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Linear Inverse Problems

e Find me a solution of
e d mxn, m<n

 Of the infinite collection of solutions, which one
should we pick?

e Leverage structure:

Sparsity Rank Smoothness Symmetry

« How do we design algorithms to solve
underdetermined systems problems with priors?



Sparsity

e 1-sparse vectors of
Euclidean norm 1

e Convex hull is the
unit ball of the I; norm

szl < 13




minimize ||z|1 = .., |z
subject to Ax =0

Compressed Sensing: Candes, Romberg, Tao,
Donoho, Tanner, Etc...



e 2X2 matrices Ty
e plotted in 3d

— rank
X% + 22 + 2y2 =1 -0.4.

Convex hull:

| X || = Zai(X)



e 2X2 matrices
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Integer Programming

e Integer solutions:
all components of x

are :|:1 (_111) (111)
e Convex hull is the

unit ball of the I; norm

{z : ||Z]leo <1} (-1,-1) (1,-1)

2]l = max |z
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Parsimonious Models
. —Z2—rank

L = E W A
N kzw Y

model weights atoms

e Search for best linear combination of fewest atoms
e "rank” = fewest atoms needed to describe the model




Permutation Matrices

X a sum of a few permutation matrices

Examples: Multiobject Tracking (Huang et al),
Ranked elections (Jagabathula, Shah)

Convex hull of the permutation matrices: Birkhoff
Polytope of doubly stochastic matrices

Permutahedra: convex hull of permutations of a
fixed vector. wan
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Moment Curve

Curve of [1,t,t2,t3,t4,...], teT, some basic set.

System Identification, Image Processing, Numerical
Integration, Statistical Inference...

Convex hull is characterized by linear matrix
inequalities (Toeplitz psd, Hankel psd, etc)




Cut Matrices

Sums of rank-one sign matrices:

X = ZpZXZ Xz — ZIZ‘@ZE?Z Xz'j = +1

Collaborative Filtering (Srebro et al), Clustering in
Genetic Networks (Tanay et al), Combinatorial
Approximation Algorithms (Frieze and Kannan)

Convex hull is the cut polytope. Membership is NP-
hard to test

Semidefinite approximations of this hull to within
constant factors.



Atomic Norms

Given a basic set of atoms, A, define the function
|z||4 =inf{t >0 : x € tconv(A)}

When A is centrosymmetric, we get a horm

|zla=inf{) |ca| : 2= coa}

minimize  ||z||4

IDEA: subject to Pz =1y

When does this work?

How do we solve the optimization problem?



Atomic norms In sparse
approximation

Greedy approximations

| £
NG

Best n term approximation to a function fin the
convex hull of 7.

Co
||f — f’n”ﬁz <

Maurey, Jones, and Barron (1980s-90s)
Devore and Temlyakov (1996)



Tangent Cones

e Set of directions that decrease the norm from x
form a cone:
Ta(x) ={d : ||z + ad||a < ||x||4 for some o > 0}

minimize  ||z||4
subject to Pz =y

{z : llzlla < llzlla}

« X is the unigue minimizer if the intersection of this
cone with the null space of ® equals {0}



Gaussian Widths

When does a random subspace, U, intersect a
convex cone C at the origin?

Gordon 88: with high probability if
codim(U) > w(C)?

Where w(C) =E | max 1<x,g> is the
Gaussian width. — L[Z€CNS™™

Corollary: For inverse problems: if ® is a random
Gaussian matrix with m rows, need m > w(7(x))
for recovery of x.
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Robust Recovery

 Suppose we observe Yy = Pz 4+ w |wllo <6

minimize z|| 4
subject to ||[Pz —y| <6

20

- If T is an optimal solution, then ||z — Z|| < —

provided that S
: _ cow(Ta(x))’

N = (1 —€)?

[Pz —y| <6

{z : ||z]|la < |x||la}



What can we do with Gaussian
widths?

