistically significant fluorescence (1K — 100)

vastly more efficient that replicating all 13K experiments many times



Feedback from Data Analysis to Data Collection

high-throughput
experiments

experiment

space

Optimized multi-stage designs controlling the false discovery or the family-wise error rate

sets of genes critical to a microarray or
certain function/process assay datasets



Challenge 2: Sparsity & Nonlinear Effects
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Outline of Talk

|. Sequential Experimental Designs for High-Dimensional Testing

thresholds for recovery in high-dimensional limit:

non-adaptive designs SNR ~ logn

sequential designs SNR ~ arbitrarily slowly growing function of n

2. Compressed Sensing of Sparse Multilinear Functions

number of compressed sensing measurements for sparse recovery:

linear sparsity K ~ Slogn
multilinear sparsity K ~ min{S?logn, Slog®(S)logn, S*log® n}

where o > 1 depends on pattern of sparsity



Sparse Signal Model

Let © = (x1,...,2Z,) € R™ be an unknown sparse vector;
most (or all) of its components x; are equal to zero.

, where |S| < n
\ deterministic
signal support set  but unknown

- >0, 1€8
i = ) o, idS

Assume sublinear sparsity level: |S| < n

/

number of signal
components



Noisy Observation Model

i = x; + 2z, 1=1,...,n

Suppose we want to locate just one signal component: ¢ = argmax; y;

Even if no signal is present, max; y; ~ +/2logn

It is tmpossible to reliably detect signal components weaker than O(1/logn)



Threshold Tests

Our goal is to estimate the set of non-zero components: § :={i : x; # 0}
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Definition 1 A threshold test is an estimator of the form:

S.(y) = {ie{l,....n}:y; >7 >0}

Bonferroni Correction: To keep the error level small (e.g., less than 5%)
the threshold must be on the order of /logn.



False Discovery Rate Control (ingster 97, Jin & Donoho '03)

Assume sublinear sparsity level: |S| = n'=% |, 3¢ (0,1)

signal strength
1= +/2rlogn

]

reliable detection iff 4 ~ /logn !

A

estimation possible
(FDP + NDP - 0)

estimation impossible
(FDP + NDP - ¢ > 0)

G

sparsity

FDP(S) := “%f‘

# talse discoveries

 total # discoveries

. S\S
Nors) - 59

# missed non-zeros

# true non-zeros



Is there really a problem ?
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An Alternative: Sequential Experimental Design

Instead of the usual non-adaptive observation model
Yi = T; + 2, iZl,...,n

suppose we are able to sequentially collect several independent
measurements of each component of x, according to

where
7 indexes the measurement steps
k denotes the total number of steps
iid

i,5 ™ (07 1)

7vi.;= 0 controls the precision of each measurement

Total precision budget is constrained, but the choice
of v, ; can depend on past observations {y; ¢}¢<;.



Experimental (Precision) Budget

sequential measurement model

vij = @ + v g, i=1,,m, j=1,...,k

The precision parameters {; ;} are required to satisfy

k n
S:Sj%,j < n

j=1i=1

For example, the usual non-adaptive, single measurement model corresponds
to taking k =1, and ;1 = 1,2 =1,...,n. This baseline can be compared with
adaptive procedures by allowing £ > 1 and variable {; ; } satisfying budget.

Precision parameters control the SNR per component.

SNR is increased /decreased by

— more/fewer repeated samples or

— longer /shorter observation times



Fruit Fly Example

fruit fly

How to find genes involved in virus replication !

Sequential Design ldea

Budget: k assays, n tests/assay

Assay |:measure fluorescence of all n genes; discard n/2 genes with
weakest fluorescence.

Assay 2: measure fluorescence for remaining n/2 genes, each tested
twice (double SNR); discard n/4 genes with weakest fluorescence.

Assay 3: measure fluorescence for remaining n/4 genes, each tested
four times (quadruple SNR); discard n/8 genes with weakest fluorescence.

continue distilling....



ldealized Example
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Distilled Sensing

Stmple Distilled Sensing

total precision budget: E {ZZ j %‘,g}

initialize: Sg = {1,....n}, v 1 =24¢ >0 R
. 0 { } ’y’b,j — ZE|S_1|
for j=1,...,k 2+ ¢ = j
j:
1) measure: y; j ~ N (z;,24+¢€) , i €S, y
T L s
2) threshold: §; ={i:y; ; > 0} = 91 2—21 oj—1 + S|
e 20— IS)
n —
output: S = {7 : y;x > 0} < 21 ¢ + kS| < n
(for n large)
probability of error: P(Sp #8) = P{S°NSy AZ0u{SnNS; #0})

P(S°NSe #0) + P(SNSE #0)



False Positives

P(Sp£S) < P(S°NS,#0) + P(SNSE D)

P(S‘NS,#0) = P (U () vij >o)
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False Negatives

PSS, #S) < P(S°NS#0) + P(SNS; #0)

k
IP’(SHS,‘;#@) = P(U in,j<0)
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Probability of Error Bound

