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Gaussian graphical model

n-dimensional Gaussian vector
r=(r1,...,2n) ~N(0,%)
z;, x; are conditionally independent (given the rest of z) if
(271 =0

modeled as undirected graph with n nodes; arc 4, j is absent if (3X71);; =0
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Maximum likelihood estimation

Log-likelihood function for NV independent samples of x

g (logdet =" — tr(CL™))

C' is sample covariance

ML estimation of X, for given topology

minimize  —logdet X + tr(CX)
subject to given sparsity pattern of X

a convex problem in X = X1

known as covariance selection (Dempster 1972)



Topology selection via model selection criteria

e enumerate topologies and for each topology, solve ML problem

minimize —L(X)= —logdet X + tr(CX)
subject to sparsity pattern of X

e rank ML estimates X, = Z;ﬂl using an information criterion

AIC = =2L(Xwm1)+2k  (Akaike)
2Nk :
AIC. = —2L(Xum)+ N E 1 (second order Akaike)
BIC = —-2L(Xu)+ klogN (Bayes)

k is number of parameters (o< nonzeros in X); N is sample size

this approach is only feasible for small graphs



Topology selection via 1-norm regularization

Regularized ML problem

minimize —logdet X +tr(CX) +~v> | X,
,J
Dual problem

maximize logdet(C + Z)
subject to  |Z;;| <~v, ¢,j=1,...,n

e convex; primal or dual can be solved by first-order methods

Yuan & Lin 2007; Banerjee, El Ghaoui & d'Aspremont 2008; Friedman, Hastie &
Tibshirani 2008; Lu 2008, 2009; Scheinberg & Rish 2009, . . .

e choice of ~: rank topologies on trade-off curve by AIC, AIC, or BIC

other methods: Banerjee et al. 2008, Friedman et al. 2007, Ravikumar et al. 2008;
Meinshausen & Biihlmann 2006
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Graphical models of time series

n-dimensional stationary Gaussian time series z(t), t € Z
z; and x; are conditionally independent (given the rest of x(t)) if
(S(w)_1>z.. =0

J

S(w) is spectral density matrix:

S@ = Y R, R=Ba+be) (=)

k=—o0

Brillinger 1981, Dahlhaus 2000



Example (autoregressive model of order 4)

Coherence
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Frequency

e coherence spectrum: S(w) normalized to have diagonal one

e partial coherence: S(w)

—1

normalized to have diagonal one
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Autoregressive time series

Box(t) = — zp: Bzt — k) 4+ w(t), w(t) ~ N(0,1)

without loss of generality, assume By symmetric, positive definite

Inverse spectrum

p p—k
Sw)t=Yy+ Y (Yee 1 yTek) vy =Y BBL,
k=1 [=0

Conditional independence relations



ML estimate with conditional independence constraints

minimize  —logdet Xog + tr(CX)

_ _ i - o T
Xoo - Xop Bg Bo

subject to X = : : = : :
XpO pr Bp Bp

given sparsity pattern of > X ;1 for k=0,...,p
l

e maximizes conditional likelihood (conditioned on first p values)
e (' is sample covariance estimate from observations of x(t) (see later)
e variables are X, By, ..., B,

e equality constraints X;; = BiB]T make problem nonconvex



Convex relaxation

minimize  —logdet Xy + tr(CX)

Xoo - Xop
subject to X = : : =0
XpO S pr

given sparsity pattern of > X; ;1 for k=0,...,p
l

e exact if optimal X has rank n, i.e., can be factored as X;; = BiBjT
e from duality: relaxation is exact if C' is pos. definite and block-Toeplitz

e in practice: often exact even for non-Toeplitz sample covariances C



Duality

minimize  —logdet Xy + tr(CX)
subjectto X >0, P (Z Xl,Hk) =0
l

e X is(p+1)x(p+1)symmetric block matrix with blocks X, of order n

e P(U) is projection on zero pattern

Dual problem

maximize logdetW +n

W 0 ] = C+T(P(%),...,P(Z,))

subject to [O 0

e variables W, Zy, . .., Z, are n x n, with W and Zy symmetric

o T(Uy,...,U,) is block-Toepliz matrix with first row Uy, . . ., Uy,
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Optimality condition

Property of block-Toeplitz matrices: if W > 0 and

Uy Uy - U, W 0 --- 0

T
T(Us,...,U,) = Ul UO Upf - O O O
_Ug Ug_l o Uy 0 0 -+ 0|

then T(Uo, Cee Up) >0

Complementary slackness for ML problem (Z = T(P(Zy),...,P(Z,)))

W= Xl tr(X(C+Z— [ v 8])) _

hence, if C' is block-Toeplitz, optimal X has rank n
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Sample covariance matrix

from measurements #(1),...,%(N), estimate Ry = Ex(t)z(t + k)T

N (1) (1) R% R, R,
1 Z(t—1) Z(t—1) RT Ry -+ R,
C =— ~ p
M; : : s : s
C@(t—p) | | #(t—p) R} R] ., -~ Ry |

Non-windowed estimate: t1 =p+ 1,10 =N, M =N —p
e arises in conditional ML/LS estimation

e generally not block-Toeplitz but approaches block-Toeplitz for large N

Windowed estimate: t1 =1, t5 =N+p, M =N
e assume z(t) =0fort <landt> N

e block-Toeplitz

— - — - T — -
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Example: Exactness of relaxation

80

N
o
T

Percentage of exact relaxations
N (o)
o o

e generate 50 trials of C for each model

e relaxation for (non-Toeplitz) non-windowed sample covariance matrix C

13



Example: Air pollution data

hourly values of CO, NO, NO», Os, solar radiation at Azusa (N = 8370)
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blue: empirical spectrum; red: optimal AR model for BIC (p = 4)