Used by Rudelson & Vershynin for analyzing sharp
bounds on the RIP for special case of sparse vector
recovery using li.

For a k-dim subspace S, w(S)? = k.
Computing width of a cone C not easy in general

Main property we exploit: symmetry and duality
(inspired by Stojnic 09)



AN

Duality

('™ is the polar cone.

magc(v,g} C*={w : (w,2) <0Vze(C}
vE
[v]|=1

- - Ta(z)" = Na(x)

N 4(x) is the normal
I?Eag( <U7 g> cone. Equal to the cone

lv]|<1 induced by the
- o = subdifferential of the
atomic norm at x.

min

ucC* I UH




Dual Widths

C

r =11 + 11
- FACT: o) C_(

(c(x), Mo+ (x))

)
0
C*

C*={{w : (w,z) <0Vze(C}

Proposition: w(C)? +w(C*)* <n

w(C)* < E, [dist(g,C*)?| = E, o (g)|”]




Symmetry I - self duality

Self dual cones - orthant, positive semidefinite cone,
second order cone

Gaussian width = half the dimension of the cone

C w(C) = w(C™)
+
> w(C)* +w(C*)* <n

o Il

w(C)* < n/2




Spectral Norm Ball

« How many measurements to recover a unitary
matrix?
TA(U)=8S - P

« Tangent cone is skew-symmetric matrices minus the
positive semidefinite cone.

« These two sets are orthogonal, thus

w(Ta(U))" < (n ) 1) + %(Z) — 3”24— n




Re-derivations

* Hypercube: m > n/2

« Sparse Vectors, n vector, sparsity s<0.26n

m > (25 + 1) log (”_8>

S

« Low-rank matrices: n1 x n2, (n1<nz), rank r
m > 3r(ni +no —7r)+2n,




General Cones

Theorem: Let C be a nonempty cone with polar
cone C*, Suppose C* subtends normalized solid

angle u. Then
4
w(C) < 3\/log (;)

Proof Idea: The expected distance to C* can be
bounded by the expected distance to a spherical cap

Isoperimetry: Out of all subsets of the sphere with
the same measure, the one with the smallest
neighborhood is the spherical cap

The rest is just integrals...



Symmetry II - Polytopes

e Corollary: For a vertex-transitive (i.e.,
“symmetric”) polytope with p vertices, O(log p)
Gaussian measurements are sufficient to recover a
vertex via convex optimization.

« For n x n permutation matrix: m = O(n log n)
« For n x n cut matrix: m = O(n)

 (Semidefinite relaxation also gives m = O(n))



 Naturally amenable to projected grac

residual

“shrinkage”

 Similar algorithm for atomic norm constraint

Algorithms

minimize, ||®z — yl||5 + ul/z]|4

Rk+1 = Hnu(zk — NP )

r, = Pzp —y

Il-(2) = arg mm

5

z—u||2

ient algorithm:

7|[ull.4

« Same basic ingredients for ALM, ADM, Bregman,

Mirror Prox, etc...

how to compute the shrinkage?



Relaxations

> P
Jol% = max(v, o)

« Dual norm is efficiently computable if the set of
atoms is polyhedral or semidefinite representable

A1 C Ay = 2l < llzlll, and [[z]la, < |z,

« Convex relaxations of atoms yield approximations to
the norm

NB! tangent cone
gets wider

 Hierarchy of relaxations based on 6-Bodies yield
progressively tighter bounds on the atomic norm



Atomic Norm Decompositions

Propose a natural convex heuristic for enforcing
prior information in inverse problems

Bounds for the linear case: heuristic succeeds for
most sufficiently large sets of measurements

Stability without restricted isometries

Standard program for computing these bounds:
distance to normal cones

Approximation schemes for computationally difficult
priors



Extensions...

Width Calculations for more general structures

Recovery bounds for structured measurement
matrices (application specific)

Understanding of the loss due to convex relaxation
and norm approximation

Scaling generalized shrinkage algorithms to massive
data sets