P(Sk # S)

VAN

P(S°NS, #0) + P(SNS; #0)

n—s k]8|e e
Flol axn [ —
ok o “PL\T221 ¢

n—s 1 (_ (1? —2(2 + ¢) 1og(k\51))>

ok T g &P 202+ ¢)

VAN

Consider high-dimensional limit as n — oo and take k = log, n'™¢

-s 1 (4 — 2(2 + €) log(|S|(1 + ¢) logy 1))
P&k 7 5) = % g e (‘ 22+ o) )
0

Second term tends to zero if

1> 1/2(2 + €)log(|S|(1 + €) log, n)



Gains of Sequential Design

non-adaptive threshold:

1 > \/2logn

DS threshold:

1> 1/2(2 + €)log(|S|(1 + €) log, n)

We get a gain whenever |S| < n'/?

Punchline: In ultra-sparse setting, say |S| = C'logn, DS drives error to zero
if 4 > /(8 + ¢€) loglogn, compared to the non-adaptive requirement u > /2logn.




False Discovery Rate Control (ingster 97, Jin & Donoho '03)

Assume sublinear sparsity level: |S| = n'=% |, 3¢ (0,1)

signal strength
1= +/2rlogn

]

A

estimation possible
(FDP + NDP - 0)

estimation impossible
(FDP + NDP - ¢ > 0)

G

sparsity

FDP(S) := “%f‘

# talse discoveries

 total # discoveries

. S\S
NDP(S) = [\S] ‘g| ‘

# missed non-zeros

# true non-zeros

non-sequential methods require u ~ +/logn



FDR-type Control using DS

FDR Distilled Sensing

initialize: S ={1,...,n} , k= [loglogn]|
Yig = (1) §/1Sj-al,i=1,..., k=1

n

YVik — 2[Sk_1]

| sublinear sparsity:
for j=1,...,k S| = nl=F , B€(0,1)

1) measure: y; j ~ N (xi,%_’jl) , 1€ 851
2) threshold: §; ={i:y; ; >0}
end

output: S = {7 : yix > 4}

To guarantee that the proportions of FDP and NDP to zero as n — oo
Distilled Sensing 1 ~ arbitrarily slowly growing function of n

non-adaptive 1~ +/logn

Adaptivity effectively eliminates the fundamental statistical
challenge in high-dimensional multiple testing.



FDR/NDR

n =21 |z|p = v/n = 128
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Challenge 2: Nonlinearities

Genome Genome

A AA

Knockdown Knockdowns

Hijacked
Proteins

Hijacked
Proteins

no effect detectable effect

must knockdown both redundant
genes to see an effect!

~ 85,000,000 possible two-fold gene deletion strains !



Sparse Interaction Models
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Knockdown

_ Z (1) Z (2)
Yy = a;xr; aiQ;x;;
1 1<J
Approximate output (virus reproduction) with a sparse bilinear system.
e P -~
; hon-zero iff gene is critical to pathway sparsity
5 most are 0
- (2) . SR
;5 ~hon-zero It gene pair is critical to pathway

d; 1 if gene is knocked down; O otherwise



Sensing Sparse Interactions

Linear model: y(z) = sz a;

Bilinear model: y(x) = ngl) a; + Zx,g) a;a;

1<J

(13000)

) ~ 85,000,000 possible pairwise interactions !

: : 1 2 : : :
Since most coefficients, {x;} or {xi ), x,gj)}, are zero our goal is to identify
critical components and interactions from using very few measurements

a={+,—++ - ,——+} y()

random bit sequence

e.g., random selection of multiple
simultaneous gene knock-downs

collect K < size(x) measurements y1, 1o, ...,yx using K random inputs



(Linear) Compressed Sensing

This is the conventional compressed sensing problem for the linear model.

x e R", ae{-1,+1}"

o= San, k=1 K
p sparse X: [|x|]lo = S <« n

find sparse solution toy = Ax

If the measurement matrix satisfies the restricted isometry property (RIP)
with 099 < V2 — 1 for all S-sparse vectors:

(1= 0s)lIxllz < [|Ax[]z < (1+ ds)1x]3

then x can be recovered from y by convex optimization:

min ||z|[; subject to Az =y

RIP holds with high probability if K > ¢.S log(n/S)



Multilinear Compressed Sensing
Multilinear model:

y = E (i Qjg *** QipLiyin-ip xRN, ac{-1,1}"
11 <t2<--<ip

T
lz|]o = S <« N N= <D>

y is called a Rademacher chaos of order D

Compressed sensing problem for multilinear model

K measurements of this form: y = [y; - - -yK]T

find sparse solution toy = Ax

matrix A now composed of monomials in a;_;

Does it satisty the RIP property?



