A note on variable selection with concave penalty

Sara van de Geer

January 2011

1/32

Workshop Sparse Statistics, Optimization and Machine Learning January 16-21, 2011

January 2011

2/32

Linear model:

$$\mathbf{Y} = \mathbf{X}\beta^0 + \epsilon,$$

where $\mathbf{Y} \in \mathbb{R}^n$, $\mathbf{X} = (n \times p)$ -matrix, $\beta \in \mathbb{R}^p$. The Lasso [Tibshirani, 1995]

$$\hat{\boldsymbol{\beta}} := \arg\min_{\boldsymbol{\beta}} \biggl\{ \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_2^2/n + \lambda \|\boldsymbol{\beta}\|_1 \biggr\}.$$

(Concave penalty) BIRS January 2011 3 / 32

Some notation

The columns of X:

$$\psi_j := \begin{pmatrix} x_{1,j} \\ \vdots \\ x_{n,j} \end{pmatrix}, \ j = 1, \ldots, p,$$

i.e.,

$$\mathbf{X} = (\psi_1, \dots, \psi_p).$$

We use the normalization

$$\|\psi_j\|_2^2/n = 1.$$

The Gram matrix

$$\hat{\Sigma} := \mathbf{X}^T \mathbf{X} / n.$$

The "truth"

$$f^0 := \mathbf{X}\beta^0 = \sum_{j=1}^{\rho} \psi_j \beta_j^0.$$

The true active set

$$S_0 := \{j: \beta_j^0 \neq 0\}.$$

For an index set $S \subset \{1, \dots, p\}$ and $\beta \in \mathbb{R}^p$, we set

$$\beta_{j,S} = \beta_j \mathbb{I}\{j \in S\},$$

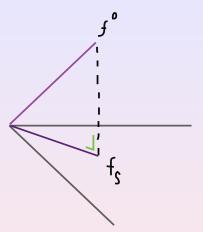
i.e., $\beta_{S} \in \mathbb{R}^{p}$ has zeroes outside S.

The projection of f^0 on the space spanned by $\{\psi_j\}_{j\in\mathcal{S}}$:

$$\mathbf{f}_{\mathcal{S}} := \mathbf{X} b^{\mathcal{S}}, \ b^{\mathcal{S}} := \min_{\boldsymbol{\beta}} \|\mathbf{X} \boldsymbol{\beta}_{\mathcal{S}} - f^{\mathbf{0}}\|_{2}.$$

(Concave penalty)

BIRS



The Projection on the Space Spanned by S

6/32

The ℓ_1 -compatibility condition

Let L>0 be some constant and S be an index set with cardinality s=|S|. We say that the ℓ_1 -compatibility condition holds if

$$\phi^2(L,S) := \min\{\beta^T \hat{\Sigma} \beta s: \ \|\beta\|_1 = 1, \ \|\beta_{S^c}\|_1 \leq L\}$$

is strictly positive.

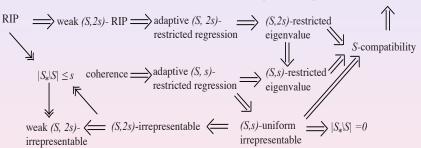
January 2011

7/32

(Concave penalty) BIRS

On the conditions used...

oracle inequalities for prediction and estimation



8/32

Handling of the noise

We assume throughout that

$$\max_{1 \leq j \leq \rho} 2|\epsilon^T \psi_j|/n \leq \lambda_0,$$

and that

$$\lambda \geq 2\lambda_0$$
.