Topology selection via nonsmooth regularization

Estimation with known topology

minimize  —logdet Xy + tr(CX)
subject to X >0
p—k

given sparsity pattern of Yy = > X; 14k, k=0,...,p
1=0

Nonsmooth regularization
minimize  —logdet Xoo + tr(CX) +~vh(Yo,...,Y})
subjectto X >0

convex penalty h promotes common, symmetric sparsity pattern of Y}:

h(Yo, Y,...,Y,) =) max maxq|(Ye)ijl, [(Ye)jil

1>7
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Example

n =20, p =2, exact S(w)~! has 76 nonzeros
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Regularized maximum likelihood problem (512 samples)

minimize —L(X)+~vh(Y) (L£(X) =logdet Xo9 — tr(CX))

L(X)

0 10 20 30 40 50 60 70

penalty h(Y")

v=20 v = 0.04 v = 0.08 v =0.15 v = 0.85

v=2
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Topology for v = 0.15
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e blue squares: correctly classified

e red circles: incorrectly classified as nonzero

e plus signs: incorrectly classified as zero



Comparison with other estimates

threshold the inverse spectrum from one of three estimation methods

e ML estimation (a.k.a. LS estimation): solve Yule-Walker equations

e ML estimation with added Tikhonov regularization term

Y IBrlF =~trX

equivalent to ML estimate using C' := C + ~[

e ML estimation with added nonsmooth regularization term A(Y)
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Error in topology as function of sample size

Total error
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e topology estimated by applying threshold to ML estimate (LS),
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Tikhonov-regularized ML estimate, and h-regularized ML estimate (L1)

e graphs show fraction of entries misclassified as zero/nonzero
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Example: 17 stock market indices
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detrended daily returns of 17 market indices during 1997-1999; N = 540



Selected model (p = 1)

Pij

(0, 0.15)
[0.15, 0.25)
[0.25, 0.35)
[0.35, 0.45)
[0.45, 0.55)
[0.55, 0.65)
[0.65, 0.75)

link widths show p;; = max |R;;(w)|, R(w) is normalized inverse spectrum
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Example: fMRI time series

Dataset (Mitchell, 2004)

e time series of length N = 640
e 1718 voxels in ROI, reduced to n = 7, 50, 100, 190 by averaging groups

e two inputs: 'picture’, 'sentence’

Experiment

e estimate sparse models for the two inputs by regularized ML estimation

e validate models by an input classification experiment
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Model selection from regularized ML estimation plus BIC

e model order

input n=7|n=50|n=100 | n=190
picture p=1| p=1 p = p =
sentence | p=1| p=1 p = p =
e sparsity
picture input sentence input
1f | | —@- static 1 1f | | —@- static
——time series ——time series
0.8
206
7]
c
()
O g4t
0.2
07 50 100 190 0 50 100 190
number of nodes in the graph number of nodes in the graph
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Model validation via input classification

e use selected models to classify the two inputs from unseen data

e select the input with the highest likelihood

Classification error versus model size

model order | n=7 | n =50 | n =100 | n = 190
p=20 21% 16% 11% 6%
p=1 20% 16% 16% 11%
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Regularized ML problem

minimize  —logdet Xog + tr(CX) + ~vh(Y)

Xo0
subject to X = :
I Xpo
p—k
Yii= > Xiivk,
1=0

e variables X and Y = (Yp,...,Y}) with Y, and X;; square of order n

o n(Yy,Y1,...,Y},) is nonsmooth penalty (sum of infinity norms)

h(Y)=>_ max maxq |V, [Y,ijl}

Jj>1

Xop




Dual problem

minimize  f(C'+ T(%))

p

subject to > (| Zk.ij| + |1 Zkjil) < v, i # ]
k=0

variable Z = (Zy, Z1,...,2Z,), Zi square with zero diagonal

e constraints are independent 1-norm constraints

e T(Z) is block-Toeplitz matrix with first row Z

o f(V)=—logdet(Voo — Vil Vil 1. Vigpo) if

l:p,1:p
C Voa --- VI
vV — 00 pO _ [ VVOO ‘y{?p,O ] t 0
i V};O o Vpp | 1:p,0 1:p,1:p

e objective is convex differentiable, and closed if C' is block-Toeplitz
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Gradient projection

minimize  g(x)
subjectto z €C

g convex, differentiable; C a ‘simple’ convex set (e.g., 1-norm ball)

Basic algorithm

gD = p (az(k) — &Vg(x(k)))

P is (inexpensive) projection on C

Accelerated algorithms (Nesterov, Beck and Teboulle, Tseng, . . . )
e same complexity per step; faster (‘optimal’) convergence in theory

e known convergence theory does not apply to our problem
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Step size

‘Arc search’: backtracking search for o

. — aVg(z)

initialize « by Barzilai-Borwein stepsize

(Straight) line search
r:=(1—a)r+aP(x—tVg(z))

« determined by backtracking
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Numerical example

10°

—— GP-line search
- = =GP-arc search
----- Exact FISTA

"""" Modified FISTA

Relative error

0 200 400 600 800 1000

e example with n = 300, p = 2 (225150 variables)
e exact FISTA uses decreasing stepsize (required in convergence proof)

e modified FISTA is FISTA with non-monotone stepsize
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Summary: Graphical models of AR processes

Estimation with known topology

e convex relaxation of constrained ML estimation problem
e relaxation is exact if sample covariance matrix C' is block-Toeplitz

e in practice, it is often exact for almost-Toeplitz C

Topology selection

e convex nonsmooth (/1-type) regularization of ML problem
e useful heuristic for reducing #models ranked by information criteria

e efficient solution via first-order methods applied to the dual
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