On Average, Things Look Good
RIP: (1 —dg)[x[l5 < [[Ax[]3 < (1 +ds)[1x]15
isotropic measurements: E [|Ax ||?| = ||x][3

symmetric binary random inputs: P(a; ; = +1) = P(a; ; = —-1) = 1/2

Linear CS: n = 3 inputs, K = 2 measurements and D = 1,

1
A= — [ A1 912 13 ] — E[AT A] = Identity
21 G222 Q23

Bilinear CS: n = 3 inputs, K = 2 measurements and D = 2,

1 a11a a11a a1 20

1,101,2 G1,101 1,201 :

A=—| B A0S TLERLS L o R[AT A] = Identity
\/§ az1a22 21023 Q220023



What about the distributions?

y = Ax, E|y|z =[x

P(lIlyll® — [Ix[l2| > t) ~ exp(—poly(t))

? ?

A LA

I

1 1
1|12 1|12

Gaussian tails

or heavy tails?
(as in linear CS)



Tail Behavior

Best case: decoupled chaos

Yy = a102T12 + G304T34 + - T G251 A2k T2k—1,2k

a1 12 + G234 + -0 T Ak T2k—1,2k

equivalent to iid binary symmetric sensing

— subgaussian tails independent of D: P(y* — ||z]|3 > t) < exp(—ct)

Worst case: strongly coupled chaos

/
p— i . 1.7 k::
Y Z (i Qg Ly j <2>

1<i<j<t
significant probability of large deviations from mean:

if 2; ; = 1/Vk, then P(y? > k) =27¢ = g—ck'/?

= heavy tails depending on D: P(y? — ||z]|3 > t) > exp(—ct!/P)



Combinatorial Dimension of Rademacher Chaos

The combinatorial dimension 1 < a < D measures the level of
dependence introduced by a particular pattern of sparsity.

Yy = E ailaiQ "'aipxilig---ip
11<12<--<1p

Blei-Janson '04: A Rademacher chaos with combinatorial dimensional o satisfies

exp (—cltl/o‘) <P(Jy]* >t) <exp (—CQtl/a)

tails are light to heavy, dependingon 1 < a < D



Dependencies Matter (in practice)
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Dependencies Matter (in theory)

K = number of measurements needed to recovery S-sparse multilinear forms

proof technique bound on K ingredients

empirical 2nd
Gershgorin 5% log N moment bounds,

union bound

empirical 2nd

Rudelson-
. S(log® S)(log N) | moment bounds,
Vershynin .
no uhion bound
S%log™(N/S) tail bounds
Rademacher chaos .
| <a<D union bound

compare with linear CS bound: K > S log(N/S)



Gershgorin Bound

i) Control each element of (partial) Gram matrix G = AL A+ using Hoeffd-
ing’s inequality and bound probability that G+ is approximately diagonal.

— 1 5?8' 5_5'_
1o
GT: : :
9s s .,
NS S 1 _

ii) Gershgorin’s Disc Theorem guarantees that eigenvalues lie in the range

gi = > lgisl < MN(Gr) < gty gl
i I7

iii) union bound over all (]g ) sparsity patterns. RIP holds if

K >c¢S%log N



Heavy-Tailed Restricted Isometries

Theorem 1 (Vershynin) Let A be a K x N measurement matrix whose rows

al are independent isotropic random vectors in RY. Let B be a number such
that all entries |a;;| < B almost surely. Then the normalized matrix A = \/%A

satisfies the following for K < N, for every sparsity level § < N and 0 < e< 1:

if the number of measurements satisfies
K > C e 2Slog Nlog® (9)

then the RIP constant dg of A satisfies E[dg| < e.

Check conditions:
o isotropy: G := AT A | E[G] = Identity

e clements of A bounded by 1.



Chaos Tail Bound

Lemma 1 Assume that yi., kK = 1,..., K, are i.i.d. Rademacher variables of
order D with combinatorial dimension 1 < a < D and Ey; = 1. There exist
constants ¢, C' > 0 such that

K
1 : a4l/a
P <|E ,;_1 e — 1| > t) < C’exp(—cmm(KtQ,Kl/ ¢/ ))

proot technique:
e Blei-Jansen chaos tail bounds
e moment bound for sums of symmetric i.i.d. variables due to R. Latala

e apply lemma and union bound over e-net for sparse vectors
(technique from Baraniuk-Devore-Davenport-Wakin ’08)

RIP holds if K > C S%log™(N/S)



Conclusions

|. Sequential Experimental Designs for High-Dimensional Testing

thresholds for recovery in high-dimensional limit:

non-adaptive designs SNR ~ logn

sequential designs SNR ~ arbitrarily slowly growing function of n

Distilled Sensing: Adaptive Sampling for Sparse Detection and Estimation
J. Haupt, R. Castro,and RN, arXiv:1001.5311v2

2. Compressed Sensing of Sparse Multilinear Functions

number of compressed sensing measurements for sparse recovery:

linear sparsity K ~ Slogn
multilinear sparsity K ~ min{S?logn, Slog*(S)logn, S*log® n}

where o > 1 depends on pattern of sparsity

Sparse Interactions: ldentifying High-Dimensional. Multilinear
Systems via Compressed Sensing, B. Nazer and RN, Allerton 2010