Lemma

Suppose that $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$. Then for

$$\lambda_0 = 2\sigma \sqrt{\frac{t^2 + 2\log p}{n}},$$

we have

$$\mathbb{P}\bigg(\max_{1\leq j\leq p} 2|\epsilon^T\psi_j|/n>\lambda_0\bigg)\leq 2\exp[-t^2/2].$$

←□ → ←□ → ←□ → □ 9/32

Definition of the oracle

The active set of the oracle is

$$S_* := \underset{S}{\text{min}} \bigg\{ \underbrace{\|\mathbf{f}_S - f_0\|_2^2/n}_{\text{approximation error}} + \underbrace{\frac{4\lambda^2 s}{\phi^2(\mathbf{3},S)}}_{\text{estimation error}} \bigg\}.$$

Here,

$$L = \frac{\lambda + \lambda_0}{\lambda - \lambda_0} = 3$$
, because of our choice $\lambda = 2\lambda_0$.

We write

$$\beta^* := b^{S_*}, \ f^* := f_{S_*} = \mathbf{X}\beta^*, \ s_* := |S_*|.$$

10/32

The prediction error of the Lasso

Theorem

We have

$$2\|\mathbf{X}\hat{\beta} - f^0\|_2^2/n + \lambda\|\hat{\beta} - \beta^*\|_1 \le 3\bigg\{\|f^* - f^0\|_2^2 + \frac{4\lambda^2}{\phi^2(3, S_*)}\bigg\}.$$

11/32

The irrepresentable condition

[Meinshausen and Bühlmann, 2006] [Zhao and Yu, 2006]

Let

$$\hat{\Sigma}_{1,1}(S) := (\hat{\Sigma}_{j,k})_{j,k \in S}, \hat{\Sigma}_{1,2}(S) := (\hat{\Sigma}_{j,k})_{j \in S, k \notin S},$$

E.g., when $S = \{1, \dots, s\}$,

$$\hat{\Sigma} = \begin{pmatrix} \hat{\Sigma}_{1,1}(S) & \hat{\Sigma}_{1,2}(S) \\ \hat{\Sigma}_{2,1}(S) & \hat{\Sigma}_{2,2}(S) \end{pmatrix},$$

where $\hat{\Sigma}_{2,2}(S) = \hat{\Sigma}_{1,1}(S^c)$.



12/32

Write $\hat{S} := \{j: \ \hat{\beta}_j \neq 0\}.$

Lemma

Suppose the irrepresentable condition

$$\sup_{\|\tau_{S_0}\|_{\infty} \leq 1} \|\hat{\Sigma}_{2,1}(S_0)\hat{\Sigma}_{1,1}(S_0)\tau_{S_0}\|_{\infty} \leq \theta < \frac{\lambda - \lambda_0}{\lambda + \lambda_0}.$$

Then there are no false positives:

$$\hat{S}\subset S_0.$$

(Concave penalty) BIRS January 2011 13 / 32

Lemma

Suppose the irrepresentable condition

$$\sup_{\|\tau_{S_0}\|_\infty \leq 1} \|\hat{\Sigma}_{2,1}(S_0)\hat{\Sigma}_{1,1}(S_0)\tau_{S_0}\|_\infty \leq \theta < \frac{\lambda-\lambda_0}{\lambda+\lambda_0}.$$

Then the compatibility condition holds for $L\theta < 1$,

$$\phi^2(L,S_0) \geq (1-L\theta)^2 \Lambda_{\min}^2(\hat{\Sigma}_{1,1}(S_0)),$$

where $\Lambda_{\min}^2(\hat{\Sigma}_{1,1}(S_0))$ is the smallest eigenvalue of $\hat{\Sigma}_{1,1}(S_0).$

Recall we applied

$$L = \frac{\lambda + \lambda_0}{\lambda - \lambda_0}.$$

14/32

Benchmark: the ℓ_0 -penalty

Let $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma)$, $\lambda \asymp \sqrt{\log p/n}$ and

$$\hat{\beta}_{\text{ideal}} := \arg\min_{\beta} \biggl\{ \|\mathbf{Y} - \mathbf{X}\beta\|_2^2/n + \lambda^2 \underbrace{\|\beta\|_0^0}_{:=\#\{\beta_j \neq 0\}} \biggr\}.$$

Then one can show that with large probability

$$\|\mathbf{X}\hat{\beta}_{\text{ideal}} - f^0\|_2^2/n + \lambda^2 \hat{\mathbf{s}}_{\text{ideal}} \leq \text{const.} \bigg\{ \|f^* - f^0\|_2^2/n + \lambda^2 \mathbf{s}_* \bigg\},$$

and hence

$$\hat{s}_{ideal} = \mathcal{O}(s_*).$$

[Barron et al. 1999]

◆ロ > ◆団 > ◆ 差 > ◆ 差 > り へ ②

15/32

The number of false positives of the Lasso

Recall that S_* is the oracle active set. Generally

$$S_{\ast}\subset S_{0}.$$

Lemma

We have

$$|\hat{\mathsf{S}} \backslash \mathsf{S}_*| \leq \left[rac{\mathsf{\Lambda}_{\max}^2}{\phi^2(3, \mathsf{S}_*)}
ight] \mathcal{O}(\mathsf{s}_*),$$

where Λ_{max}^2 is the largest eigenvalue of $\hat{\Sigma}$.

(Concave penalty) BIRS January 2011 16/32

An idealized example: equal correlation

Let

$$\hat{\Sigma} := \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \ddots & \rho \\ \rho & \rho & \cdots & 1 \end{pmatrix}$$

$$= (1 - \rho)I + \rho \tau \tau^T,$$

where $0 < \rho < 1$ and $\tau = (1, \dots, 1)^T$. Then

$$\Lambda_{\max}^2 = (1 - \rho) + \rho p,$$

and

$$\phi^2(L,S)=1-\rho.$$

We take

$$\Delta:=\sup_{\|\tau_{S_0}\|_\infty\leq 1}\|\hat{\Sigma}_{2,1}(S_0)\hat{\Sigma}_{1,1}(S_0)\tau_{S_0}\|_\infty-\frac{\lambda-\lambda_0}{\lambda+\lambda_0}.$$

which holds for $\rho \gg 1/s_0$.

◆ロ > ◆ 部 > ◆ 差 > ◆ き * り へ で

We assume

$$2\epsilon^{\mathsf{T}}\psi_j/n = \begin{cases} -\lambda_0 & j \in \mathsf{S}_0 \\ +\lambda_0 & j \notin \mathsf{S}_0 \end{cases},$$

and

$$\beta_j^0 = b_0 \ \forall \ j \in S_0,$$

where

$$b_0 > \frac{\lambda + \lambda_0}{2} \left(\frac{1}{1 - \rho + \rho s_0} + \frac{\rho(\rho - s_0)\Delta}{(1 - \rho)(1 - \rho + \rho \rho)} \right).$$

Then for $j \in S_0$,

$$\hat{\beta}_j = b_0 - \frac{\lambda + \lambda_0}{2} \left(\frac{1}{1 - \rho + \rho s_0} + \frac{\rho(\rho - s_0)\Delta}{(1 - \rho)(1 - \rho + \rho p)} \right),$$

and for $j \notin S_0$,

$$\hat{\beta}_j = \frac{\lambda + \lambda_0}{2} \frac{\Delta (1 - \rho + \rho s_0)}{(1 - \rho)(1 - \rho + \rho p)}.$$

(Concave penalty) BIRS January 2011 18/32

Thus the Lasso selects all variables, so that

$$|\hat{S}\backslash S_0|=\rho-s_0!$$

(Concave penalty) BIRS January 2011 19/32

The ℓ_r -"norm" penalty, 0 < r < 1.

We let

$$\hat{\beta} := \arg\min_{\beta} \bigg\{ \|\mathbf{Y} - \mathbf{X}\beta\|_2^2/n + \lambda^{2-r} \|\beta\|_r^r \bigg\}.$$

[Zhang, 2010]

20/32

The ℓ_r -compatibility condition

We say that the ℓ_r -compatibility condition holds if

$$\phi_r^2(L, S) := \min\{\beta^T \hat{\Sigma} \beta |S|^{\frac{2-r}{2}} : \ \|\beta_S\|_r = 1, \ \|\beta_{S^c}\|_r \le L\}$$

is strictly positive.

21/32

Handling the noise

We assume that

$$\sup_{\beta} \frac{2|\epsilon^T \mathbf{X}\beta|/n}{\|\beta\|_r^{\frac{2}{2-r}} (\|\mathbf{X}\beta\|_n^2/n)^{\frac{1-r}{2-r}}} \leq \lambda_0,$$

and that

$$\lambda^{2-r} \geq 5\lambda_0^{2-r}4^{1-r}.$$

Lemma

Suppose $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$. Then for a constant c_r , and for

$$\lambda_0 = c_r \sigma \sqrt{\frac{\log(2p) + t^2}{n}},$$

we have

$$\mathbb{P}\bigg(\sup_{\beta}\frac{2|\epsilon^T\mathbf{X}\beta|/n}{\|\beta\|_{p}^{\frac{2}{2-r}}(\|\mathbf{X}\beta\|_{p}^{2}/n)^{\frac{1-r}{2-r}}}>\lambda_{0}\bigg)\leq 2\exp[-t^2/2].$$

Prediction error of the ℓ_r -norm penalized estimator

Definition of the oracle

$$\mathcal{S}_* := \arg\min_{\mathcal{S}} \bigg\{ \|\mathbf{f}_{\mathcal{S}} - f^0\|_2^2 / n + \frac{3(9\lambda)^2 s^2}{\phi_r^{\frac{2r}{2-r}}(\mathcal{S})} \bigg\},$$

and $f^* := f_{S_*}$, $s_* := |S_*|$.

Theorem

It holds that

$$\|\mathbf{X}\hat{\beta} - f^0\|_2^2/n + 4\lambda^{2-r}\|\hat{\beta} - \beta^*\|_r^r/5 \le 4\left\{\|f^* - f^0\|_2^2/n + \frac{3(9\lambda)^2 s_*}{\phi_r^{\frac{2r}{2-r}}(S_*)}\right\}.$$

(Concave penalty) BIRS January 2011 23 / 32

Definition sparse eigenvalue

$$\Lambda^2_{\text{sparse}}(s) := \max_{S: \; |S| = s} \Lambda_{\text{max}}(\hat{\Sigma}_{1,1}(S)).$$

Example: equal correlation Let

$$\hat{\Sigma} := (1 - \rho)I + \rho \tau \tau^T.$$

Then

$$\Lambda_{\text{sparse}}^2(s) = (1 - \rho) + \rho s.$$

Variable selection with ℓ_r -penalty

Theorem

$$\begin{split} |\hat{S}\backslash S_*| &= \left[\frac{\Lambda_{\text{sparse}}(s_*)}{\phi_r(3,S_*)}\right]^{\frac{r}{1-r}} \left[\frac{1}{\phi_r(3,S_*)}\right]^{\frac{r}{1-r}} \mathcal{O}(s_*) \\ &\wedge \left[\frac{1}{\phi_r(3,S_*)}\right]^{\frac{r}{1-r}} \mathcal{O}(s_*^{1+\frac{r}{2(1-r)}}). \end{split}$$

(Concave penalty) BIRS January 2011 25 / 32

Variable selection with ℓ_r -penalty

Theorem

$$|\hat{S} \setminus S_*| = \left[\frac{\Lambda_{\text{sparse}}(s_*)}{\phi_r(3, S_*)} \right]^{\frac{r}{1-r}} \left[\frac{1}{\phi_r(3, S_*)} \right]^{\frac{r}{1-r}} \mathcal{O}(s_*)$$

$$\wedge \left[\frac{1}{\phi_r(3, S_*)} \right]^{\frac{r}{1-r}} \mathcal{O}(s_*^{1+\frac{r}{2(1-r)}}).$$

(Concave penalty) BIRS January 2011 25 / 32

The adaptive Lasso

Let

$$\hat{\beta}_{\text{init}} = \arg\min_{\beta} \biggl\{ \|\mathbf{Y} - \mathbf{X}\beta\|_2^2/n + \lambda_{\text{init}} \sum_j |\beta_j| \biggr\},$$

and

$$\hat{\beta}_{\text{adap}} = \arg\min_{\beta} \bigg\{ \|\mathbf{Y} - \mathbf{X}\beta\|_2^2 / n + \lambda_{\text{init}} \lambda_{\text{adap}} \sum_{j} |\beta_j| / |\hat{\beta}_{\text{init},j}| \bigg\}.$$

[Zou, 2006]

26/32

Theorem

Take

$$\lambda_{
m adap} symp \left[rac{\mathsf{\Lambda}_{
m sparse}(\mathsf{s}_*)}{\phi_*^3}
ight] \lambda_{
m init}.$$

Then

$$\|\mathbf{X}\hat{\beta}_{\text{adap}} - f^0\|_2^2 = \left[\frac{\Lambda_{\text{sparse}}^2(\mathbf{s}_*)}{\phi_*^2}\right] \mathcal{O}\left(\frac{\lambda_{\text{init}}^2 \mathbf{s}_*}{\phi_*^2}\right),$$

and

$$|\hat{\mathsf{S}}_{\mathrm{adap}} \backslash \mathsf{S}_*| = \left[rac{\mathsf{\Lambda}_{\mathrm{sparse}}^2(\mathsf{s}_*)}{\phi_*^2}
ight] \mathcal{O}(\mathsf{s}_*).$$

27 / 32

Define for $\lambda_{\text{thres}} > 0$,

$$S_*^{\text{thres}} := \{j : |\beta_j^*| > 4\lambda_{\text{thres}}\},$$

and

$$f_{\mathrm{thres}}^* = \mathrm{f}_{\mathcal{S}_*^{\mathrm{thres}}}.$$

Let

$$|eta^*|^2_{ ext{trim}} := \left(rac{1}{ extstyle s_*} \sum_{|eta_j^*| > 2\lambda_{ ext{thres}}} rac{1}{|eta_j^*|^2}
ight)^{-1}.$$

Note that

$$|\beta^*|_{\text{trim}} > 2\lambda_{\text{thres}}$$
.

28 / 32

Theorem

Suppose

$$\|\hat{\beta}_{\text{init}} - \beta^*\|_{\infty} \le \lambda_{\text{thres}}.$$

Take

$$\lambda_{\mathrm{adap}} symp \left(1 + rac{\|f_{\mathrm{thres}}^* - f^0\|_2^2/n}{\lambda_{\mathrm{init}}^2 \mathbf{S}_*/\phi_*^2}
ight) |eta^*|_{\mathrm{trim}}^2.$$

Then

$$\|\mathbf{X}\hat{\beta}_{\text{adap}} - f^0\|_2^2/n = \left[\frac{\lambda_{\text{adap}}^2}{|\beta^*|_{\text{trim}}^2}\right] \mathcal{O}(\frac{\lambda_{\text{init}}^2 s_*}{\phi_*^2}),$$

and

$$|\hat{S}_{adap} \backslash S_*| = \left[\frac{\lambda_{init}^2}{|\beta^*|_{trim}^2} \right] \mathcal{O}\left(\frac{s_*^2}{\phi_*^6} \right).$$

29/32

Conclusion

- When $\Lambda_{\text{sparse}}(s_*) \simeq 1$ the adaptive Lasso mimics the ℓ_r -Lasso
- When Λ_{sparse}(s_{*}) is very large the ℓ_r-Lasso still has good prediction error. Under beta-min conditions, that is, conditions which require |β_j*| to be sufficiently large for all j ∉ S_{*}, the prediction error of the adaptive Lasso is also good. Otherwise, it may be problematic. (The same holds for the thresholded Lasso.)

30 / 32

Reference

P. Bühlmann and S.A. van de Geer. *Statistics for high-dimensional data. Methods, Theory and Applications* Springer, to appear (2011).

(Concave penalty) BIRS January 2011 31 / 32

THANK YOU!

32/32